[Introduction aux matériaux de Dirac et aux isolants topologiques]
Nous présentons dans cet article une courte introduction didactique à la physique des matériaux de Dirac, restreinte au graphène et à des isolants topologiques en deux dimensions. Nous commençons par un bref rappel des équations de Dirac et de Weyl dans le contexte de la physique des particules. Abordant les systèmes relatifs à la matière condensée, le graphène semi-métallique et divers isolants de Dirac sont présentés, parmi lesquels les isolants topologiques de Haldane et de Kane–Mele. Nous discutons aussi brièvement les réalisations expérimentales avec des matériaux à fort couplage spin–orbite.
We present a short pedagogical introduction to the physics of Dirac materials, restricted to graphene and two-dimensional topological insulators. We start with a brief reminder of the Dirac and Weyl equations in the particle physics context. Turning to condensed matter systems, semimetallic graphene and various Dirac insulators are introduced, including the Haldane and the Kane–Mele topological insulators. We also discuss briefly experimental realizations in materials with strong spin–orbit coupling.
Mots-clés : Fermions de Dirac, Graphène, Isolants topologiques, États de bord
Jérôme Cayssol 1, 2
@article{CRPHYS_2013__14_9-10_760_0, author = {J\'er\^ome Cayssol}, title = {Introduction to {Dirac} materials and topological insulators}, journal = {Comptes Rendus. Physique}, pages = {760--778}, publisher = {Elsevier}, volume = {14}, number = {9-10}, year = {2013}, doi = {10.1016/j.crhy.2013.09.012}, language = {en}, }
Jérôme Cayssol. Introduction to Dirac materials and topological insulators. Comptes Rendus. Physique, Topological insulators / Isolants topologiques, Volume 14 (2013) no. 9-10, pp. 760-778. doi : 10.1016/j.crhy.2013.09.012. https://comptes-rendus.academie-sciences.fr/physique/articles/10.1016/j.crhy.2013.09.012/
[1] Quantum Field Theory in a Nutshell, Princeton University Press, 2010
[2] The Quantum Theory of Fields, Volume 1: Foundations, Cambridge University Press, 2005
[3] The quantum theory of the electron, P. Roy. Soc. Lond. Ser., Volume 117 (1928) no. 778, pp. 610-624
[4] A theory of electrons and protons, P. Roy. Soc. Lon. Ser.-A, Volume 126 (1930) no. 801, pp. 360-365
[5] Z. Phys., 37 (1926), p. 895
[6] Electron and gravitation, Z. Phys., Volume 56 (1929), pp. 330-352
[7] Theory of the symmetry of electrons and positrons, Nuovo Cim., Volume 14 (1937), pp. 171-184
[8] Dirac Majorana and Weyl fermions, 2010 | arXiv
[9] Colloquium: Topological insulators, Rev. Mod. Phys., Volume 82 ( Nov. 2010 ), pp. 3045-3067
[10] Topological insulators and superconductors, Rev. Mod. Phys., Volume 83 ( Oct. 2011 ), pp. 1057-1110
[11] The quantum spin Hall effect: theory and experiment, J. Phys. Soc. Jpn., Volume 77 ( March 2008 ) no. 3, p. 031007
[12] The quantum spin Hall effect and topological insulators, Phys. Today, Volume 63 (2010), p. 33
[13] Topological Insulators and Topological Superconductors, Cambridge University Press, 2013
[14] Quantum spin Hall effect in graphene, Phys. Rev. Lett., Volume 95 (2005), p. 226801
[15] Topological order and the quantum spin Hall effect, Phys. Rev. Lett., Volume 95 (2005), p. 146802
[16] Double beta decay, Majorana neutrinos, and neutrino mass, Rev. Mod. Phys., Volume 80 ( Apr. 2008 ), pp. 481-516
[17] Electric field effect in atomically thin carbon films, Science, Volume 306 (2004), p. 666
[18] Two-dimensional gas of massless Dirac fermions in graphene, Nature, Volume 438 (2005), p. 197
[19] Experimental observation of the quantum Hall effect and Berryʼs phase in graphene, Nature, Volume 438 (2005), p. 201
[20] The band theory of graphite, Phys. Rev., Volume 71 ( May 1947 ), pp. 622-634
[21] Self-consistent effective-mass theory for intralayer screening in graphite intercalation compounds, Phys. Rev. B, Volume 29 ( Feb. 1984 ), pp. 1685-1694
[22] Condensed-matter simulation of a three-dimensional anomaly, Phys. Rev. Lett., Volume 53 (1984), p. 2449
[23] Model for a quantum Hall effect without Landau levels: Condensed-matter realization of the “parity anomaly”, Phys. Rev. Lett., Volume 61 (1988), p. 2015
[24] Die Reflexion von Elektronen an einem Potentialsprung nach der relativistischen Dynamik von Dirac, Z. Phys., Volume 53 (1929), pp. 3-4
[25] Selective transmission of Dirac electrons and ballistic magnetoresistance of
[26] Chiral tunnelling and the Klein paradox in graphene, Nat. Phys., Volume 2 (2006), p. 620 | DOI
[27] Contact resistance and shot noise in graphene transistors, Phys. Rev. B, Volume 79 ( Feb. 2009 ), p. 075428
[28] Interfacial charge and spin transport in
[29] Transport measurements across a tunable potential barrier in graphene, Phys. Rev. Lett., Volume 98 ( Jun. 2007 ), p. 236803
[30] Quantum Hall effect in a gate-controlled p–n junction of graphene, Science, Volume 317 (2007), p. 638
[31] Electronic transport and quantum Hall effect in bipolar graphene
[32] Evidence for Klein tunneling in graphene
[33] Quantum interference and carrier collimation in graphene heterojunctions, Nat. Phys., Volume 5 (2009), pp. 222-226
[34] Berryʼs phase and absence of back scattering in carbon nanotubes, J. Phys. Soc. Jpn., Volume 67 (1998), p. 2857
[35] Klein tunneling in graphene: optics with massless electrons, Eur. Phys. J. B, Volume 83 (2011), pp. 301-317
[36] The electronic properties of graphene, Rev. Mod. Phys., Volume 81 (2009), p. 109
[37] Electronic properties of graphene in a strong magnetic field, Rev. Mod. Phys., Volume 83 (2011), p. 1193
[38] Electron–electron interactions in graphene: Current status and perspectives, Rev. Mod. Phys., Volume 84 ( Jul. 2012 ), pp. 1067-1125
[39] Phys. Rev. B, 78 ( Jul. 2008 ), p. 045415
[40] Energy gaps and a zero-field quantum Hall effect in graphene by strain engineering, Nat. Phys., Volume 6 (2010), p. 30
[41] Fractional topological phases and broken time-reversal symmetry in strained graphene, Phys. Rev. Lett., Volume 108 ( Jun. 2012 ), p. 266801
[42] Masses in graphenelike two-dimensional electronic systems: Topological defects in order parameters and their fractional exchange statistics, Phys. Rev. B, Volume 80 (2009), p. 205319
[43] Berryʼs phase for energy bands in solids, Phys. Rev. Lett., Volume 62 ( Jun. 1989 ), pp. 2747-2750
[44] Creating, moving and merging Dirac points with a Fermi gas in a tunable honeycomb lattice, Nature, Volume 483 (2012), p. 302
[45] High-temperature fractional quantum Hall states, Phys. Rev. Lett., Volume 106 (2011), p. 236802
[46] Nearly flatbands with nontrivial topology, Phys. Rev. Lett., Volume 106 (2011), p. 236803
[47] Fractional quantum Hall states at zero magnetic field, Phys. Rev. Lett., Volume 106 (2011), p. 236804
[48] Fractional Chern insulator, Phys. Rev. X, Volume 1 (2011), p. 021014
[49] Fractional quantum Hall effect of hard-core bosons in topological flat bands, Phys. Rev. Lett., Volume 107 (2011), p. 146803
[50] Fractional topological liquids with time-reversal symmetry and their lattice realization, Phys. Rev. B, Volume 84 (2011), p. 165107
[51] Experimental observation of the quantum anomalous Hall effect in a magnetic topological insulator, Science, Volume 340 (2013) no. 6129, pp. 167-170
[52] Dissipationless quantum spin current at room temperature, Science, Volume 301 (2003) no. 5638, pp. 1348-1351
[53] Universal intrinsic spin Hall effect, Phys. Rev. Lett., Volume 92 ( Mar. 2004 ), p. 126603
[54] Observation of the spin Hall effect in semiconductors, Science, Volume 306 (2004) no. 5703, pp. 1910-1913
[55] Experimental observation of the spin-Hall effect in a two-dimensional spin–orbit coupled semiconductor system, Phys. Rev. Lett., Volume 94 ( Feb. 2005 ), p. 047204
[56] Spin–orbit coupling in curved graphene, fullerenes, nanotubes, and nanotube caps, Phys. Rev. B, Volume 74 ( Oct. 2006 ), p. 155426
[57] Intrinsic and Rashba spin–orbit interactions in graphene sheets, Phys. Rev. B, Volume 74 ( Oct. 2006 ), p. 165310
[58] Quantum spin Hall effect and topological phase transition in HgTe quantum wells, Science, Volume 314 (2006) no. 5806, p. 1757
[59] Quantum spin Hall insulator state in HgTe quantum wells, Science, Volume 318 ( November 2007 ) no. 5851, pp. 766-770
[60] Nonlocal transport in the quantum spin Hall state, Science, Volume 325 ( July 2009 ) no. 5938, pp. 294-297
[61] Quantum spin Hall effect in inverted type-ii semiconductors, Phys. Rev. Lett., Volume 100 ( Jun. 2008 ), p. 236601
[62] Evidence for helical edge modes in inverted
[63] Quantum anomalous Hall effect in
[64] Anomalous edge transport in the quantum anomalous Hall state, Phys. Rev. Lett., Volume 111 ( Aug. 2013 ), p. 086803
[65] Quantized Hall conductance in a two-dimensional periodic potential, Phys. Rev. Lett., Volume 49 ( Aug. 1982 ), pp. 405-408
[66] Topological quantization of the spin Hall effect in two-dimensional paramagnetic semiconductors, Phys. Rev. B, Volume 74 ( Aug. 2006 ), p. 085308
[67] Geometrical engineering of a two-band Chern insulator in two dimensions with arbitrary topological index, Phys. Rev. B, Volume 85 ( Apr. 2012 ), p. 165456
[68] Solitons with fermion number 1/2, Phys. Rev. D, Volume 13 ( Jun. 1976 ), pp. 3398-3409
[69] Solitons in polyacetylene, Phys. Rev. Lett., Volume 42 ( Jun. 1979 ), pp. 1698-1701
[70] Soliton excitations in polyacetylene, Phys. Rev. B, Volume 22 ( Aug. 1980 ), pp. 2099-2111
[71] Photovoltaic Hall effect in graphene, Phys. Rev. B, Volume 79 (2009), p. 081406
[72] Transport properties of nonequilibrium systems under the application of light: Photoinduced quantum Hall insulators without Landau levels, Phys. Rev. B, Volume 84 ( Dec. 2011 ), p. 235108
[73] Floquet spectrum and transport through an irradiated graphene ribbon, Phys. Rev. Lett., Volume 107 ( Nov. 2011 ), p. 216601
[74] Kubo formula for Floquet states and photoconductivity oscillations in a two-dimensional electron gas, Phys. Rev. B, Volume 71 ( Mar. 2005 ), p. 115313
[75] Floquet topological insulator in semiconductor quantum wells, Nat. Phys., Volume 7 (2011), pp. 490-495
[76] Floquet topological insulators, Phys. Status Solidi, Volume 7 (2013) no. 1–2, pp. 101-108
[77] Artificial graphene as a tunable Dirac material, 2013 | arXiv
[78] Designer Dirac fermions and topological phases in molecular graphene, Nature, Volume 483 (2012), p. 306
[79] et al. Two-dimensional Mott–Hubbard electrons in an artificial honeycomb lattice, Science, Volume 332 (2011) no. 6034, pp. 1176-1179
[80] Making massless Dirac fermions from patterned two-dimensional electron gases, Nano Lett., Volume 9 (2009), pp. 1793-1797
[81] An analog of the quantum Hall effect in a superfluid 3He film, JETP, Volume 67 (1988), pp. 1804-1811
[82] G.E. Volovik, The Universe in a Helium Droplet, The International Series of Monographs on Physics, vol. 117, Oxford.
[83] Photonic topological insulators, Nature Materials, Volume 12 (2013), pp. 233-239
[84] Photonic Floquet topological insulators, Nature, Volume 496 (2013), pp. 196-200
- Algebraic solutions for SU(2)⊗SU(2) Hamiltonian eigensystems: Generic statistical ensembles and a mesoscopic system application, Annals of Physics, Volume 474 (2025), p. 169932 | DOI:10.1016/j.aop.2025.169932
- Semi-classical limit of the Dirac equation in curved space and applications to strained and photonic graphene, Journal of Physics A: Mathematical and Theoretical, Volume 58 (2025) no. 11, p. 115302 | DOI:10.1088/1751-8121/adb402
- The Huge Role of Tiny Impurities in Nanoscale Synthesis, ACS Nanoscience Au, Volume 4 (2024) no. 3, p. 176 | DOI:10.1021/acsnanoscienceau.3c00056
- Quantum Hall and Light Responses in a 2D Topological Semimetal, Comptes Rendus. Physique, Volume 25 (2024) no. G1, p. 415 | DOI:10.5802/crphys.202
- Holographic entanglement renormalisation for fermionic quantum matter, Journal of Physics A: Mathematical and Theoretical, Volume 57 (2024) no. 27, p. 275401 | DOI:10.1088/1751-8121/ad56e1
- Topology of 2D Dirac operators with variable mass and an application to shallow-water waves, Journal of Physics A: Mathematical and Theoretical, Volume 57 (2024) no. 6, p. 065201 | DOI:10.1088/1751-8121/ad1d8e
- Robust magnetism and crystal structure in Dirac semimetal EuMnBi2 under high pressure, Journal of Physics: Condensed Matter, Volume 36 (2024) no. 25, p. 255802 | DOI:10.1088/1361-648x/ad3473
- Excitonic effects on the optical spectra of TiB2 nanosheets, Journal of Physics: Condensed Matter, Volume 36 (2024) no. 4, p. 045501 | DOI:10.1088/1361-648x/ad0353
- Temperature evolution of transverse magnetoresistance due to forming the topological insulator state in single-crystalline n-type Bi2Te2.7Se0.3, Physica Scripta, Volume 99 (2024) no. 3, p. 035960 | DOI:10.1088/1402-4896/ad29cc
- Nonlinear electrodynamics for the vacuum of Dirac materials: Photon magnetic properties and radiation pressures, Physical Review A, Volume 110 (2024) no. 1 | DOI:10.1103/physreva.110.012201
- Localized states at the Rashba spin-orbit domain wall in magnetized graphene: Interplay of Rashba and magnetic domain walls, Physical Review B, Volume 109 (2024) no. 13 | DOI:10.1103/physrevb.109.134435
- Microscopic Green's function approach for generalized Dirac Hamiltonians, Physical Review B, Volume 109 (2024) no. 19 | DOI:10.1103/physrevb.109.195405
- Influence of higher-order electron-phonon interaction on the electron-related lattice thermal properties of two-dimensional Dirac crystals, Physical Review B, Volume 109 (2024) no. 20 | DOI:10.1103/physrevb.109.205422
- Effects of frustration on the spin dynamics of the zigzag honeycomb lattice, Physical Review B, Volume 110 (2024) no. 6 | DOI:10.1103/physrevb.110.064429
- Fullerenes, carbon nanotubes and graphene as tetrel bond donors and acceptors of electrophiles, CrystEngComm, Volume 25 (2023) no. 23, p. 3417 | DOI:10.1039/d3ce00184a
- Darboux algorithms for two-dimensional Dirac equations with upper triangular potential matrix, Journal of Computational and Applied Mathematics, Volume 427 (2023), p. 115143 | DOI:10.1016/j.cam.2023.115143
- One-dimensional scattering of fermions in double Dirac delta potentials, Journal of Physics A: Mathematical and Theoretical, Volume 56 (2023) no. 38, p. 385201 | DOI:10.1088/1751-8121/acef0d
- Dynamic dielectric function and phonon self-energy from electrons strongly correlated with acoustic phonons in 2D Dirac crystals, Journal of Physics: Condensed Matter, Volume 35 (2023) no. 32, p. 325601 | DOI:10.1088/1361-648x/acceee
- Structural and electronic properties of novel BeN4/MgN4 nanoribbons, Nano Express, Volume 4 (2023) no. 4, p. 045006 | DOI:10.1088/2632-959x/ad04f8
- Dirac magnons in honeycomb nanostructures, Physical Review B, Volume 107 (2023) no. 10 | DOI:10.1103/physrevb.107.104418
- Semimetallic and semiconducting graphene- hBN multilayers with parallel or reverse stacking, Physical Review B, Volume 107 (2023) no. 12 | DOI:10.1103/physrevb.107.125402
- Topological insulators and geometry of vector bundles, SciPost Physics Lecture Notes (2023) | DOI:10.21468/scipostphyslectnotes.67
- Strong correlation, Bloch bundle topology, and spinless Haldane–Hubbard model, Annals of Physics, Volume 441 (2022), p. 168859 | DOI:10.1016/j.aop.2022.168859
- Scattering state study of fermions due to q-deformed Dirac delta potential, Europhysics Letters, Volume 137 (2022) no. 6, p. 60002 | DOI:10.1209/0295-5075/ac6066
- Local excitation and valley polarization in graphene with multi-harmonic pulses, Faraday Discussions, Volume 237 (2022), p. 368 | DOI:10.1039/d2fd00017b
- Spin-orbit coupling locked robust thermoelectric performance of SrTe: A comparison with CaTe, Materials Science and Engineering: B, Volume 276 (2022), p. 115581 | DOI:10.1016/j.mseb.2021.115581
- Topological superconductor from the quantum Hall phase: Effective field theory description, Physical Review B, Volume 106 (2022) no. 19 | DOI:10.1103/physrevb.106.195111
- Quantum phase transitions from competing short- and long-range interactions on a π -flux lattice, Physical Review B, Volume 106 (2022) no. 7 | DOI:10.1103/physrevb.106.075109
- Ultrashort laser-driven dynamics of massless Dirac electrons generating valley polarization in graphene, Physical Review Research, Volume 4 (2022) no. 2 | DOI:10.1103/physrevresearch.4.l022014
- Non-trivial band topology in the superconductor AuSn4: a first principle study, Superconductor Science and Technology, Volume 35 (2022) no. 11, p. 114002 | DOI:10.1088/1361-6668/ac9160
- An excited atom interacting with a Chern insulator: toward a far-field resonant Casimir–Polder repulsion, The European Physical Journal D, Volume 76 (2022) no. 11 | DOI:10.1140/epjd/s10053-022-00544-x
- Darboux transformations for Dirac equations in polar coordinates with vector potential and position-dependent mass, The European Physical Journal Plus, Volume 137 (2022) no. 7 | DOI:10.1140/epjp/s13360-022-03030-w
- Dirac systems with magnetic field and position-dependent mass: Darboux transformations and equivalence with generalized Dirac oscillators, Annals of Physics, Volume 431 (2021), p. 168534 | DOI:10.1016/j.aop.2021.168534
- Prediction of massless Dirac fermions in a carbon nitride covalent network, Applied Physics Letters, Volume 118 (2021) no. 13 | DOI:10.1063/5.0046069
- Closed-form representations of iterated Darboux transformations for the massless Dirac equation, International Journal of Modern Physics A, Volume 36 (2021) no. 08n09, p. 2150064 | DOI:10.1142/s0217751x21500640
- Characterization of Darboux transformations for quantum systems with quadratically energy-dependent potentials, Journal of Mathematical Physics, Volume 62 (2021) no. 8 | DOI:10.1063/5.0051739
- Topological and geometrical aspects of band theory, Journal of Physics: Materials, Volume 4 (2021) no. 3, p. 034007 | DOI:10.1088/2515-7639/abf0b5
- Electrodynamics of Topologically Ordered Quantum Phases in Dirac Materials, Nanomaterials, Volume 11 (2021) no. 11, p. 2914 | DOI:10.3390/nano11112914
- Vitreous Carbon, Geometry and Topology: A Hollistic Approach, Nanomaterials, Volume 11 (2021) no. 7, p. 1694 | DOI:10.3390/nano11071694
- Microwave resonator lattices for topological photonics [Invited], Optical Materials Express, Volume 11 (2021) no. 3, p. 629 | DOI:10.1364/ome.416835
- Observation of topological valley Hall edge states in honeycomb lattices of superconducting microwave resonators, Optical Materials Express, Volume 11 (2021) no. 4, p. 1224 | DOI:10.1364/ome.414517
- Inverse-root and inverse-root-exponential potentials: Darboux transformations and elementary Darboux partners, Physica Scripta, Volume 96 (2021) no. 2, p. 025206 | DOI:10.1088/1402-4896/abcce5
- Signatures of interfacial topological chiral modes via RKKY exchange interaction in Dirac and Weyl systems, Physical Review B, Volume 103 (2021) no. 11 | DOI:10.1103/physrevb.103.115306
- SU(4) spin waves in the ν=±1 quantum Hall ferromagnet in graphene, Physical Review B, Volume 103 (2021) no. 19 | DOI:10.1103/physrevb.103.195413
- Graphene with Rashba spin-orbit interaction and coupling to a magnetic layer: Electron states localized at the domain wall, Physical Review B, Volume 104 (2021) no. 21 | DOI:10.1103/physrevb.104.214408
- Experimental perspective on three-dimensional topological semimetals, Reviews of Modern Physics, Volume 93 (2021) no. 2 | DOI:10.1103/revmodphys.93.025002
- First-order Darboux transformations for Dirac equations with arbitrary diagonal potential matrix in two dimensions, The European Physical Journal Plus, Volume 136 (2021) no. 7 | DOI:10.1140/epjp/s13360-021-01804-2
- The Casimir Effect in Topological Matter, Universe, Volume 7 (2021) no. 7, p. 237 | DOI:10.3390/universe7070237
- Spin Dynamics and Dirac Nodes in a Kagome Lattice, Annalen der Physik, Volume 532 (2020) no. 2 | DOI:10.1002/andp.201900350
- Darboux partners of Heun-class potentials for the two-dimensional massless Dirac equation, Annals of Physics, Volume 421 (2020), p. 168273 | DOI:10.1016/j.aop.2020.168273
- Exactly-Solvable Quantum Systems in Terms of Lambert-W Functions, Few-Body Systems, Volume 61 (2020) no. 2 | DOI:10.1007/s00601-020-1546-4
- Generalized Schrödinger equations with quadratical energy-dependence in the potential: Darboux transformations and application to the Heun class, Journal of Mathematical Physics, Volume 61 (2020) no. 8 | DOI:10.1063/5.0013832
- Twin Domain Structure in Magnetically Doped Bi2Se3 Topological Insulator, Nanomaterials, Volume 10 (2020) no. 10, p. 2059 | DOI:10.3390/nano10102059
- Spontaneous emission of a quantum emitter near a Chern insulator: Interplay of time-reversal symmetry breaking and Van Hove singularity, Physical Review B, Volume 101 (2020) no. 20 | DOI:10.1103/physrevb.101.205410
- Topological carbon materials: A new perspective, Physics Reports, Volume 868 (2020), p. 1 | DOI:10.1016/j.physrep.2020.05.003
- Quantum Anomalous Hall Effect in Magnetic Doped Topological Insulators and Ferromagnetic Spin‐Gapless Semiconductors—A Perspective Review, Small, Volume 16 (2020) no. 42 | DOI:10.1002/smll.201904322
- Higher-order Darboux transformations for the Dirac equation with position-dependent mass at nonvanishing energy, The European Physical Journal Plus, Volume 135 (2020) no. 10 | DOI:10.1140/epjp/s13360-020-00882-y
- On 3D and 1D Weyl particles in a 1D box, The European Physical Journal Plus, Volume 135 (2020) no. 10 | DOI:10.1140/epjp/s13360-020-00820-y
- Arbitrary-order Darboux transformations for two-dimensional Dirac equations with position-dependent mass, The European Physical Journal Plus, Volume 135 (2020) no. 3 | DOI:10.1140/epjp/s13360-020-00345-4
- Topological proximity effects in a Haldane graphene bilayer system, Physical Review B, Volume 100 (2019) no. 8 | DOI:10.1103/physrevb.100.081107
- Manipulating the anisotropy of the Dirac-Cone in graphene by laser fields, The European Physical Journal B, Volume 92 (2019) no. 4 | DOI:10.1140/epjb/e2019-90668-x
- Weakly localized states for nonlinear Dirac equations, Calculus of Variations and Partial Differential Equations, Volume 57 (2018) no. 6 | DOI:10.1007/s00526-018-1420-0
- Scattering and Bound States of the Dirac Particle for q-Parameter Hyperbolic Pöschl-Teller Potential, Communications in Theoretical Physics, Volume 70 (2018) no. 5, p. 541 | DOI:10.1088/0253-6102/70/5/541
- Multiple solutions for a self-consistent Dirac equation in two dimensions, Journal of Mathematical Physics, Volume 59 (2018) no. 4 | DOI:10.1063/1.5005998
- Evolution of magnetic Dirac bosons in a honeycomb lattice, Physical Review B, Volume 97 (2018) no. 1 | DOI:10.1103/physrevb.97.014433
- Bilayer graphene lattice-layer entanglement in the presence of non-Markovian phase noise, Physical Review B, Volume 97 (2018) no. 12 | DOI:10.1103/physrevb.97.125435
- Importance of Topology in Materials Science, The Role of Topology in Materials, Volume 189 (2018), p. 3 | DOI:10.1007/978-3-319-76596-9_1
- Dirac Nodes and Magnetic Order in M2X2 Transition‐Metal Chalcogenides, physica status solidi (RRL) – Rapid Research Letters, Volume 12 (2018) no. 11 | DOI:10.1002/pssr.201800181
- Lattice-layer entanglement in Bernal-stacked bilayer graphene, Physical Review B, Volume 95 (2017) no. 19 | DOI:10.1103/physrevb.95.195145
- Model for topological phononics and phonon diode, Physical Review B, Volume 96 (2017) no. 6 | DOI:10.1103/physrevb.96.064106
- Approximate bound-states solution of the Dirac equation with some thermodynamic properties for the deformed Hylleraas plus deformed Woods-Saxon potential, The European Physical Journal Plus, Volume 132 (2017) no. 7 | DOI:10.1140/epjp/i2017-11573-x
- Entanglement of Dirac bi-spinor states driven by Poincaré classes of SU(2)⊗SU(2) coupling potentials, Annals of Physics, Volume 364 (2016), p. 182 | DOI:10.1016/j.aop.2015.11.004
- Topological defects and topological materials, Integrated Ferroelectrics, Volume 174 (2016) no. 1, p. 1 | DOI:10.1080/10584587.2016.1189310
- Materials perspective on Casimir and van der Waals interactions, Reviews of Modern Physics, Volume 88 (2016) no. 4 | DOI:10.1103/revmodphys.88.045003
- Photoconductivity in Dirac materials, AIP Advances, Volume 5 (2015) no. 11 | DOI:10.1063/1.4935644
- SU(2)⊗SU(2) bi-spinor structure entanglement induced by a step potential barrier scattering in two-dimensions, Annals of Physics, Volume 355 (2015), p. 35 | DOI:10.1016/j.aop.2015.02.001
- High-frequency approximation for periodically driven quantum systems from a Floquet-space perspective, New Journal of Physics, Volume 17 (2015) no. 9, p. 093039 | DOI:10.1088/1367-2630/17/9/093039
- Chiral bosonic phases on the Haldane honeycomb lattice, Physical Review B, Volume 91 (2015) no. 9 | DOI:10.1103/physrevb.91.094502
- Quantum critical exponents for a disordered three-dimensional Weyl node, Physical Review B, Volume 92 (2015) no. 11 | DOI:10.1103/physrevb.92.115145
- Anomalous quantum Hall effect induced by disorder in topological insulators, Physical Review B, Volume 92 (2015) no. 7 | DOI:10.1103/physrevb.92.075101
- Coupling of magnetic order to planar Bi electrons in the anisotropic Dirac metalsAMnBi2 (A =Sr,Ca), Physical Review B, Volume 90 (2014) no. 7 | DOI:10.1103/physrevb.90.075120
Cité par 81 documents. Sources : Crossref
Commentaires - Politique
Vous devez vous connecter pour continuer.
S'authentifier