[Les rayons cosmiques, de la cheville à la coupure]
Les récentes avancées des mesures et de l'interprétation des rayons cosmiques, depuis la caractéristique spectrale appelé « cheville » jusqu'aux plus hautes énergies, sont brièvement revues. Aux plus hautes énergie, la question principale concerne l'origine de la suppression du flux observée au dessus de
Recent advances in measuring and interpreting cosmic rays from the spectral ankle to the highest energies are briefly reviewed. The prime question at the highest energies is about the origin of the flux suppression observed at
Mots-clés : Rayons cosmiques, Composition masse, Anisotropie
Karl-Heinz Kampert 1 ; Peter Tinyakov 2
@article{CRPHYS_2014__15_4_318_0, author = {Karl-Heinz Kampert and Peter Tinyakov}, title = {Cosmic rays from the ankle to the cutoff}, journal = {Comptes Rendus. Physique}, pages = {318--328}, publisher = {Elsevier}, volume = {15}, number = {4}, year = {2014}, doi = {10.1016/j.crhy.2014.04.006}, language = {en}, }
Karl-Heinz Kampert; Peter Tinyakov. Cosmic rays from the ankle to the cutoff. Comptes Rendus. Physique, Ultra-high-energy cosmic rays: From the ankle to the tip of the spectrum, Volume 15 (2014) no. 4, pp. 318-328. doi : 10.1016/j.crhy.2014.04.006. https://comptes-rendus.academie-sciences.fr/physique/articles/10.1016/j.crhy.2014.04.006/
[1] et al. Nucl. Instrum. Methods A, 523 (2004), p. 50
[2] et al. Nucl. Instrum. Methods A, 620 (2010), p. 227 | arXiv
[3] et al. Nucl. Instrum. Methods A, 689 (2012), p. 87 | arXiv
[4] et al. Nucl. Instrum. Methods A, 676 (2012), p. 54 | arXiv
[5] et al. Phys. Rev. Lett., 107 (2011) (171104) | arXiv
[6] et al. Phys. Rev. D, 87 (2013) (081101) | arXiv
[7] Astropart. Phys., 39–40 (2012), p. 129 | arXiv
[8] et al. Astron. Astrophys., 268 (1993), p. 726
[9] Phys. Rev. Lett., 16 (1966), p. 748
[10] Pis'ma Zh. Eksp. Teor. Fiz., 4 (1966), p. 114
[11] et al. Phys. Rev. Lett., 100 (2008) (101101) | arXiv
[12] et al. Phys. Rev. Lett., 101 (2008) (061101) | arXiv
[13] et al. EPJ Web Conf., 53 (2013) (01005) | arXiv
[14] arXiv
, 2013 |[15] et al., 2013 | arXiv
[16] arXiv
, 2013 |[17] et al. Astropart. Phys., 42 (2013), p. 90 | arXiv
[18] et al., 2013 | arXiv
[19] Astropart. Phys., 34 (2011), p. 620 | arXiv
[20] Astropart. Phys., 39–40 (2012), p. 33 | arXiv
[21] Astrophys. J., 746 (2012), p. 72 | arXiv
[22] Astropart. Phys., 54 (2014), p. 48 | arXiv
[23] et al. Astropart. Phys., 42 (2013), p. 41 | arXiv
[24] Front. Phys. China, 8 (2013), p. 748 | arXiv
[25] J. Cosmol. Astropart. Phys., 1310 (2013) (013) | arXiv
[26] Astropart. Phys., 35 (2012), p. 660 | arXiv
[27] Annu. Rev. Nucl. Part. Sci., 61 (2011), p. 467
[28] Astropart. Phys., 35 (2011), p. 98 | arXiv
[29] et al. Phys. Rev. Lett., 109 (2012) (062002) | arXiv
[30] TA Collaboration, H. Sagawa, et al. Highlight talk given at the 33rd Int. Cosmic Ray Conf., Rio de Janeiro, Brazil, 2013.
[31] et al. EPJ Web Conf., 53 (2013), p. 01006 | arXiv
[32] et al. Phys. Rev. Lett., 104 (2010) (091101) | arXiv
[33] et al. Rio de Janeiro, Brazil (2013) (#0964)
[34] et al. J. Cosmol. Astropart. Phys., 1302 (2013), p. 026 | arXiv
[35] Astropart. Phys., 33 (2010), p. 151 | arXiv
[36] et al. Beijing, China (2011), p. 149 | arXiv
[37] et al. Beijing, China (2011), p. 331
[38] et al. Nucl. Phys. Proc. Suppl., 190 (2009), p. 20 | arXiv
[39] et al. Astrophys. J., 768 (2013), p. L1 | arXiv
[40] et al. Nucl. Instrum. Methods A, 613 (2010), p. 29
[41] et al. Astrophys. J., 757 (2012), p. 26 | arXiv
[42] Rep. Prog. Phys., 57 (1994), p. 325
[43] J. Cosmol. Astropart. Phys., 0501 (2005) (009) | arXiv
[44] Phys. Rev. D, 70 (2004) (043007) | arXiv
[45] Science, 320 (2008), p. 909 | arXiv
[46] Astrophys. J., 682 (2008), p. 29 | arXiv
[47] Astrophys. J., 710 (2010), p. 1422
[48] Astropart. Phys., 35 (2011), p. 135
[49] Phys. Rev. D, 87 (2013) (063002)
[50] arXiv
, 1999 |[51] Astrophys. J., 674 (2008), p. 258
[52] Astrophys. J., 738 (2011), p. 192 | arXiv
[53] Astrophys. J., 761 (2012), p. L11 | arXiv
[54] Astropart. Phys., 24 (2005), p. 32 | arXiv
[55] arXiv
, 2013 |[56] JETP Lett., 74 (2001), p. 1 | arXiv
[57] et al. J. Cosmol. Astropart. Phys., 1204 (2012) (040)
[58] et al. Rio de Janeiro, Brazil (2013) (#0311)
[59] et al. Rio de Janeiro, Brazil (2013) (#0310)
[60] et al. J. Cosmol. Astropart. Phys., 1106 (2011) (022) | arXiv
[61] et al. Rio de Janeiro, Brazil (2013) (#1033)
[62] arXiv
, 2012 |[63] Astron. Astrophys., 455 (2006), p. 773
[64] et al. Science, 318 (2007), p. 938 | arXiv
[65] et al. Astropart. Phys., 34 (2010), p. 314 | arXiv
[66] et al. Astropart. Phys., 30 (2008), p. 175 | arXiv
[67] et al. Astropart. Phys., 34 (2011), p. 627 | arXiv
[68] et al. Astrophys. J., 762 (2013), p. L13 | arXiv
[69] et al. Searches for Large Scale Anisotropy in the Arrival Directions of Cosmic Rays Detected above
[70] et al., 2013 | arXiv
[71] J. Cosmol. Astropart. Phys., 0904 (2009) (003) | arXiv
[72] et al. J. Cosmol. Astropart. Phys., 1305 (2013) (015) | arXiv
[73] et al. Astrophys. J., 760 (2012), p. 148 | arXiv
[74] et al. Rio de Janeiro, Brazil (2013) | arXiv
[75] Annu. Rev. Astron. Astrophys., 47 (2009), p. 523
- Energetic Particles and High-Energy Processes in Cosmological Filaments and Their Astronomical Implications, Universe, Volume 10 (2024) no. 7 | DOI:10.3390/universe10070287
- CRPropa 3.2 - an advanced framework for high-energy particle propagation in extragalactic and galactic spaces, Journal of Cosmology and Astroparticle Physics, Volume 2022 (2022) no. 9 | DOI:10.1088/1475-7516/2022/09/035
- Measurement of the cosmic-ray energy spectrum above 2.5 ×1018 eV using the Pierre Auger Observatory, Physical Review D, Volume 102 (2020) no. 6 | DOI:10.1103/physrevd.102.062005
- Energy spectrum of fast second order Fermi accelerators as sources of ultra-high-energy cosmic rays, Astroparticle Physics, Volume 102 (2018), pp. 25-31 | DOI:10.1016/j.astropartphys.2018.04.004
- Ultrahigh energy cosmic rays from nearby starburst galaxies, Monthly Notices of the Royal Astronomical Society, Volume 478 (2018) no. 1, pp. 800-806 | DOI:10.1093/mnras/sty986
- , Proceedings of 2016 International Conference on Ultra-High Energy Cosmic Rays (UHECR2016) (2018) | DOI:10.7566/jpscp.19.011047
- , AIP Conference Proceedings, Volume 1852 (2017) no. 1 | DOI:10.1063/1.4984858
- First results from the TUS orbital detector in the extensive air shower mode, Volume 2017 (2017) no. 9 | DOI:10.1088/1475-7516/2017/09/006
- Ultra High Energy Cosmic Rays Super-heavy Dark Matter. Observables and prospect of (non)detection, Astroparticle Physics, Volume 93 (2017), pp. 56-69 | DOI:10.1016/j.astropartphys.2017.04.005
- Improving the accuracy of cosmic ray mass composition estimation using the scale factor of the electron lateral distribution in air showers, Bulletin of the Russian Academy of Sciences: Physics, Volume 81 (2017) no. 4, pp. 450-452 | DOI:10.3103/s1062873817040360
- , RICAP16, 6th Roma International Conference on Astroparticle Physics, Roma, Italy, Edited by Morselli, A.; Capone, A.; Rodriguez Fernandez, G.; EPJ Web of Conferences, Volume 136 (2017) | DOI:10.1051/epjconf/201713602015
- Model-stable universality of the air shower electromagnetic component: An approach to solving the mass composition problem, EPJ Web of Conferences, Volume 145 (2017), p. 19014 | DOI:10.1051/epjconf/201714519014
- , Proceedings of the 7th International Workshop on Very High Energy Particle Astronomy in 2014 (VHEPA2014) (2017) | DOI:10.7566/jpscp.15.011004
- The Fluorescence detector Array of Single-pixel Telescopes: Contributions to the 35th International Cosmic Ray Conference (ICRC 2017), arXiv (2017) | DOI:10.48550/arxiv.1708.01379 | arXiv:1708.01379
- Detection of ultra-high energy cosmic ray showers with a single-pixel fluorescence telescope, Astroparticle Physics, Volume 74 (2016), pp. 64-72 | DOI:10.1016/j.astropartphys.2015.10.006
- , XLV International Symposium on Multiparticle Dynamics (ISMD 2015), Munich, Germany, Edited by T. Barillari; S. Bethke; S. Kluth; S. Menke; EPJ Web of Conferences, Volume 120 (2016) | DOI:10.1051/epjconf/201612004002
- IceCube and the discovery of high-energy cosmic neutrinos, International Journal of Modern Physics D, Volume 25 (2016) no. 14 | DOI:10.1142/s0218271816300287
- Glueballs amass at the RHIC and LHC! The early quarkless first-order phase transition at T = 270 MeV—from pure Yang-Mills glue plasma to Hagedorn glueball states, Journal of Physics G: Nuclear and Particle Physics, Volume 43 (2016) no. 1 | DOI:10.1088/0954-3899/43/1/015105
- A signature of E eV protons of Galactic origin, Monthly Notices of the Royal Astronomical Society, Volume 460 (2016) no. 4, pp. 3479-3487 | DOI:10.1093/mnras/stw1163
- Ultra High Energy Cosmic Rays and Neutrinos, Nuclear and Particle Physics Proceedings, Volume 279-281 (2016), pp. 95-102 | DOI:10.1016/j.nuclphysbps.2016.10.014
- Molecular bremsstrahlung radiation at GHz frequencies in air, Physical Review D, Volume 93 (2016) no. 5 | DOI:10.1103/physrevd.93.052004
- , Proceedings of International Symposium for Ultra-High Energy Cosmic Rays (UHECR2014) (2016) | DOI:10.7566/jpscp.9.010017
- The Pierre Auger Observatory Upgrade - Preliminary Design Report, arXiv (2016) | DOI:10.48550/arxiv.1604.03637 | arXiv:1604.03637
- A review of Cosmic-ray electrons and fermi-LAT, arXiv (2016) | DOI:10.48550/arxiv.1610.03672 | arXiv:1610.03672
- DOI:10.15407/akademperiodyka.287.356 , 2015 |
- Study of Ultra-High Energy Cosmic Ray composition using Telescope Array's Middle Drum detector and surface array in hybrid mode, Astroparticle Physics, Volume 64 (2015), pp. 49-62 | DOI:10.1016/j.astropartphys.2014.11.004
- An estimate of the spectral intensity expected from the molecular Bremsstrahlung radiation in extensive air showers, Astroparticle Physics, Volume 67 (2015), p. 26 | DOI:10.1016/j.astropartphys.2015.01.004
- Spectra of cosmic-ray protons and nuclei from 1010 to 1020 eV within the galactic origin scenario of cosmic rays, Bulletin of the Russian Academy of Sciences: Physics, Volume 79 (2015) no. 3, pp. 322-325 | DOI:10.3103/s1062873815030351
- Recent results from telescope array, EPJ Web of Conferences, Volume 99 (2015), p. 04004 | DOI:10.1051/epjconf/20159904004
- Strong interactions in air showers, Journal of Cosmology and Astroparticle Physics, Volume 2015 (2015) no. 3, p. 002-002 | DOI:10.1088/1475-7516/2015/03/002
- Measurement of the cosmic ray spectrum above 4 × 1018 eV using inclined events detected with the Pierre Auger Observatory, Journal of Cosmology and Astroparticle Physics, Volume 2015 (2015) no. 8, p. 049-049 | DOI:10.1088/1475-7516/2015/08/049
- Cosmogenic neutrinos and ultra-high energy cosmic ray models, Journal of Cosmology and Astroparticle Physics, Volume 2015 (2015) no. 10, p. 006-006 | DOI:10.1088/1475-7516/2015/10/006
- , Journal of Physics: Conference Series, Volume 632 (2015) no. 1 | DOI:10.1088/1742-6596/632/1/012104
- Les rayons cosmiques d’énergie extrême, Reflets de la physique (2015) no. 43, p. 31 | DOI:10.1051/refdp/201543031
- The Minimum Width of the Arrival Direction Distribution of Ultra-high-energy Cosmic Rays Detected with the Yakutsk Array, The Astrophysical Journal, Volume 804 (2015) no. 2 | DOI:10.1088/0004-637x/804/2/122
Cité par 35 documents. Sources : Crossref, NASA ADS
Commentaires - Politique
Vous devez vous connecter pour continuer.
S'authentifier