[Introduction aux matériaux de Dirac et aux isolants topologiques]
Nous présentons dans cet article une courte introduction didactique à la physique des matériaux de Dirac, restreinte au graphène et à des isolants topologiques en deux dimensions. Nous commençons par un bref rappel des équations de Dirac et de Weyl dans le contexte de la physique des particules. Abordant les systèmes relatifs à la matière condensée, le graphène semi-métallique et divers isolants de Dirac sont présentés, parmi lesquels les isolants topologiques de Haldane et de Kane–Mele. Nous discutons aussi brièvement les réalisations expérimentales avec des matériaux à fort couplage spin–orbite.
We present a short pedagogical introduction to the physics of Dirac materials, restricted to graphene and two-dimensional topological insulators. We start with a brief reminder of the Dirac and Weyl equations in the particle physics context. Turning to condensed matter systems, semimetallic graphene and various Dirac insulators are introduced, including the Haldane and the Kane–Mele topological insulators. We also discuss briefly experimental realizations in materials with strong spin–orbit coupling.
Mot clés : Fermions de Dirac, Graphène, Isolants topologiques, États de bord
Jérôme Cayssol 1, 2
@article{CRPHYS_2013__14_9-10_760_0, author = {J\'er\^ome Cayssol}, title = {Introduction to {Dirac} materials and topological insulators}, journal = {Comptes Rendus. Physique}, pages = {760--778}, publisher = {Elsevier}, volume = {14}, number = {9-10}, year = {2013}, doi = {10.1016/j.crhy.2013.09.012}, language = {en}, }
Jérôme Cayssol. Introduction to Dirac materials and topological insulators. Comptes Rendus. Physique, Volume 14 (2013) no. 9-10, pp. 760-778. doi : 10.1016/j.crhy.2013.09.012. https://comptes-rendus.academie-sciences.fr/physique/articles/10.1016/j.crhy.2013.09.012/
[1] Quantum Field Theory in a Nutshell, Princeton University Press, 2010
[2] The Quantum Theory of Fields, Volume 1: Foundations, Cambridge University Press, 2005
[3] The quantum theory of the electron, P. Roy. Soc. Lond. Ser., Volume 117 (1928) no. 778, pp. 610-624
[4] A theory of electrons and protons, P. Roy. Soc. Lon. Ser.-A, Volume 126 (1930) no. 801, pp. 360-365
[5] Z. Phys., 37 (1926), p. 895
[6] Electron and gravitation, Z. Phys., Volume 56 (1929), pp. 330-352
[7] Theory of the symmetry of electrons and positrons, Nuovo Cim., Volume 14 (1937), pp. 171-184
[8] Dirac Majorana and Weyl fermions, 2010 | arXiv
[9] Colloquium: Topological insulators, Rev. Mod. Phys., Volume 82 ( Nov. 2010 ), pp. 3045-3067
[10] Topological insulators and superconductors, Rev. Mod. Phys., Volume 83 ( Oct. 2011 ), pp. 1057-1110
[11] The quantum spin Hall effect: theory and experiment, J. Phys. Soc. Jpn., Volume 77 ( March 2008 ) no. 3, p. 031007
[12] The quantum spin Hall effect and topological insulators, Phys. Today, Volume 63 (2010), p. 33
[13] Topological Insulators and Topological Superconductors, Cambridge University Press, 2013
[14] Quantum spin Hall effect in graphene, Phys. Rev. Lett., Volume 95 (2005), p. 226801
[15] Topological order and the quantum spin Hall effect, Phys. Rev. Lett., Volume 95 (2005), p. 146802
[16] Double beta decay, Majorana neutrinos, and neutrino mass, Rev. Mod. Phys., Volume 80 ( Apr. 2008 ), pp. 481-516
[17] Electric field effect in atomically thin carbon films, Science, Volume 306 (2004), p. 666
[18] Two-dimensional gas of massless Dirac fermions in graphene, Nature, Volume 438 (2005), p. 197
[19] Experimental observation of the quantum Hall effect and Berryʼs phase in graphene, Nature, Volume 438 (2005), p. 201
[20] The band theory of graphite, Phys. Rev., Volume 71 ( May 1947 ), pp. 622-634
[21] Self-consistent effective-mass theory for intralayer screening in graphite intercalation compounds, Phys. Rev. B, Volume 29 ( Feb. 1984 ), pp. 1685-1694
[22] Condensed-matter simulation of a three-dimensional anomaly, Phys. Rev. Lett., Volume 53 (1984), p. 2449
[23] Model for a quantum Hall effect without Landau levels: Condensed-matter realization of the “parity anomaly”, Phys. Rev. Lett., Volume 61 (1988), p. 2015
[24] Die Reflexion von Elektronen an einem Potentialsprung nach der relativistischen Dynamik von Dirac, Z. Phys., Volume 53 (1929), pp. 3-4
[25] Selective transmission of Dirac electrons and ballistic magnetoresistance of junctions in graphene, Phys. Rev. B, Volume 74 ( Jul. 2006 ), p. 041403
[26] Chiral tunnelling and the Klein paradox in graphene, Nat. Phys., Volume 2 (2006), p. 620 | DOI
[27] Contact resistance and shot noise in graphene transistors, Phys. Rev. B, Volume 79 ( Feb. 2009 ), p. 075428
[28] Interfacial charge and spin transport in topological insulators, Phys. Rev. B, Volume 83 (2011), p. 125401
[29] Transport measurements across a tunable potential barrier in graphene, Phys. Rev. Lett., Volume 98 ( Jun. 2007 ), p. 236803
[30] Quantum Hall effect in a gate-controlled p–n junction of graphene, Science, Volume 317 (2007), p. 638
[31] Electronic transport and quantum Hall effect in bipolar graphene junctions, Phys. Rev. Lett., Volume 99 ( Oct. 2007 ), p. 166804
[32] Evidence for Klein tunneling in graphene junctions, Phys. Rev. Lett., Volume 102 ( Jan. 2009 ), p. 026807
[33] Quantum interference and carrier collimation in graphene heterojunctions, Nat. Phys., Volume 5 (2009), pp. 222-226
[34] Berryʼs phase and absence of back scattering in carbon nanotubes, J. Phys. Soc. Jpn., Volume 67 (1998), p. 2857
[35] Klein tunneling in graphene: optics with massless electrons, Eur. Phys. J. B, Volume 83 (2011), pp. 301-317
[36] The electronic properties of graphene, Rev. Mod. Phys., Volume 81 (2009), p. 109
[37] Electronic properties of graphene in a strong magnetic field, Rev. Mod. Phys., Volume 83 (2011), p. 1193
[38] Electron–electron interactions in graphene: Current status and perspectives, Rev. Mod. Phys., Volume 84 ( Jul. 2012 ), pp. 1067-1125
[39] Phys. Rev. B, 78 ( Jul. 2008 ), p. 045415
[40] Energy gaps and a zero-field quantum Hall effect in graphene by strain engineering, Nat. Phys., Volume 6 (2010), p. 30
[41] Fractional topological phases and broken time-reversal symmetry in strained graphene, Phys. Rev. Lett., Volume 108 ( Jun. 2012 ), p. 266801
[42] Masses in graphenelike two-dimensional electronic systems: Topological defects in order parameters and their fractional exchange statistics, Phys. Rev. B, Volume 80 (2009), p. 205319
[43] Berryʼs phase for energy bands in solids, Phys. Rev. Lett., Volume 62 ( Jun. 1989 ), pp. 2747-2750
[44] Creating, moving and merging Dirac points with a Fermi gas in a tunable honeycomb lattice, Nature, Volume 483 (2012), p. 302
[45] High-temperature fractional quantum Hall states, Phys. Rev. Lett., Volume 106 (2011), p. 236802
[46] Nearly flatbands with nontrivial topology, Phys. Rev. Lett., Volume 106 (2011), p. 236803
[47] Fractional quantum Hall states at zero magnetic field, Phys. Rev. Lett., Volume 106 (2011), p. 236804
[48] Fractional Chern insulator, Phys. Rev. X, Volume 1 (2011), p. 021014
[49] Fractional quantum Hall effect of hard-core bosons in topological flat bands, Phys. Rev. Lett., Volume 107 (2011), p. 146803
[50] Fractional topological liquids with time-reversal symmetry and their lattice realization, Phys. Rev. B, Volume 84 (2011), p. 165107
[51] Experimental observation of the quantum anomalous Hall effect in a magnetic topological insulator, Science, Volume 340 (2013) no. 6129, pp. 167-170
[52] Dissipationless quantum spin current at room temperature, Science, Volume 301 (2003) no. 5638, pp. 1348-1351
[53] Universal intrinsic spin Hall effect, Phys. Rev. Lett., Volume 92 ( Mar. 2004 ), p. 126603
[54] Observation of the spin Hall effect in semiconductors, Science, Volume 306 (2004) no. 5703, pp. 1910-1913
[55] Experimental observation of the spin-Hall effect in a two-dimensional spin–orbit coupled semiconductor system, Phys. Rev. Lett., Volume 94 ( Feb. 2005 ), p. 047204
[56] Spin–orbit coupling in curved graphene, fullerenes, nanotubes, and nanotube caps, Phys. Rev. B, Volume 74 ( Oct. 2006 ), p. 155426
[57] Intrinsic and Rashba spin–orbit interactions in graphene sheets, Phys. Rev. B, Volume 74 ( Oct. 2006 ), p. 165310
[58] Quantum spin Hall effect and topological phase transition in HgTe quantum wells, Science, Volume 314 (2006) no. 5806, p. 1757
[59] Quantum spin Hall insulator state in HgTe quantum wells, Science, Volume 318 ( November 2007 ) no. 5851, pp. 766-770
[60] Nonlocal transport in the quantum spin Hall state, Science, Volume 325 ( July 2009 ) no. 5938, pp. 294-297
[61] Quantum spin Hall effect in inverted type-ii semiconductors, Phys. Rev. Lett., Volume 100 ( Jun. 2008 ), p. 236601
[62] Evidence for helical edge modes in inverted quantum wells, Phys. Rev. Lett., Volume 107 ( Sep. 2011 ), p. 136603
[63] Quantum anomalous Hall effect in quantum wells, Phys. Rev. Lett., Volume 101 ( Oct. 2008 ), p. 146802
[64] Anomalous edge transport in the quantum anomalous Hall state, Phys. Rev. Lett., Volume 111 ( Aug. 2013 ), p. 086803
[65] Quantized Hall conductance in a two-dimensional periodic potential, Phys. Rev. Lett., Volume 49 ( Aug. 1982 ), pp. 405-408
[66] Topological quantization of the spin Hall effect in two-dimensional paramagnetic semiconductors, Phys. Rev. B, Volume 74 ( Aug. 2006 ), p. 085308
[67] Geometrical engineering of a two-band Chern insulator in two dimensions with arbitrary topological index, Phys. Rev. B, Volume 85 ( Apr. 2012 ), p. 165456
[68] Solitons with fermion number 1/2, Phys. Rev. D, Volume 13 ( Jun. 1976 ), pp. 3398-3409
[69] Solitons in polyacetylene, Phys. Rev. Lett., Volume 42 ( Jun. 1979 ), pp. 1698-1701
[70] Soliton excitations in polyacetylene, Phys. Rev. B, Volume 22 ( Aug. 1980 ), pp. 2099-2111
[71] Photovoltaic Hall effect in graphene, Phys. Rev. B, Volume 79 (2009), p. 081406
[72] Transport properties of nonequilibrium systems under the application of light: Photoinduced quantum Hall insulators without Landau levels, Phys. Rev. B, Volume 84 ( Dec. 2011 ), p. 235108
[73] Floquet spectrum and transport through an irradiated graphene ribbon, Phys. Rev. Lett., Volume 107 ( Nov. 2011 ), p. 216601
[74] Kubo formula for Floquet states and photoconductivity oscillations in a two-dimensional electron gas, Phys. Rev. B, Volume 71 ( Mar. 2005 ), p. 115313
[75] Floquet topological insulator in semiconductor quantum wells, Nat. Phys., Volume 7 (2011), pp. 490-495
[76] Floquet topological insulators, Phys. Status Solidi, Volume 7 (2013) no. 1–2, pp. 101-108
[77] Artificial graphene as a tunable Dirac material, 2013 | arXiv
[78] Designer Dirac fermions and topological phases in molecular graphene, Nature, Volume 483 (2012), p. 306
[79] et al. Two-dimensional Mott–Hubbard electrons in an artificial honeycomb lattice, Science, Volume 332 (2011) no. 6034, pp. 1176-1179
[80] Making massless Dirac fermions from patterned two-dimensional electron gases, Nano Lett., Volume 9 (2009), pp. 1793-1797
[81] An analog of the quantum Hall effect in a superfluid 3He film, JETP, Volume 67 (1988), pp. 1804-1811
[82] G.E. Volovik, The Universe in a Helium Droplet, The International Series of Monographs on Physics, vol. 117, Oxford.
[83] Photonic topological insulators, Nature Materials, Volume 12 (2013), pp. 233-239
[84] Photonic Floquet topological insulators, Nature, Volume 496 (2013), pp. 196-200
Cité par Sources :
Commentaires - Politique