Comptes Rendus
Electron microscopy / Microscopie électronique
Liquid scanning transmission electron microscopy: Nanoscale imaging in micrometers-thick liquids
[Microscopie électronique à balayage en transmission en phase liquide : Imager à l'échelle du nanomètre à travers des films liquides de plusieurs micromètres d'épaisseur]
Comptes Rendus. Physique, Volume 15 (2014) no. 2-3, pp. 214-223.

La microscopie électronique à balayage en transmission (STEM) d'échantillons immergés dans un liquide est possible en utilisant une chambre microfluidique réalisée avec de fines fenêtres en nitrure de silicium. Cet article introduit d'abord une équation analytique permettant d'estimer la résolution spatiale accessible en fonction de l'épaisseur totale de l'échantillon et de la position de l'objet d'intérêt en son sein. Après une description brève de l'équipement utilisable, nous montrons comment cette approche STEM permet d'observer avec une résolution nanométrique des objets d'intérêt en biologie ou en science des matériaux, plongés dans une couche liquide de plusieurs micromètres d'épaisseur. Avec cette technique, nous avons étudié la distribution de protéines marquées dans des cellules eucaryotes complètes et celle dynamique de nanoparticules d'or dans un liquide au moyen de séries d'images résolues en temps. Enfin, nous proposons quelques grands axes pour de futures applications.

Scanning transmission electron microscopy (STEM) of specimens in liquid is possible using a microfluidic chamber with thin silicon nitride windows. This paper includes an analytic equation of the resolution as a function of the sample thickness and the vertical position of an object in the liquid. The equipment for STEM of liquid specimen is briefly described. STEM provides nanometer resolution in micrometer-thick liquid layers with relevance for both biological research and materials science. Using this technique, we investigated tagged proteins in whole eukaryotic cells, and gold nanoparticles in liquid with time-lapse image series. Possibly future applications are discussed.

Publié le :
DOI : 10.1016/j.crhy.2013.11.004
Keywords: STEM, Liquid specimen, Resolution theory, Eukaryotic cell, Gold nanoparticle, Time-lapse STEM
Mot clés : STEM, Échantillon liquide, Théorie de la résolution, Cellule eukaryote, Nanoparticule d'or, STEM résolue en temps

Tobias Schuh 1 ; Niels de Jonge 1

1 INM – Leibniz Institute for New Materials, Campus D2 2, 66123 Saarbrücken, Germany
@article{CRPHYS_2014__15_2-3_214_0,
     author = {Tobias Schuh and Niels de Jonge},
     title = {Liquid scanning transmission electron microscopy: {Nanoscale} imaging in micrometers-thick liquids},
     journal = {Comptes Rendus. Physique},
     pages = {214--223},
     publisher = {Elsevier},
     volume = {15},
     number = {2-3},
     year = {2014},
     doi = {10.1016/j.crhy.2013.11.004},
     language = {en},
}
TY  - JOUR
AU  - Tobias Schuh
AU  - Niels de Jonge
TI  - Liquid scanning transmission electron microscopy: Nanoscale imaging in micrometers-thick liquids
JO  - Comptes Rendus. Physique
PY  - 2014
SP  - 214
EP  - 223
VL  - 15
IS  - 2-3
PB  - Elsevier
DO  - 10.1016/j.crhy.2013.11.004
LA  - en
ID  - CRPHYS_2014__15_2-3_214_0
ER  - 
%0 Journal Article
%A Tobias Schuh
%A Niels de Jonge
%T Liquid scanning transmission electron microscopy: Nanoscale imaging in micrometers-thick liquids
%J Comptes Rendus. Physique
%D 2014
%P 214-223
%V 15
%N 2-3
%I Elsevier
%R 10.1016/j.crhy.2013.11.004
%G en
%F CRPHYS_2014__15_2-3_214_0
Tobias Schuh; Niels de Jonge. Liquid scanning transmission electron microscopy: Nanoscale imaging in micrometers-thick liquids. Comptes Rendus. Physique, Volume 15 (2014) no. 2-3, pp. 214-223. doi : 10.1016/j.crhy.2013.11.004. https://comptes-rendus.academie-sciences.fr/physique/articles/10.1016/j.crhy.2013.11.004/

[1] N. de Jonge; F.M. Ross Electron microscopy of specimens in liquid, Nat. Nanotechnol., Volume 6 (2011), pp. 695-704

[2] E. Ruska Beitrag zur uebermikroskopischen Abbildungen bei hoeheren Drucken, Kolloid-Z., Volume 100 (1942), pp. 212-219

[3] M. von Ardenne; H. Friedrich-Freksa Die Auskeimung der Sporen von Bacillus vulgatus nach vorheriger Abbildung im 200-kV-Universal-Elektronenmikroskop, Naturwissenschaften, Volume 35 (1941), pp. 523-528

[4] S.W. Hui; D.F. Parsons Electron diffraction of wet biological membranes, Science, Volume 184 (1974), pp. 77-78

[5] M.J. Williamson et al. Dynamic microscopy of nanoscale cluster growth at the solid–liquid interface, Nat. Mater., Volume 2 (2003), pp. 532-536

[6] J.M. Yuk et al. High-resolution EM of colloidal nanocrystal growth using graphene liquid cells, Science, Volume 336 (2012), pp. 61-64

[7] H. Zheng et al. Observation of single colloidal platinum nanocrystal growth trajectories, Science, Volume 324 (2009), pp. 1309-1312

[8] K.L. Klein; I.M. Anderson; N. de Jonge Transmission electron microscopy with a liquid flow cell, J. Microsc., Volume 242 (2011), pp. 117-123

[9] A. Bogner et al. Wet STEM: A new development in environmental SEM for imaging nano-objects included in a liquid phase, Ultramicroscopy, Volume 104 (2005), pp. 290-301

[10] D.L. Stokes Principles and Practice of Variable Pressure/Environmental Scanning Electron Microscopy (VP-SEM), Wiley, Chichester, West-Sussex, 2008

[11] D.B. Peckys et al. Epidermal growth factor receptor subunit locations determined in hydrated cells with environmental scanning electron microscopy, Sci. Rep., Volume 3 (2013), p. 2626

[12] S. Thiberge et al. Scanning electron microscopy of cells and tissues under fully hydrated conditions, Proc. Natl. Acad. Sci. USA, Volume 101 (2004), p. 3346

[13] H. Nishiyama et al. Atmospheric scanning electron microscope observes cells and tissues in open medium through silicon nitride film, J. Struct. Biol., Volume 169 (2010), pp. 438-449

[14] N. de Jonge et al. Scanning transmission electron microscopy of samples in liquid (liquid STEM), Microsc. Microanal., Volume 13 (2007) no. Suppl. 2, pp. 242-243

[15] A.V. Crewe; J. Wall; J. Langmore Visibility of single atoms, Science, Volume 168 (1970), pp. 1338-1340

[16] S.A. Mueller; A. Engel Biological scanning transmission electron microscopy: imaging and single molecule mass determination, Chimia, Volume 60 (2006), pp. 749-753

[17] L. Reimer; H. Kohl Transmission Electron Microscopy: Physics of Image Formation, Springer, New York, 2008

[18] C. Colliex; C. Jeanguillaume; C. Mory Unconventional modes for STEM imaging of biological structures, J. Ultrastruct. Res., Volume 88 (1984), pp. 177-206

[19] N. de Jonge et al. Electron microscopy of whole cells in liquid with nanometer resolution, Proc. Natl. Acad. Sci. USA, Volume 106 (2009), pp. 2159-2164

[20] N. de Jonge et al. Nanometer-resolution electron microscopy through micrometers-thick water layers, Ultramicroscopy, Volume 110 (2010), pp. 1114-1119

[21] Y. Xiao et al. “Plugging into enzymes”: nanowiring of redox enzymes by a gold nanoparticle, Science, Volume 299 (2003), pp. 1877-1881

[22] J. Lippincott-Schwartz; E. Snapp; A. Kenworthy Studying protein dynamics in living cells, Nat. Rev. Mol. Cell Biol., Volume 2 (2001), pp. 444-456

[23] J.E. Evans et al. Controlled growth of nanoparticles from solution with in situ liquid transmission electron microscopy, Nano Lett., Volume 11 (2011), pp. 2809-2813

[24] E.R. White et al. Charger nanoparticle dynamics in water induced by scanning transmission electron microscopy, Langmuir, Volume 28 (2012), pp. 3695-3698

[25] E.A. Ring; N. de Jonge Video-frequency scanning transmission electron microscopy of moving gold nanoparticles in liquid, Micron, Volume 43 (2012), pp. 1078-1084

[26] K.L. Jungjohann et al. Atomic-scale imaging and spectroscopy for in situ liquid scanning transmission electron microscopy, Microsc. Microanal., Volume 18 (2012), pp. 621-627

[27] M.E. Holtz et al. In situ electron energy-loss spectroscopy in liquids, Microsc. Microanal., Volume 19 (2013), pp. 1027-1035

[28] J.E. Evans et al. Visualizing macromolecular complexes with in situ liquid scanning transmission electron microscopy, Micron, Volume 43 (2012), pp. 1085-1090

[29] A. Engel Molecular weight determination by scanning transmission electron microscopy, Ultramicroscopy, Volume 3 (1978), pp. 273-281

[30] A. Rose Television pickup tubes and the problem of noise, Adv. Electron., Volume 1 (1948), pp. 131-166

[31] D.C. Joy; C.S. Joy Scanning electron microscope imaging in liquids – some data on electron interactions in water, J. Microsc., Volume 221 (2005), pp. 84-99

[32] J.K. Hyun; P. Ercius; D.A. Muller Beam spreading and spatial resolution in thick organic specimens, Ultramicroscopy, Volume 109 (2008), pp. 1-7

[33] A.A. Sousa et al. Monte Carlo electron-trajectory simulations in bright-field and dark-field STEM: implications for tomography of thick biological sections, Ultramicroscopy, Volume 109 (2009), pp. 213-221

[34] J. Loos et al. Electron tomography on micrometer-thick specimens with nanometer resolution, Nano Lett., Volume 9 (2009), pp. 1704-1708

[35] H. Demers et al. The probe profile and lateral resolution of scanning transmission electron microscopy of thick specimens, Microsc. Microanal., Volume 18 (2012), pp. 582-590

[36] H. Demers et al. Simulating STEM imaging of nanoparticles in micrometers-thick substrates, Microsc. Microanal., Volume 16 (2010), pp. 795-804

[37] E.A. Ring; N. de Jonge Microfluidic system for transmission electron microscopy, Microsc. Microanal., Volume 16 (2010), pp. 622-629

[38] N. de Jonge; W.C. Bigelow; G.M. Veith Atmospheric pressure scanning transmission electron microscopy, Nano Lett., Volume 10 (2010), pp. 1028-1031

[39] M.E. Holtz et al. In situ electron energy-loss spectroscopy in liquids, Microsc. Microanal., Volume 19 (2013), pp. 1027-1035

[40] M.J. Dukes; D.B. Peckys; N. de Jonge Correlative fluorescence microscopy and scanning transmission electron microscopy of quantum-dot-labeled proteins in whole cells in liquid, ACS Nano, Volume 4 (2010), pp. 4110-4116

[41] E.A. Ring et al. Silicon nitride windows for electron microscopy of whole cells, J. Microsc., Volume 243 (2011), pp. 273-283

[42] D.B. Peckys et al. Fully hydrated yeast cells imaged with electron microscopy, Biophys. J., Volume 100 (2011), pp. 2522-2529

[43] A. Arkhipov et al. Architecture and membrane interactions of the EGF receptor, Cell, Volume 152 (2013), pp. 557-569

[44] N. Normanno et al. Epidermal growth factor receptor (EGFR) signaling in cancer, Gene, Volume 366 (2006), pp. 2-16

[45] D.B. Peckys et al. Nanoscale imaging of whole cells using a liquid enclosure and a scanning transmission electron microscope, PLoS ONE, Volume 4 (2009), p. e8214

[46] A. Hoenger; C. Bouchet-Marquis Cellular tomography, Adv. Protein Chem. Struct. Biol., Volume 82 (2011), pp. 67-90

[47] L.F. Kourkoutis; J.M. Plitzko; W. Baumeister Electron microscopy of biological materials at the nanometer scale, Annu. Rev. Mater. Res., Volume 42 (2012), pp. 33-58

[48] J. Lippincott-Schwartz; S. Manley Putting super-resolution fluorescence microscopy to work, Nat. Methods, Volume 6 (2009), pp. 21-23

[49] A.A. Sousa et al. Dual-axis electron tomography of biological specimens: Extending the limits of specimen thickness with bright-field STEM imaging, J. Struct. Biol., Volume 174 (2011), pp. 107-114

[50] T.J. Woehl et al. Experimental procedures to mitigate electron beam induced artifacts during in situ fluid imaging of nanomaterials, Ultramicroscopy, Volume 127 (2013), pp. 53-63

[51] D.B. Peckys; N. de Jonge Visualization of gold nanoparticle uptake in living cells with liquid scanning transmission electron microscopy, Nano Lett., Volume 11 (2011), pp. 1733-1738

[52] H. Zheng et al. Nanocrystal diffusion in a liquid thin film observed by in situ transmission electron microscopy, Nano Lett., Volume 9 (2009), pp. 2460-2465

Cité par Sources :

Commentaires - Politique