[Origine des rayons cosmiques de très haute et ultra-haute énergie]
Alors qu'il existe un certain niveau de consensus sur l'origine galactique des rayons cosmiques jusqu'au genou () et sur leur origine extragalactique au-delà de , le débat sur la genèse de ces rayons dans la région intermédiaire a reçu beaucoup moins d'attention, en particulier du fait de l'ambiguïté intrinsèque à la définition même de cette zone. L'intervalle d'énergie de 1017 eV à ∼1019 eV est probablement celui où la transition galactique–extragalactique a lieu. Par conséquent, l'origine des rayons cosmiques dans cet intervalle, bien que revêtant une importance toute particulière du point de vue de la physique, est aussi particulièrement difficile à étudier. J'illustre ici quelques idées concernant les sites d'accélération de ces particules et les questions auxquelles leur étude peut répondre, y compris concernant l'origine des rayons cosmique d'ultra-haute énergie.
While there is some level of consensus on a Galactic origin of cosmic rays up to the knee () and on an extragalactic origin of cosmic rays with energy above ∼1019 eV, the debate on the genesis of cosmic rays in the intermediate energy region has received much less attention, mainly because of the ambiguity intrinsic in defining such a region. The energy range between 1017 eV and ∼1019 eV is likely to be the place where the transition from Galactic to extragalactic cosmic rays takes place. Hence the origin of these particles, though being of the highest importance from the physics point of view, it is also one of the most difficult aspects to investigate. Here I will illustrate some ideas concerning the sites of acceleration of these particles and the questions that their investigation may help answer, including the origin of ultra-high-energy cosmic rays.
Mot clés : VHECR, UHECR, Genoux, Accélération, Galactique–extragalactique
Pasquale Blasi 1, 2
@article{CRPHYS_2014__15_4_329_0, author = {Pasquale Blasi}, title = {Origin of very high- and ultra-high-energy cosmic rays}, journal = {Comptes Rendus. Physique}, pages = {329--338}, publisher = {Elsevier}, volume = {15}, number = {4}, year = {2014}, doi = {10.1016/j.crhy.2014.02.008}, language = {en}, }
Pasquale Blasi. Origin of very high- and ultra-high-energy cosmic rays. Comptes Rendus. Physique, Volume 15 (2014) no. 4, pp. 329-338. doi : 10.1016/j.crhy.2014.02.008. https://comptes-rendus.academie-sciences.fr/physique/articles/10.1016/j.crhy.2014.02.008/
[1] Astron. Astrophys. Rev., 21 (2013), p. 70
[2] Mon. Not. R. Astron. Soc., 435 (2013), p. 1174
[3] Mon. Not. R. Astron. Soc., 431 (2013), p. 415
[4] Mon. Not. R. Astron. Soc., 437 (2014), p. 2802
[5] J. Phys. Conf. Ser., 47 (2006), p. 41
[6] Annu. Rev. Astron. Astrophys., 49 (2011), p. 119
[7] J. Phys. G, Nucl. Part. Phys., 31 (2005), p. R95
[8] Phys. Rev. D, 74 (2006), p. 043005
[9] Ultra high energy cosmic rays: implications of Auger data for source spectra and chemical composition (Preprint) | arXiv
[10] Phys. Lett. B, 685 (2010), p. 239
[11] et al. Phys. Rev. Lett., 104 (2010), p. 091101
[12] et al. Phys. Rev. Lett., 107 (2011), p. 171104
[13] et al. Phys. Rev. D, 87 (2013), p. 081101
[14] Phys. Rev., 88 (2013), p. 042004
[15] et al. Phys. Rev. Lett., 100 (2008), p. 101101
[16] et al. Phys. Rev. Lett., 92 (2004), p. 151101
[17] Highlights from telescope array (Preprint) | arXiv
[18] J. Phys. Conf. Ser., 404 (2012), p. 012037
[19] J. Cosmol. Astropart. Phys., 1201 (2012), p. 010
[20] J. Cosmol. Astropart. Phys., 1201 (2012), p. 011
[21] Astropart. Phys., 21 (2004), p. 241
[22] J. Phys. G, Nucl. Part. Phys., 34 (2007), p. 401
[23] Astropart. Phys., 27 (2007), p. 76
[24] Phys. Rev. D, 77 (2008), p. 5007
[25] Astrophys. J., 718 (2010), p. 31
[26] Astron. Astrophys., 433 (2005), p. 229
[27] Mon. Not. R. Astron. Soc., 392 (2009), p. 1591
[28] Mon. Not. R. Astron. Soc., 353 (2004), p. 550
[29] Astrophys. J., 313 (1987), p. 842
[30] Astrophys. J., 624 (2005), p. 765
[31] Space Sci. Rev., 176 (2013), p. 73
[32] et al. Astrophysics of Cosmic Rays, Elsevier Science Publishers, 1990 (Ch. 4)
[33] Space Sci. Rev., 173 (2012), p. 341
[34] Astrophys. J., 157 (1969), p. 869
[35] Annu. Rev. Astron. Astrophys., 44 (2006), p. 17
[36] Astrophys. J. Lett., 533 (2000), p. L123
[37] Astrophys. J., 589 (2003), p. 871
[38] J. Cosmol. Astropart. Phys., 03 (2013), p. 010
[39] Astrophys. J., 750 (2012), p. 118
[40] Astropart. Phys., 20 (2004), p. 559
[41] J. Cosmol. Astropart. Phys., 0601 (2006), p. 002
[42] J. Cosmol. Astropart. Phys., 0607 (2006), p. 015
[43] Mass composition working group report (K.-H. Kampert; M. Fukushima; R. Engel; B. Pattison, eds.), UHECR 2012 – International Symposium on Future Directions in UHECR Physics, EPJ Web Conf., vol. 53, CERN, Geneva, 2013 (01006) | arXiv
[44] UHECR composition models (Preprint) | arXiv
[45] et al. Astrophys. J. Lett., 762 (2013), p. L13
[46] Phys. Scr., 121 (2005), p. 147
[47] Theoretical challenges in acceleration and transport of ultra high energy cosmic rays: A review (K.-H. Kampert; M. Fukushima; R. Engel; B. Pattison, eds.), UHECR 2012 – International Symposium on Future Directions in UHECR Physics, EPJ Web Conf., vol. 53, CERN, Geneva, 2013 (01002) | arXiv
[48] Astrophys. J., 583 (2003), p. 695
[49] Phys. Rev. D, 77 (2008), p. 3003
[50] Astrophys. J., 315 (1987), p. 425
[51] Astrophys. J., 542 (2000), p. 235
[52] Astrophys. J., 591 (2003), p. 954
[53] Astrophys. J., 626 (2005), p. 877
[54] Mon. Not. R. Astron. Soc., 366 (2006), p. 635
[55] Astrophys. J., 726 (2011), p. 75
[56] On the maximum energy of shock-accelerated cosmic rays at ultra-relativistic shocks (Preprint) | arXiv
[57] Astrophys. J., 625 (2005), p. 249
[58] Magnetic diffusion effects on the ultra-high energy cosmic ray spectrum and composition (Preprint) | arXiv
[59] Astrophys. J. Lett., 514 (1999), p. 79
Cité par Sources :
Commentaires - Politique