[Stratégies de mise en réseau élaborées par les communautés de la microscopie électronique pour optimiser l'utilisation des nouvelles plateformes instrumentales : (2) Le réseau français de microscopie électronique et de sonde atomique (METSA)]
Avec le développement, au cours de la décennie passée, d'une nouvelle génération de microscopes électroniques aux performances améliorées, équipés de correcteurs d'aberrations, de monochromateurs, de détecteurs plus sensibles ou d'une gamme innovante d'environnements autour de l'échantillon, les mesures quantitatives sont désormais réalisables à l'échelle sub-nanométrique, voire à celle de l'atome individuel. Cependant, l'utilisation optimale de ces possibilités requiert l'accès à des instruments coûteux et la participation d'un personnel expert dédié. Pour ces raisons, un réseau national (METSA) a été créé en France avec le soutien du CNRS et du CEA, pour offrir, dans des centres disposant de l'équipement adapté et d'un personnel entraîné, un accès ouvert à une large communauté interdisciplinaire d'utilisateurs en provenance du monde académique aussi bien qu'industriel.
With the development, over the past ten years, of a new generation of electron microscopes with advanced performance, incorporating aberration correctors, monochromators, more sensitive detectors, and innovative specimen environments, quantitative measurements at the subnanometer and, in certain cases, at the unique atom level, are now accessible. However, an optimized use of these possibilities requires access to costly instruments and support by specialized trained experts. For these reasons, a national network (METSA) has been created in France with the support of CNRS and CEA in order to offer, in centres with complementary equipment and expertise, an open access to an enlarged and multidisciplinary community of academic and industrial users.
Mot clés : Microscopie électronique, Sonde atomique, Recherche en collaboration, Mise en réseau, Infrastructure, METSA
Thierry Épicier 1, 2 ; Étienne Snoeck 3
@article{CRPHYS_2014__15_2-3_276_0, author = {Thierry \'Epicier and \'Etienne Snoeck}, title = {Networking strategies of the microscopy community for improved utilization of advanced instruments: (2) {The} national network for transmission electron microscopy and atom probe studies in {France} {(METSA)}}, journal = {Comptes Rendus. Physique}, pages = {276--280}, publisher = {Elsevier}, volume = {15}, number = {2-3}, year = {2014}, doi = {10.1016/j.crhy.2014.01.004}, language = {en}, }
TY - JOUR AU - Thierry Épicier AU - Étienne Snoeck TI - Networking strategies of the microscopy community for improved utilization of advanced instruments: (2) The national network for transmission electron microscopy and atom probe studies in France (METSA) JO - Comptes Rendus. Physique PY - 2014 SP - 276 EP - 280 VL - 15 IS - 2-3 PB - Elsevier DO - 10.1016/j.crhy.2014.01.004 LA - en ID - CRPHYS_2014__15_2-3_276_0 ER -
%0 Journal Article %A Thierry Épicier %A Étienne Snoeck %T Networking strategies of the microscopy community for improved utilization of advanced instruments: (2) The national network for transmission electron microscopy and atom probe studies in France (METSA) %J Comptes Rendus. Physique %D 2014 %P 276-280 %V 15 %N 2-3 %I Elsevier %R 10.1016/j.crhy.2014.01.004 %G en %F CRPHYS_2014__15_2-3_276_0
Thierry Épicier; Étienne Snoeck. Networking strategies of the microscopy community for improved utilization of advanced instruments: (2) The national network for transmission electron microscopy and atom probe studies in France (METSA). Comptes Rendus. Physique, Volume 15 (2014) no. 2-3, pp. 276-280. doi : 10.1016/j.crhy.2014.01.004. https://comptes-rendus.academie-sciences.fr/physique/articles/10.1016/j.crhy.2014.01.004/
[1] Nobel lecture: The development of the electron microscope and of electron microscopy, Biosci. Rep., Volume 7–8 (1987), pp. 607-629 www.nobelprize.org/nobel_prizes/physics/laureates/1986/ruska-lecture.html (see also)
[2] Outline of a spherically corrected semiaplanatic medium-voltage transmission electron microscope, Optik, Volume 1 (1990), pp. 19-24
[3] Correction of the spherical aberration of a 200-kV TEM by means of a hexapole-corrector, Optik, Volume 4 (1995), pp. 167-179
[4] https://web-ast.dsi.cnrs.fr/l3c/owa/annuaire.recherche/index.html
[5] Magnetic configurations of 30-nm iron nanocubes studied by electron holography, Nano Lett., Volume 8 (2008) no. 12, pp. 4293-4298
[6] Three-dimensional composition mapping of NiSi phase distribution and Pt diffusion via grain boundaries in , Scripta Mater., Volume 62 (2010), pp. 568-571
[7] Direct observation of the reversible changes of the morphology of Pt nanoparticles under gas environment, J. Phys. Chem. C, Volume 114 (2010) no. 2160, pp. 2160-2163
[8] Real time TEM observation of alumina ceramic nano-particles during compression, J. Eur. Ceram. Soc., Volume 32 (2012), pp. 2067-2071
[9] Atomic-scale structure and composition of nanocrystallites during a 3422 h PEMFC aging test: A STEM-EELS study, Nano Lett. (2014) (submitted for publication)
[10] High resolution imaging and spectroscopy using -corrected TEM with cold FEG JEM-ARM200F, JEOL News, Volume 47 (2012) no. 1, pp. 2-8
[11] Atomic and electronic structure of the interface in multiferroic tunnel junctions, Nano Lett., Volume 12 (2012), pp. 376-382
[12] Nanorods of potassium tantalum niobate tetragonal tungsten bronze phase grown by pulsed laser deposition, Chem. Mater., Volume 25 (2013) no. 14, pp. 2793-2802
[13] Atomic-scale imaging and analysis of single layer GP zones in a model steel, J. Mater. Sci., Volume 47 (2012), pp. 1567-1571
[14] 3D-TEM characterization of nanometric objects, Solid State Sci., Volume 9 (2007), pp. 1088-1098
Cité par Sources :
Commentaires - Politique