[Le champ magnétique galactique et la déflexion des rayons cosmiques ultra-énergétiques]
Notre compréhension du champ magnétique galactique (GMF) s'est considérablement améliorée au cours des dernières années, mais reste largement insuffisante. À titre d'illustration, le modèle GMF de Jansson et Farrar (2012) (JF12) est décrit ici, en insistant sur la manière dont il est contraint et sur ses caractéristiques, qu'elles soient robustes ou, au contraire, susceptibles de changer avec l'amélioration de la modélisation et des données. Les besoins les plus urgents pour la prochaine phase de modélisation sont, d'une part, un modèle plus réaliste de la distribution des électrons relativistes (ce qui permettra de réduire les incertitudes systématiques associées à l'interprétation des données d'émissions synchrotron) et, d'autre part, une meilleure compréhension théorique de l'origine du champ galactique cohérent sur les grandes échelles (afin de développer une meilleure paramétrisation phénoménologique du champs). Le modèle JF12, même dans sa version actuelle, permet de formuler quelques conclusions importantes sur la déflexion des RCUHE dans la Galaxie.
Our understanding of the Galactic magnetic field (GMF) has increased considerably in recent years, while at the same time remaining far from adequate. By way of illustration, the Jansson and Farrar (2012) (JF12) GMF model is described, emphasizing how it is constrained and which features are robust or likely to change, as modeling and constraining data improve. The most urgent requirements for the next phase of modeling are a more realistic model for the relativistic electron distribution (in order to reduce the systematic error associated with interpreting synchrotron data) and a better theoretical understanding of the origin of the large-scale coherent field (in order to develop a better phenomenological parameterization of the field). Even in its current stage of development, the JF12 model allows some important conclusions about UHECR deflections in the GMF to be formulated.
Mots-clés : RCUHE, Champs magnétique galactique, Déflexions magnétiques
Glennys R. Farrar 1
@article{CRPHYS_2014__15_4_339_0, author = {Glennys R. Farrar}, title = {The {Galactic} magnetic field and ultrahigh-energy cosmic ray deflections}, journal = {Comptes Rendus. Physique}, pages = {339--348}, publisher = {Elsevier}, volume = {15}, number = {4}, year = {2014}, doi = {10.1016/j.crhy.2014.04.002}, language = {en}, }
Glennys R. Farrar. The Galactic magnetic field and ultrahigh-energy cosmic ray deflections. Comptes Rendus. Physique, Ultra-high-energy cosmic rays: From the ankle to the tip of the spectrum, Volume 15 (2014) no. 4, pp. 339-348. doi : 10.1016/j.crhy.2014.04.002. https://comptes-rendus.academie-sciences.fr/physique/articles/10.1016/j.crhy.2014.04.002/
[1]
(2013), p. 641[2] Galactic magnetism: recent developments and perspectives, Annu. Rev. Astron. Astrophys., Volume 34 (1996), pp. 155-206
[3] Radio observational constraints on Galactic 3D-emission models, Astron. Astrophys., Volume 477 ( January 2008 ), pp. 573-592
[4] The Galactic halo magnetic field revisited, Res. Astron. Astrophys., Volume 10 ( December 2010 ), pp. 1287-1297
[5] Deriving the global structure of the Galactic magnetic field from Faraday rotation measures of extragalactic sources, Astrophys. J., Volume 738 ( September 2011 ), p. 192
[6] A new model of the Galactic magnetic field, Astrophys. J., Volume 757 (2012) no. 14
[7] et al. Continuum halos in nearby galaxies: an EVLA survey (CHANG-ES). I. Introduction to the survey, Astron. J., Volume 144 (2012), p. 43
[8] Radiative Processes in Astrophysics, Wiley, 1986 (ISBN: 0-471-82759-2)
[9] NE2001.I. A New Model for the Galactic Distribution of Free Electrons and Its Fluctuations, July 2002
[10] The vertical structure of warm ionised gas in the Milky Way, Publ. Astron. Soc. Aust., Volume 25 ( November 2008 ), pp. 184-200
[11] Pulsar rotation measures and the large-scale structure of the Galactic magnetic field, Astrophys. J., Volume 642 ( May 2006 ), pp. 868-881
[12] Systematic bias in interstellar magnetic field estimates, Astron. Astrophys., Volume 411 ( November 2003 ), pp. 99-107
[13] Antisymmetry in the Faraday rotation sky caused by a nearby magnetized bubble, Astrophys. J. Lett., Volume 724 ( November 2010 ), p. L48-L52
[14] The Galactic magnetic field, Astrophys. J., Volume 761 (2012), p. L11
[15] Rotation measures of extragalactic sources behind the southern Galactic plane: new insights into the large-scale magnetic field of the inner Milky Way, Astrophys. J., Volume 663 ( July 2007 ), pp. 258-266
[16] Magnetic fields and star formation in spiral galaxies, Rev. Mex. Astron. Astrofís., Ser. Conf., Volume 36 ( August 2009 ), pp. 25-29
[17] Galactic dynamos and galactic winds, Astrophys. Space Sci., Volume 320 ( April 2009 ), pp. 77-84
[18] Recovering the observed B/C ratio in a dynamic spiral-armed cosmic ray model, Astrophys. J., Volume 782 ( February 2014 ), p. 34
[19] On the spiral structure of disk Galaxies, Astrophys. J., Volume 140 ( August 1964 ), p. 646
[20] Signatures of galactic magnetic lensing upon ultra high energy cosmic rays, J. High Energy Phys., Volume 2 ( February 2000 ), p. 35
[21] Ultrahigh energy nuclei in the turbulent Galactic magnetic field, Astropart. Phys., Volume 35 ( November 2011 ), pp. 192-200
[22] G.R. Farrar, R. Jansson, A. Keivani, J. Roberts, and M. Sutherland. Deflections of ultrahigh energy cosmic rays in a realistic model of the Galactic magnetic field, 2014, in preparation.
- Probing Three-dimensional Magnetic Fields. IV. Synchrotron Polarization Derivative and Vision Transformer, The Astrophysical Journal, Volume 981 (2025) no. 1, p. 58 | DOI:10.3847/1538-4357/adaf97
- Estudo de deflexões de UHECR na presença do campo magnético galáctico JF2012, Cadernos de Astronomia, Volume 5 (2024) no. Especial, p. 74 | DOI:10.47456/cad.astro.v5nespecial.44960
- Constraints on UHECR Sources and Extragalactic Magnetic Fields from Directional Anisotropies, The Astrophysical Journal, Volume 966 (2024) no. 1, p. 71 | DOI:10.3847/1538-4357/ad2f3f
- The Coherent Magnetic Field of the Milky Way, The Astrophysical Journal, Volume 970 (2024) no. 1, p. 95 | DOI:10.3847/1538-4357/ad4a54
- Closing the Net on Transient Sources of Ultrahigh-energy Cosmic Rays, The Astrophysical Journal, Volume 972 (2024) no. 1, p. 4 | DOI:10.3847/1538-4357/ad5a11
- Probing Three-dimensional Magnetic Fields. III. Synchrotron Emission and Machine Learning, The Astrophysical Journal, Volume 975 (2024) no. 1, p. 66 | DOI:10.3847/1538-4357/ad7950
- Publisher's Note:, Astroparticle Physics, Volume 147 (2023), p. 102794 | DOI:10.1016/j.astropartphys.2022.102794
- Ultra high energy cosmic rays The intersection of the Cosmic and Energy Frontiers, Astroparticle Physics, Volume 149 (2023), p. 102819 | DOI:10.1016/j.astropartphys.2023.102819
- Modification of the dipole in arrival directions of ultra-high-energy cosmic rays due to the Galactic magnetic field, Journal of Cosmology and Astroparticle Physics, Volume 2023 (2023) no. 12, p. 016 | DOI:10.1088/1475-7516/2023/12/016
- The unprecedented flaring activities around Mrk 421 in 2012 and 2013: The test for neutrino and UHECR event connection, Journal of High Energy Astrophysics, Volume 40 (2023), p. 55 | DOI:10.1016/j.jheap.2023.10.003
- Probing three-dimensional magnetic fields: II – an interpretable Convolutional Neural Network, Monthly Notices of the Royal Astronomical Society, Volume 527 (2023) no. 4, p. 11240 | DOI:10.1093/mnras/stad3766
- Galactic halo bubble magnetic fields and UHECR deflections, Monthly Notices of the Royal Astronomical Society, Volume 517 (2022) no. 2, p. 2534 | DOI:10.1093/mnras/stac2778
- The Imprint of Large-scale Structure on the Ultrahigh-energy Cosmic-Ray Sky, The Astrophysical Journal Letters, Volume 913 (2021) no. 1, p. L13 | DOI:10.3847/2041-8213/abf11e
- Search for magnetically-induced signatures in the arrival directions of ultra-high-energy cosmic rays measured at the Pierre Auger Observatory, Journal of Cosmology and Astroparticle Physics, Volume 2020 (2020) no. 06, p. 017 | DOI:10.1088/1475-7516/2020/06/017
- Features of the Energy Spectrum of Cosmic Rays above 2.5×1018 eV Using the Pierre Auger Observatory, Physical Review Letters, Volume 125 (2020) no. 12 | DOI:10.1103/physrevlett.125.121106
- Progress in the Global Modeling of the Galactic Magnetic Field, EPJ Web of Conferences, Volume 210 (2019), p. 04005 | DOI:10.1051/epjconf/201921004005
- Deflections of UHECRs in the Galactic magnetic field, Journal of Cosmology and Astroparticle Physics, Volume 2019 (2019) no. 05, p. 004 | DOI:10.1088/1475-7516/2019/05/004
- Cosmic mass spectrometer, Journal of High Energy Astrophysics, Volume 17 (2018), p. 38 | DOI:10.1016/j.jheap.2017.12.001
- CRPropa 3.1—a low energy extension based on stochastic differential equations, Journal of Cosmology and Astroparticle Physics, Volume 2017 (2017) no. 06, p. 046 | DOI:10.1088/1475-7516/2017/06/046
- Ultrahigh-energy cosmic ray hotspots from tidal disruption events, Monthly Notices of the Royal Astronomical Society, Volume 466 (2017) no. 3, p. 2922 | DOI:10.1093/mnras/stw3337
- Implications of strong intergalactic magnetic fields for ultrahigh-energy cosmic-ray astronomy, Physical Review D, Volume 96 (2017) no. 2 | DOI:10.1103/physrevd.96.023010
- Observation of a large-scale anisotropy in the arrival directions of cosmic rays above 8 × 10 18 eV, Science, Volume 357 (2017) no. 6357, p. 1266 | DOI:10.1126/science.aan4338
- The nuclear window to the extragalactic universe, Astroparticle Physics, Volume 85 (2016), p. 54 | DOI:10.1016/j.astropartphys.2016.10.002
- Search for correlations between the arrival directions of IceCube neutrino events and ultrahigh-energy cosmic rays detected by the Pierre Auger Observatory and the Telescope Array, Journal of Cosmology and Astroparticle Physics, Volume 2016 (2016) no. 01, p. 037 | DOI:10.1088/1475-7516/2016/01/037
- New constraints on modelling the random magnetic field of the MW, Journal of Cosmology and Astroparticle Physics, Volume 2016 (2016) no. 05, p. 056 | DOI:10.1088/1475-7516/2016/05/056
- Monte Carlo Bayesian search for the plausible source of the Telescope Array hotspot, Physical Review D, Volume 93 (2016) no. 4 | DOI:10.1103/physrevd.93.043011
- The Nine Lives of Cosmic Rays in Galaxies, Annual Review of Astronomy and Astrophysics, Volume 53 (2015) no. 1, p. 199 | DOI:10.1146/annurev-astro-082214-122457
- Magnetic deflections of ultra-high energy cosmic rays from Centaurus A, Astroparticle Physics, Volume 61 (2015), p. 47 | DOI:10.1016/j.astropartphys.2014.07.001
- The Galactic magnetic field and its lensing of ultrahigh energy and Galactic cosmic rays, Proceedings of the International Astronomical Union, Volume 11 (2015) no. A29B, p. 723 | DOI:10.1017/s1743921316006530
- SEARCHES FOR ANISOTROPIES IN THE ARRIVAL DIRECTIONS OF THE HIGHEST ENERGY COSMIC RAYS DETECTED BY THE PIERRE AUGER OBSERVATORY, The Astrophysical Journal, Volume 804 (2015) no. 1, p. 15 | DOI:10.1088/0004-637x/804/1/15
Cité par 30 documents. Sources : Crossref
Commentaires - Politique