[Développements récents concernant les phénomènes de transport dans les semi-métaux de Weyl]
Ces dix dernières années ont vu la réalisation de grandes avancées dans la connaissance et la manipulation de systèmes présentant des structures de bandes non conventionnelles. Ces avancées ont été stimulées par lʼétude du graphène et des isolants topologiques. Tandis que la structure de bande du graphène simule le comportement des électrons relativistes sans masse, les isolants topologiques possèdent des bandes qui « sʼenroulent » de manière non triviale (dans un certain sens abstrait) autour de lʼespace des impulsions. Au cours de ces dernières années, lʼenthousiasme sʼest aussi porté vers une autre phase non conventionnelle et topologique : le semi-métal de Weyl. Dans cette phase, les électrons adoptent le comportement des fermions de Weyl, bien connus en physique des hautes énergies, et héritent de leurs propriétés, dont une violation apparente de la conservation de la charge : lʼanomalie chirale. Dans cette revue, nous récapitulons certaines des propriétés de transport des semi-métaux de Weyl discutées dans la littérature jusquʼà maintenant, en insistant plus particulièrement sur les signatures de lʼanomalie chirale. Nous avons aussi mentionné les différentes propositions pour réaliser cette phase dans des systèmes de matière condensée, puisque ces réalisations sont à lʼorigine du développement de lʼactivité autour des semi-métaux de Weyl.
The last decade has witnessed great advancements in the science and engineering of systems with unconventional band structures, seeded by studies of graphene and topological insulators. While the band structure of graphene simulates massless relativistic electrons in two dimensions, topological insulators have bands that wind non-trivially over momentum space in a certain abstract sense. Over the last couple of years, enthusiasm has been burgeoning in another unconventional and topological (although, not quite in the same sense as topological insulators) phase – the Weyl semimetal. In this phase, electrons mimic Weyl fermions that are well known in high-energy physics, and inherit many of their properties, including an apparent violation of charge conservation known as the chiral anomaly. In this review, we recap some of the unusual transport properties of Weyl semimetals discussed in the literature so far, focusing on signatures whose roots lie in the anomaly. We also mention several proposed realizations of this phase in condensed matter systems, since they were what arguably precipitated activity on Weyl semimetals in the first place.
Pavan Hosur 1 ; Xiaoliang Qi 1
@article{CRPHYS_2013__14_9-10_857_0, author = {Pavan Hosur and Xiaoliang Qi}, title = {Recent developments in transport phenomena in {Weyl} semimetals}, journal = {Comptes Rendus. Physique}, pages = {857--870}, publisher = {Elsevier}, volume = {14}, number = {9-10}, year = {2013}, doi = {10.1016/j.crhy.2013.10.010}, language = {en}, }
Pavan Hosur; Xiaoliang Qi. Recent developments in transport phenomena in Weyl semimetals. Comptes Rendus. Physique, Volume 14 (2013) no. 9-10, pp. 857-870. doi : 10.1016/j.crhy.2013.10.010. https://comptes-rendus.academie-sciences.fr/physique/articles/10.1016/j.crhy.2013.10.010/
[1] The rise of graphene, Nat. Mater., Volume 6 (2007) no. 3, pp. 183-191
[2] Topological semimetal and Fermi-arc surface states in the electronic structure of pyrochlore iridates, Phys. Rev. B, Volume 83 (2011), p. 205101 | DOI
[3] Topological and magnetic phases of interacting electrons in the pyrochlore iridates, Phys. Rev. B, Volume 85 (2012), p. 045124 | DOI
[4] Magnetic orders and topological phases from f-d exchange in pyrochlore iridates, Phys. Rev. B, Volume 86 (2012), p. 235129 http://link.aps.org/doi/10.1103/PhysRevB.86.235129 | DOI
[5] A.M. Turner, A. Vishwanath, Beyond band insulators: topology of semi-metals and interacting phases, rXiv e-prints, January 2013.
[6] O. Vafek, A. Vishwanath, Dirac fermions in solids – from high Tc cuprates and graphene to topological insulators and Weyl semimetals, arXiv e-prints, June 2013.
[7] The Universe in a Helium Droplet, Int. Ser. Monogr. Phys., Oxford University Press, 2009 (ISBN: 9780199564842)
[8] Flat bands in topological media, JETP Lett., Volume 94 (2011) no. 3, pp. 233-239 (ISSN 0021-3640) | DOI
[9] Excitonic phases from Weyl semimetals, Phys. Rev. Lett., Volume 109 (2012), p. 196403 http://link.aps.org/doi/10.1103/PhysRevLett.109.196403 | DOI
[10] Absence of neutrinos on a lattice: (I). Proof by homotopy theory, Nucl. Phys. B, Volume 185 (1981) no. 1, pp. 20-40 (ISSN 0550-3213) | DOI
[11] Absence of neutrinos on a lattice: (II). Intuitive topological proof, Nucl. Phys. B, Volume 193 (1981) no. 1, pp. 173-194
[12] Friedel oscillations due to Fermi arcs in Weyl semimetals, Phys. Rev. B, Volume 86 (2012), p. 195102 http://link.aps.org/doi/10.1103/PhysRevB.86.195102 | DOI
[13] Charge transport in Weyl semimetals, Phys. Rev. Lett., Volume 108 (2012), p. 046602 | DOI
[14] Topological nodal semimetals, Phys. Rev. B, Volume 84 (2011), p. 235126 | DOI
[15] Dynamics of electric transport in interacting Weyl semimetals, Phys. Rev. B, Volume 88 (2013), p. 045108 http://link.aps.org/doi/10.1103/PhysRevB.88.045108 | DOI
[16] Quantum critical transport in clean graphene, Phys. Rev. B, Volume 78 (2008), p. 085416 http://link.aps.org/doi/10.1103/PhysRevB.78.085416 | DOI
[17] Quantum criticality between topological and band insulators in dimensions, Phys. Rev. Lett., Volume 107 (2011), p. 196803 http://link.aps.org/doi/10.1103/PhysRevLett.107.196803 | DOI
[18] Metal-nonmetal changeover in pyrochlore iridates, J. Phys. Soc. Jpn., Volume 70 (2001) no. 10, pp. 2880-2883 | DOI
[19] F.F. Tafti, J.J. Ishikawa, A. McCollam, S. Nakatsuji, S.R. Julian, Pressure tuned insulator to metal transition in Eu2Ir2O7, arXiv e-prints, July 2011.
[20] Variation of charge dynamics in the course of metal–insulator transition for pyrochlore-type Nd2Ir2O7, Phys. Rev. Lett., Volume 109 (2012), p. 136402 http://link.aps.org/doi/10.1103/PhysRevLett.109.136402 | DOI
[21] Weyl semimetal in a topological insulator multilayer, Phys. Rev. Lett., Volume 107 (2011), p. 127205 | DOI
[22] R. Nandkishore, D.A. Huse, S.L. Sondhi, Dirty Weyl fermions: rare region effects near 3D Dirac points, arXiv e-prints, July 2013.
[23] Pressure-tuned insulator to metal transition in Eu2Ir2O7, Phys. Rev. B, Volume 85 (2012), p. 205104 http://link.aps.org/doi/10.1103/PhysRevB.85.205104 | DOI
[24] A four-dimensional generalization of the quantum Hall effect, Science, Volume 294 (2001) no. 5543, pp. 823-828 http://www.sciencemag.org/content/294/5543/823.abstract | DOI
[25] Chiral anomaly and effective field theory for the quantum Hall liquid with edges, Phys. Lett. B, Volume 376 (1996), pp. 142-147 http://www.sciencedirect.com/science/article/pii/0370269396002742 (ISSN 0370-2693) | DOI
[26] Chiral topological insulators, superconductors, and other competing orders in three dimensions, Phys. Rev. B, Volume 81 (2010) no. 4, p. 045120 | DOI
[27] Topological response in Weyl semimetals and the chiral anomaly, Phys. Rev. B, Volume 86 (2012), p. 115133 http://link.aps.org/doi/10.1103/PhysRevB.86.115133 | DOI
[28] P. Goswami, S. Tewari, Axion field theory and anomalous non-dissipative transport properties of -dimensional Weyl semi-metals and Lorentz violating spinor electrodynamics, arXiv e-prints, October 2012.
[29] Axion response in Weyl semimetals, Phys. Rev. B, Volume 88 (2013), p. 125105 http://link.aps.org/doi/10.1103/PhysRevB.88.125105 | DOI
[30] Chiral anomaly, charge density waves, and axion strings from Weyl semimetals, Phys. Rev. B, Volume 87 (2013), p. 161107 http://link.aps.org/doi/10.1103/PhysRevB.87.161107 | DOI
[31] The Adler–Bell–Jackiw anomaly and Weyl fermions in a crystal, Phys. Lett. B, Volume 130 (1983) no. 6, pp. 389-396 (ISSN 0370-2693) | DOI
[32] Adler–Bell–Jackiw anomaly in Weyl semimetals: Application to pyrochlore iridates, Phys. Rev. B, Volume 85 (2012), p. 241101 http://link.aps.org/doi/10.1103/PhysRevB.85.241101 | DOI
[33] H.-J. Kim, K.-S. Kim, J.F. Wang, M. Sasaki, N. Satoh, A. Ohnishi, M. Kitaura, M. Yang, L. Li, Dirac vs. Weyl in topological insulators: Adler–Bell–Jackiw anomaly in transport phenomena, arXiv e-prints, July 2013.
[34] Topological insulators with inversion symmetry, Phys. Rev. B, Volume 76 (2007) no. 4, p. 045302 | DOI
[35] Phase transition between the quantum spin Hall and insulator phases in 3d: emergence of a topological gapless phase, New J. Phys., Volume 9 (2007) no. 9, p. 356 http://stacks.iop.org/1367-2630/9/i=9/a=356
[36] A topological Dirac insulator in a quantum spin Hall phase, Nature, Volume 452 (2008), pp. 970-974 | DOI
[37] Consequences of a condensed matter realization of Lorentz-violating QED in Weyl semi-metals, Phys. Rev. D, Volume 86 (2012), p. 045001 http://link.aps.org/doi/10.1103/PhysRevD.86.045001 | DOI
[38] Chern semimetal and the quantized anomalous Hall effect in HgCr2Se4, Phys. Rev. Lett., Volume 107 (2011), p. 186806 | DOI
[39] Quantum Hall effects in a Weyl semimetal: Possible application in pyrochlore iridates, Phys. Rev. B, Volume 84 (2011), p. 075129 | DOI
[40] Topological invariants of metals and the related physical effects, Chin. Phys. Lett., Volume 30 (2013) no. 2, p. 027101 http://stacks.iop.org/0256-307X/30/i=2/a=027101
[41] The chiral magnetic effect in hydrodynamical approach, Phys. Lett. B, Volume 697 (2011) no. 4, pp. 404-406 http://www.sciencedirect.com/science/article/pii/S0370269311001869 (ISSN 0370-2693) | DOI
[42] Notes on chiral hydrodynamics within the effective theory approach, Phys. Rev. D, Volume 83 (2011), p. 105025 http://link.aps.org/doi/10.1103/PhysRevD.83.105025 | DOI
[43] Z.V. Khaidukov, V.P. Kirilin, A.V. Sadofyev, V.I. Zakharov, On magnetostatics of chiral media, arXiv e-prints, June 2013.
[44] Electromagnetic response of Weyl semimetals, Phys. Rev. Lett., Volume 111 (2013), p. 027201 http://link.aps.org/doi/10.1103/PhysRevLett.111.027201 | DOI
[45] G. Basar, D.E. Kharzeev, H.-U. Yee, Triangle anomaly in Weyl semi-metals, arXiv e-prints, May 2013.
[46] K. Landsteiner, Anomaly related transport of Weyl fermions for Weyl semi-metals, arXiv e-prints, June 2013.
[47] Chiral vortical effect in superfluid, Phys. Rev. D, Volume 86 (2012), p. 025021 http://link.aps.org/doi/10.1103/PhysRevD.86.025021 | DOI
[48] Chiral vortical effect in Fermi liquid, Phys. Lett. B, Volume 717 (2012) no. 4–5, pp. 447-449 http://www.sciencedirect.com/science/article/pii/S0370269312009896 (ISSN 0370-2693) | DOI
[49] S.A. Parameswaran, T. Grover, D.A. Abanin, D.A. Pesin, A. Vishwanath, Probing the chiral anomaly with nonlocal transport in Weyl semimetals, arXiv e-prints, June 2013.
[50] The electronic properties of graphene, Rev. Mod. Phys., Volume 81 (2009), pp. 109-162 http://link.aps.org/doi/10.1103/RevModPhys.81.109 | DOI
[51] Chiral gauge field and axial anomaly in a Weyl semimetal, Phys. Rev. B, Volume 87 (2013), p. 235306 http://link.aps.org/doi/10.1103/PhysRevB.87.235306 | DOI
[52] Effect of time-reversal symmetry on energy bands of crystals, Phys. Rev., Volume 52 (1937), pp. 361-365 | DOI
[53] Some properties of gapless semiconductors of the second kind, J. Low Temp. Phys., Volume 5 (1971), pp. 141-154 (ISSN 0022-2291) | DOI
[54] Accidental degeneracy in the energy bands of crystals, Phys. Rev., Volume 52 (1937), pp. 365-373 http://link.aps.org/doi/10.1103/PhysRev.52.365 | DOI
[55] Weyl superconductors, Phys. Rev. B, Volume 86 (2012), p. 054504 http://link.aps.org/doi/10.1103/PhysRevB.86.054504 | DOI
[56] Time-reversal invariant realization of the Weyl semimetal phase, Phys. Rev. B, Volume 85 (2012), p. 035103 | DOI
[57] G.Y. Cho, Possible topological phases of bulk magnetically doped Bi2Se3: turning a topological band insulator into the Weyl semimetal, arXiv e-prints, October 2011.
[58] Weyl points and line nodes in gyroid photonic crystals, Nat. Photonics, Volume 7 (2013) no. 4, pp. 294-299 (ISSN 1749-4885) | DOI
[59] Dirac semimetal in three dimensions, Phys. Rev. Lett., Volume 108 (2012), p. 140405 http://link.aps.org/doi/10.1103/PhysRevLett.108.140405 | DOI
[60] Dirac semimetal and topological phase transitions in A3Bi (A=Na, K, Rb), Phys. Rev. B, Volume 85 (2012), p. 195320 http://link.aps.org/doi/10.1103/PhysRevB.85.195320 | DOI
[61] Z. Wang, H. Weng, Q. Wu, X. Dai, Z. Fang, Three dimensional dirac semimetal and quantum spin Hall effect in Cd3As2, arXiv e-prints, May 2013.
Cité par Sources :
Commentaires - Politique