Comptes Rendus
Structural characterization of solid foams
[Caractérisation structurale des mousses solides]
Comptes Rendus. Physique, Volume 15 (2014) no. 8-9, pp. 674-682.

Pour être utile à la compréhension des propriétés des mousses solides, la caractérisation de la microstructure de ces mousses doit s'effectuer à différentes échelles. La microstructure du matériau constituant la phase solide doit être connue. Pour ceci, le MEB est le plus souvent utilisé. L'aspect le plus important (et le plus problématique) est la caractérisation de l'architecture poreuse de ces matériaux. Les méthodes de caractérisation présentées dans cet article concernent ces deux types de caractérisations et les spécificités expérimentales liées à la nature poreuse des échantillons. La tomographie aux rayons X est décrite plus en détail, car c'est la méthode la plus utilisée. L'article montre aussi comment les images 3D obtenues, y compris en cours de déformation, sont traitées pour obtenir les paramètres décrivant la morphologie poreuse des mousses solides.

For being a useful contribution to the understanding of the properties of solid foams, the characterization of the structure of solid foams has to be performed at different scales. The microstructure of the solid part of the foams has to be analyzed. For this, standard SEM observations are often used. The most important aspect (and the most problematic) remains the characterization of the porous architecture of these materials. The methods introduced in this paper concern both scales and the article discusses the specificity of the experiments in the case of porous materials. X-ray tomography is described in more details because it becomes widely used for this purpose. The paper also shows how the obtained 3D images (sometimes obtained during deformation) can be processed to yield important morphological parameters describing the foams.

Publié le :
DOI : 10.1016/j.crhy.2014.09.001
Keywords: X-ray tomography, Cellular materials, Image analysis, SEM, 3D
Mot clés : Tomographie aux rayons X, Matériaux cellulaires, Analyse d'images, MEB, 3D
Éric Maire 1 ; Jérôme Adrien 1 ; Clémence Petit 1

1 INSA de Lyon, MATEIS CNRS UMR5510, Université de Lyon, 69621 Villeurbanne, France
@article{CRPHYS_2014__15_8-9_674_0,
     author = {\'Eric Maire and J\'er\^ome Adrien and Cl\'emence Petit},
     title = {Structural characterization of solid foams},
     journal = {Comptes Rendus. Physique},
     pages = {674--682},
     publisher = {Elsevier},
     volume = {15},
     number = {8-9},
     year = {2014},
     doi = {10.1016/j.crhy.2014.09.001},
     language = {en},
}
TY  - JOUR
AU  - Éric Maire
AU  - Jérôme Adrien
AU  - Clémence Petit
TI  - Structural characterization of solid foams
JO  - Comptes Rendus. Physique
PY  - 2014
SP  - 674
EP  - 682
VL  - 15
IS  - 8-9
PB  - Elsevier
DO  - 10.1016/j.crhy.2014.09.001
LA  - en
ID  - CRPHYS_2014__15_8-9_674_0
ER  - 
%0 Journal Article
%A Éric Maire
%A Jérôme Adrien
%A Clémence Petit
%T Structural characterization of solid foams
%J Comptes Rendus. Physique
%D 2014
%P 674-682
%V 15
%N 8-9
%I Elsevier
%R 10.1016/j.crhy.2014.09.001
%G en
%F CRPHYS_2014__15_8-9_674_0
Éric Maire; Jérôme Adrien; Clémence Petit. Structural characterization of solid foams. Comptes Rendus. Physique, Volume 15 (2014) no. 8-9, pp. 674-682. doi : 10.1016/j.crhy.2014.09.001. https://comptes-rendus.academie-sciences.fr/physique/articles/10.1016/j.crhy.2014.09.001/

[1] L.J. Gibson Mechanical behavior of metallic foams, Annu. Rev. Mater. Sci., Volume 30 (2000), pp. 191-227

[2] É. Maire X-ray tomography applied to the characterization of highly porous materials, Annu. Rev. Mater. Res., Volume 42 (2012), pp. 163-178

[3] L.J. Gibson; M.F. Ashby Cellular Solids: Structure and Properties, Cambridge University Press, Cambridge, UK, 1997

[4] H. Bart-Smith; A.F. Bastawros; D.R. Mumm; A.G. Evans; D.J. Sypeck; H.N.G. Wadley Structure and mechanical properties of AFS sandwiches studied by in-situ compression tests in X-ray microtomography, Acta Mater., Volume 46 (1998), p. 3582

[5] E. Jasiuniene; J. Goebbels; B. Illerhaus; P. Lowe; A. Kottar Cellular Metals and Metal Foaming Technology (J. Banhart; M.F. Ashby; N.A. Fleck, eds.), Verlag MIT Publishing, 2001, p. 251

[6] G. Gioux; T.M. McCormack; L.J. Gibson Failure of aluminum foams under multiaxial loads, Int. J. Mech. Sci., Volume 42 (2000), pp. 1097-1117

[7] B.K. Bay; T.S. Smith; D.P. Fyhrie; M. Saad Digital volume correlation: three-dimensional strain mapping using X-ray tomography, Exp. Mech., Volume 39 (1999) no. 3, pp. 217-226

[8] H.P. Degisher; A. Kottar; F. Foroughi Determination of local mass density distribution (J. Baruchel; J.-Y. Buffière; É. Maire; P. Merle; G. Peix, eds.), X-Ray Tomography in Material Science, Hermès Science, Paris, 2000, p. 165

[9] A.H. Benouali; L. Froyen Cellular Metals and Metal Foaming Technology (J. Banhart; M. Ashby; N. Fleck, eds.), MIT-Verlag, Bremen, 2001, p. 269

[10] A. Elmoutaouakkail; L. Salvo; É Maire; G. Peix 2d and 3d characterisation of metal foams using X-ray tomography, Adv. Eng. Mater., Volume 4 (2002), pp. 803-807

[11] L. Helfen; T. Baumbach; H. Stanzick; J. Banhart; A. Elmoutaouakkil; P. Cloetens; K. Schladitz Viewing the early stage of metal foam formation by computed tomography using synchrotron radiation, Adv. Eng. Mater., Volume 4 (2002), pp. 808-813

[12] O.B. Olurin; M. Arnold; C. Körner; R.F. Singer The investigation of morphometric parameters of aluminium foams using micro-computed tomography, Mater. Sci. Eng. A, Volume 328 (2002), pp. 334-343

[13] Takeshi Wada; Kunio Yubuta; Akihisa Inoue; Hidemi Kato Dealloying by metallic melt, Mater. Lett., Volume 65 (2011) no. 7, pp. 1076-1078

[14] B.C. Tappan; S.A. Steiner; E.P. Luther Nanoporous metal foams, Angew. Chem., Int. Ed., Volume 49 (2010), pp. 4544-4565

[15] A.M. Hodge; J.R. Hayes; J.A. Caro; J. Biener; A.V. Hamza Characterization and mechanical behavior of nanoporous gold, Adv. Eng. Mater., Volume 8 (2006) no. 9, pp. 853-957

[16] É Maire; P. Colombo; J. Adrien; L. Babout; L. Biasetto Characterization of the morphology of cellular ceramics by 3D image processing of X-ray tomography data, J. Eur. Ceram. Soc., Volume 27 (2007), pp. 1973-1981

[17] P. Colombo; T. Gambaryan-Roisman; M. Scheffler; P. Buhler; P. Greil Conductive ceramic foams from preceramic polymers, J. Am. Ceram. Soc., Volume 84 (2001) no. 10, pp. 2265-2268

[18] Mohd Al Amin Muhamad Nor; Lee Chain Hong; Zainal Arifin Ahmad; Hazizan Md Akil Preparation and characterization of ceramic foam produced via polymeric foam replication method, J. Mater. Process. Technol., Volume 207 (2008), pp. 235-239

[19] N.R. Cameron; D.C. Sherrington; L. Albiston; D.P. Gregory Study of the formation of the open-cellular morphology of poly(styrene/divinylbenzene) polyHiPE materials by cryo-SEM, Colloid Polym. Sci., Volume 274 (1996), pp. 592-595

[20] C. Motz; O. Friedl; R. Pippan Fatigue crack propagation in cellular metals, Int. J. Fatigue, Volume 27 (2005), pp. 1571-1581

[21] V. Goussery; Y. Bienvenu; S. Forest; A.-F. Gourgues; C. Colin; J.-D. Bartout Grain size effects on the mechanical behavior of open-cell nickel foams, Adv. Eng. Mater., Volume 6 (2004) no. 6, pp. 432-439

[22] S. Soubielle; L. Salvo; F. Diologent; A. Mortensen Fatigue and cyclic creep of replicated microcellular aluminium, Mater. Sci. Eng. A, Volume 528 (2011), pp. 2657-2663

[23] J. Zhou; W.O. Soboyejo Compression–compression fatigue of open cell aluminum foams: macro-/micro-mechanisms and the effects of heat treatment, Mater. Sci. Eng. A, Volume 369 (2004), pp. 23-35

[24] Y. Conde; R. Doglione; A. Mortensen Influence of microstructural heterogeneity on the scaling between flow stress and relative density in microcellular Al–4.5 %Cu, J. Mater. Sci., Volume 49 (2014), pp. 2403-2414

[25] V. Gergely; B. Clyne The FORMGRIP process: foaming of reinforced metals by gas release in precursors, Adv. Eng. Mater., Volume 2 (2000) no. 4, pp. 175-178

[26] E. Amsterdam; P.R. Onck; T.M. DeHosson Fracture and microstructure of open cell aluminum foam, J. Mater. Sci., Volume 40 (2005), pp. 5813-5819

[27] P. Zhang; M. Haag; O. Kraft; A. Wanner; E. Arzt Microstructural changes in the cell walls of a closed-cell aluminium foam during creep, Philos. Mag. A, Volume 82 (2002) no. 16, pp. 2895-2907

[28] J.-Y. Buffière; É. Maire; J. Adrien; J.-P. Masse; E. Boller In situ experiments with X-ray tomography: an attractive tool for experimental mechanics, Exp. Mech., Volume 50 (2010), pp. 289-305

[29] J. Baruchel; J.-Y. Buffiere; P. Cloetens; M. Dimichiel; E. Ferrie; W. Ludwig; É. Maire; L. Salvo Advances in synchrotron radiation microtomography, Scr. Mater., Volume 55 (2006), pp. 41-46

[30] A. Faridani; K.A. Buglione; P. Huabsomboon; O.D. Iancu; J. McGrath Introduction to local tomography, Contemp. Math., Volume 278 (2001), pp. 29-47

[31] E.L. Ritman; S.M. Jorgensen; P.E. Lund; P.J. Thomas; J.H. Dunsmuir; J.C. Romero; R.T. Turner; M.E. Bolander Synchrotron-based micro-CT of in situ biological basic functional units and their integration, Proc. SPIE, Volume 3149 (1997), pp. 13-24

[32] S. Bonnet; F. Peyrin; F. Turjman; R. Prost Tomographic reconstruction using nonseparable wavelets, IEEE Trans. Image Process., Volume 9 (2000), p. 1445

[33] H. Toda; T. Ohgaki; K. Uesugi; K. Makii; Y. Aruga; T. Akahori; M. Niinomi; T. Kobayashi Quantitative assessment of microstructure and its effects on compression behavior of aluminum foams via high-resolution synchrotron X-ray tomography, Key Eng. Mater., Volume 297–300 (2005), p. 1189

[34] Yu-chen Karen Chen-Wiegart; Ross DeMike; Can Erdonmez; Katsuyo Thornton; Scott A. Barnett; Jun Wang Tortuosity characterization of 3D microstructure at nano-scale for energy storage and conversion materials, J. Power Sources, Volume 249 ( Jun 2014 ), pp. 349-356

[35] Y.-C. K. Chen-Wiegart; T. Wada; N. Butakov; X. Xiao; F. De Carlo; H. Kato; J. Wang; D.C. Dunand; É. Maire 3D morphological evolution of porous titanium by X-ray micro- and nano-tomography, J. Mater. Res., Volume 28 (2013), pp. 2444-2452

[36] Karen Chen-Wiegart; Zhao Liu; Katherine T. Faber; Scott A. Barnett; Jun Wang 3D analysis of a LiCoO2Li(Ni1/3Mn1/3Co1/3)O2 Li-ion battery positive electrode using x-ray nano-tomography, Electrochem. Commun., Volume 28 ( Jun 2013 ), pp. 127-130

[37] J.W. Bullard; E.J. Garboczi; W.C. Carter; E.R. Fuller Numerical methods for computing interfacial mean curvature, Comput. Mater. Sci., Volume 4 (1995), pp. 103-116

[38] F. Flin; J.-B. Brzoska; B. Lesaffre; C. Coléou; R.A. Pieritz Three-dimensional geometric measurements of snow microstructural evolution under isothermal conditions, Ann. Glaciol., Volume 38 (2004), pp. 39-44

[39] D. Bauer; S. Youssef; M. Fleury; S. Bekri; E. Rosenberg; O. Vizika Improving the estimations of petrophysical transport behavior of carbonate rocks using a dual pore network approach combined with computed microtomography, Transp. Porous Media, Volume 94 (2012), pp. 505-524

[40] N. Babcsán; D. Leitlmeier; H.P. Degischer; J. Banhart The role of oxidation in blowing particle-stabilised aluminium foams, Adv. Eng. Mater., Volume 6 (2004) no. 6, pp. 421-428

[41] F. Garcia-Moreno; M. Mukherjee; C. Jiménez; A. Rack; J. Banhart Metal foaming investigated by X-ray radioscopy, Metals, Volume 2 (2012), pp. 10-21

[42] S. Deville; É. Maire; G. Bernard-Granger; A. Lasalle; A. Bogner; C. Gauthier; J. Leloup; C. Guizard Metastable and unstable cellular solidification of colloidal suspensions, Nat. Mater., Volume 8 (2009), pp. 966-972

Cité par Sources :

Commentaires - Politique


Ces articles pourraient vous intéresser

Processing and structures of solids foams

Luc Salvo; Guilhem Martin; Mathieu Suard; ...

C. R. Phys (2014)


Thermal conductive and radiative properties of solid foams: Traditional and recent advanced modelling approaches

Jaona Randrianalisoa; Dominique Baillis

C. R. Phys (2014)


Application and future of solid foams

Yves Bienvenu

C. R. Phys (2014)