[Microscopie électronique à balayage en transmission en phase liquide : Imager à l'échelle du nanomètre à travers des films liquides de plusieurs micromètres d'épaisseur]
La microscopie électronique à balayage en transmission (STEM) d'échantillons immergés dans un liquide est possible en utilisant une chambre microfluidique réalisée avec de fines fenêtres en nitrure de silicium. Cet article introduit d'abord une équation analytique permettant d'estimer la résolution spatiale accessible en fonction de l'épaisseur totale de l'échantillon et de la position de l'objet d'intérêt en son sein. Après une description brève de l'équipement utilisable, nous montrons comment cette approche STEM permet d'observer avec une résolution nanométrique des objets d'intérêt en biologie ou en science des matériaux, plongés dans une couche liquide de plusieurs micromètres d'épaisseur. Avec cette technique, nous avons étudié la distribution de protéines marquées dans des cellules eucaryotes complètes et celle dynamique de nanoparticules d'or dans un liquide au moyen de séries d'images résolues en temps. Enfin, nous proposons quelques grands axes pour de futures applications.
Scanning transmission electron microscopy (STEM) of specimens in liquid is possible using a microfluidic chamber with thin silicon nitride windows. This paper includes an analytic equation of the resolution as a function of the sample thickness and the vertical position of an object in the liquid. The equipment for STEM of liquid specimen is briefly described. STEM provides nanometer resolution in micrometer-thick liquid layers with relevance for both biological research and materials science. Using this technique, we investigated tagged proteins in whole eukaryotic cells, and gold nanoparticles in liquid with time-lapse image series. Possibly future applications are discussed.
Mot clés : STEM, Échantillon liquide, Théorie de la résolution, Cellule eukaryote, Nanoparticule d'or, STEM résolue en temps
Tobias Schuh 1 ; Niels de Jonge 1
@article{CRPHYS_2014__15_2-3_214_0, author = {Tobias Schuh and Niels de Jonge}, title = {Liquid scanning transmission electron microscopy: {Nanoscale} imaging in micrometers-thick liquids}, journal = {Comptes Rendus. Physique}, pages = {214--223}, publisher = {Elsevier}, volume = {15}, number = {2-3}, year = {2014}, doi = {10.1016/j.crhy.2013.11.004}, language = {en}, }
TY - JOUR AU - Tobias Schuh AU - Niels de Jonge TI - Liquid scanning transmission electron microscopy: Nanoscale imaging in micrometers-thick liquids JO - Comptes Rendus. Physique PY - 2014 SP - 214 EP - 223 VL - 15 IS - 2-3 PB - Elsevier DO - 10.1016/j.crhy.2013.11.004 LA - en ID - CRPHYS_2014__15_2-3_214_0 ER -
Tobias Schuh; Niels de Jonge. Liquid scanning transmission electron microscopy: Nanoscale imaging in micrometers-thick liquids. Comptes Rendus. Physique, Volume 15 (2014) no. 2-3, pp. 214-223. doi : 10.1016/j.crhy.2013.11.004. https://comptes-rendus.academie-sciences.fr/physique/articles/10.1016/j.crhy.2013.11.004/
[1] Electron microscopy of specimens in liquid, Nat. Nanotechnol., Volume 6 (2011), pp. 695-704
[2] Beitrag zur uebermikroskopischen Abbildungen bei hoeheren Drucken, Kolloid-Z., Volume 100 (1942), pp. 212-219
[3] Die Auskeimung der Sporen von Bacillus vulgatus nach vorheriger Abbildung im 200-kV-Universal-Elektronenmikroskop, Naturwissenschaften, Volume 35 (1941), pp. 523-528
[4] Electron diffraction of wet biological membranes, Science, Volume 184 (1974), pp. 77-78
[5] et al. Dynamic microscopy of nanoscale cluster growth at the solid–liquid interface, Nat. Mater., Volume 2 (2003), pp. 532-536
[6] et al. High-resolution EM of colloidal nanocrystal growth using graphene liquid cells, Science, Volume 336 (2012), pp. 61-64
[7] et al. Observation of single colloidal platinum nanocrystal growth trajectories, Science, Volume 324 (2009), pp. 1309-1312
[8] Transmission electron microscopy with a liquid flow cell, J. Microsc., Volume 242 (2011), pp. 117-123
[9] et al. Wet STEM: A new development in environmental SEM for imaging nano-objects included in a liquid phase, Ultramicroscopy, Volume 104 (2005), pp. 290-301
[10] Principles and Practice of Variable Pressure/Environmental Scanning Electron Microscopy (VP-SEM), Wiley, Chichester, West-Sussex, 2008
[11] et al. Epidermal growth factor receptor subunit locations determined in hydrated cells with environmental scanning electron microscopy, Sci. Rep., Volume 3 (2013), p. 2626
[12] et al. Scanning electron microscopy of cells and tissues under fully hydrated conditions, Proc. Natl. Acad. Sci. USA, Volume 101 (2004), p. 3346
[13] et al. Atmospheric scanning electron microscope observes cells and tissues in open medium through silicon nitride film, J. Struct. Biol., Volume 169 (2010), pp. 438-449
[14] et al. Scanning transmission electron microscopy of samples in liquid (liquid STEM), Microsc. Microanal., Volume 13 (2007) no. Suppl. 2, pp. 242-243
[15] Visibility of single atoms, Science, Volume 168 (1970), pp. 1338-1340
[16] Biological scanning transmission electron microscopy: imaging and single molecule mass determination, Chimia, Volume 60 (2006), pp. 749-753
[17] Transmission Electron Microscopy: Physics of Image Formation, Springer, New York, 2008
[18] Unconventional modes for STEM imaging of biological structures, J. Ultrastruct. Res., Volume 88 (1984), pp. 177-206
[19] et al. Electron microscopy of whole cells in liquid with nanometer resolution, Proc. Natl. Acad. Sci. USA, Volume 106 (2009), pp. 2159-2164
[20] et al. Nanometer-resolution electron microscopy through micrometers-thick water layers, Ultramicroscopy, Volume 110 (2010), pp. 1114-1119
[21] et al. “Plugging into enzymes”: nanowiring of redox enzymes by a gold nanoparticle, Science, Volume 299 (2003), pp. 1877-1881
[22] Studying protein dynamics in living cells, Nat. Rev. Mol. Cell Biol., Volume 2 (2001), pp. 444-456
[23] et al. Controlled growth of nanoparticles from solution with in situ liquid transmission electron microscopy, Nano Lett., Volume 11 (2011), pp. 2809-2813
[24] et al. Charger nanoparticle dynamics in water induced by scanning transmission electron microscopy, Langmuir, Volume 28 (2012), pp. 3695-3698
[25] Video-frequency scanning transmission electron microscopy of moving gold nanoparticles in liquid, Micron, Volume 43 (2012), pp. 1078-1084
[26] et al. Atomic-scale imaging and spectroscopy for in situ liquid scanning transmission electron microscopy, Microsc. Microanal., Volume 18 (2012), pp. 621-627
[27] et al. In situ electron energy-loss spectroscopy in liquids, Microsc. Microanal., Volume 19 (2013), pp. 1027-1035
[28] et al. Visualizing macromolecular complexes with in situ liquid scanning transmission electron microscopy, Micron, Volume 43 (2012), pp. 1085-1090
[29] Molecular weight determination by scanning transmission electron microscopy, Ultramicroscopy, Volume 3 (1978), pp. 273-281
[30] Television pickup tubes and the problem of noise, Adv. Electron., Volume 1 (1948), pp. 131-166
[31] Scanning electron microscope imaging in liquids – some data on electron interactions in water, J. Microsc., Volume 221 (2005), pp. 84-99
[32] Beam spreading and spatial resolution in thick organic specimens, Ultramicroscopy, Volume 109 (2008), pp. 1-7
[33] et al. Monte Carlo electron-trajectory simulations in bright-field and dark-field STEM: implications for tomography of thick biological sections, Ultramicroscopy, Volume 109 (2009), pp. 213-221
[34] et al. Electron tomography on micrometer-thick specimens with nanometer resolution, Nano Lett., Volume 9 (2009), pp. 1704-1708
[35] et al. The probe profile and lateral resolution of scanning transmission electron microscopy of thick specimens, Microsc. Microanal., Volume 18 (2012), pp. 582-590
[36] et al. Simulating STEM imaging of nanoparticles in micrometers-thick substrates, Microsc. Microanal., Volume 16 (2010), pp. 795-804
[37] Microfluidic system for transmission electron microscopy, Microsc. Microanal., Volume 16 (2010), pp. 622-629
[38] Atmospheric pressure scanning transmission electron microscopy, Nano Lett., Volume 10 (2010), pp. 1028-1031
[39] et al. In situ electron energy-loss spectroscopy in liquids, Microsc. Microanal., Volume 19 (2013), pp. 1027-1035
[40] Correlative fluorescence microscopy and scanning transmission electron microscopy of quantum-dot-labeled proteins in whole cells in liquid, ACS Nano, Volume 4 (2010), pp. 4110-4116
[41] et al. Silicon nitride windows for electron microscopy of whole cells, J. Microsc., Volume 243 (2011), pp. 273-283
[42] et al. Fully hydrated yeast cells imaged with electron microscopy, Biophys. J., Volume 100 (2011), pp. 2522-2529
[43] et al. Architecture and membrane interactions of the EGF receptor, Cell, Volume 152 (2013), pp. 557-569
[44] et al. Epidermal growth factor receptor (EGFR) signaling in cancer, Gene, Volume 366 (2006), pp. 2-16
[45] et al. Nanoscale imaging of whole cells using a liquid enclosure and a scanning transmission electron microscope, PLoS ONE, Volume 4 (2009), p. e8214
[46] Cellular tomography, Adv. Protein Chem. Struct. Biol., Volume 82 (2011), pp. 67-90
[47] Electron microscopy of biological materials at the nanometer scale, Annu. Rev. Mater. Res., Volume 42 (2012), pp. 33-58
[48] Putting super-resolution fluorescence microscopy to work, Nat. Methods, Volume 6 (2009), pp. 21-23
[49] et al. Dual-axis electron tomography of biological specimens: Extending the limits of specimen thickness with bright-field STEM imaging, J. Struct. Biol., Volume 174 (2011), pp. 107-114
[50] et al. Experimental procedures to mitigate electron beam induced artifacts during in situ fluid imaging of nanomaterials, Ultramicroscopy, Volume 127 (2013), pp. 53-63
[51] Visualization of gold nanoparticle uptake in living cells with liquid scanning transmission electron microscopy, Nano Lett., Volume 11 (2011), pp. 1733-1738
[52] et al. Nanocrystal diffusion in a liquid thin film observed by in situ transmission electron microscopy, Nano Lett., Volume 9 (2009), pp. 2460-2465
Cité par Sources :
Commentaires - Politique