Comptes Rendus
The centennial of the Sagnac experiment in the optical regime: From a tabletop experiment to the variation of the Earth's rotation
[Le centenaire de l'expérience de Sagnac en régime optique : d'une expérience de laboratoire à la variation de la rotation de la Terre]
Comptes Rendus. Physique, Volume 15 (2014) no. 10, pp. 859-865.

La recherche sur le comportement non réciproque des faisceaux optiques dans un référentiel tournant était la motivation principale de l'expérience historique de George Sagnac. Son expérience révolutionnaire à été étendue à une installation beaucoup plus grande plus d'une décade plus tard, avec une sensibilité suffisante pour permettre à Michelson, Pearson et Gale de déterminer la vitesse de rotation de la Terre à l'aide d'un interféromètre optique. Avec l'arrivée des lasers au début des années 1960, des cavités laser en anneau tournantes ont montré des performances supérieures et ont très vite atteint un niveau de maturité permettant à des gyro-lasers de surpasser les gyroscopes mécaniques dans le domaine de la navigation aérienne. Les lasers en anneau de très grandes dimensions ont repris le chemin des laboratoires à la fin du vingtième siècle, avec comme motivation principale l'utilisation de l'effet Sagnac pour la géodésie, afin d'accèder à de minuscules variations de la rotation de la Terre. Le laser à large anneau G, qui est l'instrument le plus stable parmi toute une série d'instruments construits dans le contexte d'une coopération germano-néo-zélandaise, résout régulièrement la vitesse de rotation de la Terre jusqu'à mieux que huit ordres de grandeur. Puisque G se réfère directement à l'axe de rotation de la Terre, l'effet du mouvement polaire diurne, le mouvement de Chandler et l'oscillation annuelle comme les inclinaisons des marées solides à la surface terrestre apparaissent dans l'interferogramme obtenu à partir du laser en anneau. G s'est aussi révélé avoir une grande sensibilité aux rotations associées aux événements sismiques. Les modes propres toroïdaux de la Terre, lorsqu'ils sont excités par des tremblements de terre de grande ampleur, ont été résolus. Une amplitude étonnamment grande a été mesurée pour des signaux d'ondes de Love contenus dans le bruit de fond micro-sismique. Cet article résume le développement récent de grands gyroscopes de grande sensibilité, et présente des résultats uniques pour ce qui est de la mesure des rotations de la Terre.

The investigation of non-reciprocal behavior of optical beams in a rotating reference frame was the main motivation of the historic tabletop experiment of George Sagnac. His ground-breaking experiment was extended to a very large installation more than a decade later, which was sensitive enough to allow Michelson, Pearson and Gale to resolve the rotation rate of the Earth by an optical interferometer. With the advent of lasers in the early sixties of the last century, rotating laser cavities with a ring structure demonstrated superior performance and very soon matured to a point where mechanical gyroscopes were quickly superseded by laser gyroscopes in aircraft navigation. When vastly upscaled ring lasers were taken back to the laboratory at the end of the 20th century, the goal of applying the Sagnac effect to geodesy for the monitoring of tiny variations of Earth's rotation was the main motivation. The large-ring laser G, which is the most stable instrument out of a series of instruments built by the New Zealand–German collaboration, routinely resolves the rotation rate of the Earth to better than eight orders of magnitude. Since G is directly referenced to the Earth rotation axis, the effect of diurnal polar motion, the Chandler and the Annual wobbles as well as tilts from the solid Earth tides can be found in the interferogram obtained from the ring laser. G has also demonstrated high sensitivity to rotations associated with seismic events. The toroidal eigenmodes of the Earth when they are excited by large earthquakes have been resolved. A surprisingly large amplitude has been measured for Love wave signals contained in the microseismic background signal. This paper summarizes the recent development of highly sensitive large Sagnac gyroscopes, and presents unique results from the measurements of rotations of the earth.

Publié le :
DOI : 10.1016/j.crhy.2014.10.003
Keywords: Sagnac effect, Ring laser gyroscope, Earth rotation, Seismology
Mot clés : Effet Sagnac, Gyroscope laser à anneau, Rotation de la Terre, Sismologie
Karl Ulrich Schreiber 1 ; André Gebauer 1 ; Heiner Igel 2 ; Joachim Wassermann 2 ; Robert B. Hurst 3 ; Jon-Paul R. Wells 3

1 Forschungseinrichtung Satellitengeodaesie, Technische Universität München, Germany
2 Department fuer Geo- und Umweltwissenschaften Geophysik, Ludwig-Maximilians-Universität München, Germany
3 Department of Physics and Astronomy, University of Canterbury, Christchurch, New Zealand
@article{CRPHYS_2014__15_10_859_0,
     author = {Karl Ulrich Schreiber and Andr\'e Gebauer and Heiner Igel and Joachim Wassermann and Robert B. Hurst and Jon-Paul R. Wells},
     title = {The centennial of the {Sagnac} experiment in the optical regime: {From} a tabletop experiment to the variation of the {Earth's} rotation},
     journal = {Comptes Rendus. Physique},
     pages = {859--865},
     publisher = {Elsevier},
     volume = {15},
     number = {10},
     year = {2014},
     doi = {10.1016/j.crhy.2014.10.003},
     language = {en},
}
TY  - JOUR
AU  - Karl Ulrich Schreiber
AU  - André Gebauer
AU  - Heiner Igel
AU  - Joachim Wassermann
AU  - Robert B. Hurst
AU  - Jon-Paul R. Wells
TI  - The centennial of the Sagnac experiment in the optical regime: From a tabletop experiment to the variation of the Earth's rotation
JO  - Comptes Rendus. Physique
PY  - 2014
SP  - 859
EP  - 865
VL  - 15
IS  - 10
PB  - Elsevier
DO  - 10.1016/j.crhy.2014.10.003
LA  - en
ID  - CRPHYS_2014__15_10_859_0
ER  - 
%0 Journal Article
%A Karl Ulrich Schreiber
%A André Gebauer
%A Heiner Igel
%A Joachim Wassermann
%A Robert B. Hurst
%A Jon-Paul R. Wells
%T The centennial of the Sagnac experiment in the optical regime: From a tabletop experiment to the variation of the Earth's rotation
%J Comptes Rendus. Physique
%D 2014
%P 859-865
%V 15
%N 10
%I Elsevier
%R 10.1016/j.crhy.2014.10.003
%G en
%F CRPHYS_2014__15_10_859_0
Karl Ulrich Schreiber; André Gebauer; Heiner Igel; Joachim Wassermann; Robert B. Hurst; Jon-Paul R. Wells. The centennial of the Sagnac experiment in the optical regime: From a tabletop experiment to the variation of the Earth's rotation. Comptes Rendus. Physique, Volume 15 (2014) no. 10, pp. 859-865. doi : 10.1016/j.crhy.2014.10.003. https://comptes-rendus.academie-sciences.fr/physique/articles/10.1016/j.crhy.2014.10.003/

[1] A.A. Michelson; F. Pearson; H.G. Gale The effect of the Earth's rotation on the velocity of light, Astrophys. J., Volume 61 (1925), pp. 140-145

[2] (H.-P. Plag; M. Pearlman, eds.), Global Geodetic Observing System, Springer, 2009 (ISBN: 978-3-642-02686-7)

[3] A. Di Virgilio; K.U. Schreiber; A. Gebauer; J.-P.R. Wells; A. Tartaglia; J. Belfi; N. Beverini; A. Ortolan A laser gyroscope system to detect the gravito-magnetic effect on Earth, Int. J. Mod. Phys. D, Volume 19 (2010), p. 2331

[4] F. Bosi; G. Cella; A. Di Virgilio; A. Ortolan; A. Porzio; S. Solimeno; M. Cerdonio; J.P. Zendri; M. Allegrini; J. Belfi; N. Beverini; B. Bouhadef; G. Carelli; I. Ferrante; E. Maccioni; R. Passaquieti; F. Stefani; M.L. Ruggiero; A. Tartaglia; K.U. Schreiber; A. Gebauer; J.-P.R. Wells Measuring gravitomagnetic effects by a multi-ring-laser gyroscope, Phys. Rev. D, Volume 84 (2011), p. 122002

[5] W.M. Macek; D.T.M. Davies Rotation rate sensing with travelling-wave ring lasers, Appl. Phys. Lett., Volume 2 (1963) no. 3, p. 67

[6] F. Aronowitz The laser gyro, Laser Applications, vol. 1, 1971, pp. 133-200

[7] G.E. Stedman Ring laser tests of fundamental physics and geophysics, Rep. Prog. Phys., Volume 60 (1997), p. 615

[8] G.E. Stedman; H.R. Bilger; Li Ziyuan; M.P. Poulton; C.H. Rowe; I. Vetharaniam; P.V. Wells Canterbury ring laser and tests for nonreciprocal phenomena, Aust. J. Phys., Volume 46 (1993), p. 87

[9] R.B. Hurst; R.W. Dunn; K.U. Schreiber; R.J. Thirkettle; G.K. MacDonald Mode behaviour in ultralarge ring lasers, Appl. Opt., Volume 43 (2004), p. 2337

[10] K.U. Schreiber; C.H. Rowe; D.N. Wright; S.J. Cooper; G.E. Stedman Precision stabilization of the optical frequency in a large ring laser gyroscope, Appl. Opt., Volume 37 (1998), p. 8371

[11] K.U. Schreiber; T. Klügel; G. Stedman Earth tide and tilt detection by a ring laser gyroscope, J. Geophys. Res., Solid Earth, Volume 108 ( Feb. 2003 ) no. B, p. 2132 | DOI

[12] C.H. Rowe; K.U. Schreiber; S.J. Cooper; B.T. King; M. Poulton; G.E. Stedman Design and operation of a very large ring laser gyroscope, Appl. Opt., Volume 38 (1999) no. 12, p. 2516

[13] K.U. Schreiber; T. Klügel; A. Velikoseltsev; W. Schlüter; G.E. Stedman; J.-P.R. Wells The large ring laser G for continuous earth rotation monitoring, Pure Appl. Geophys., Volume 166 (2009), p. 1485

[14] K.U. Schreiber; T. Klügel; J.-P.R. Wells; R.B. Hurst; A. Gebauer How to detect the Chandler and the annual wobble of the Earth with a large ring laser gyroscope, Phys. Rev. Lett., Volume 107 (2011), p. 173904

[15] R.B. Hurst; G.E. Stedman; K.U. Schreiber; R.J. Thirkettle; R.D. Graham; N. Rabeendran; J.-P.R. Wells Experiments with an 834 m2 ring laser interferometer, J. Appl. Phys., Volume 105 (2009), p. 113115

[16] B. Pritsch; K.U. Schreiber; A. Velikoseltsev; J.-P.R. Wells Scale-factor corrections in large ring lasers, Appl. Phys. Lett., Volume 91 (2007) no. 6, p. 061115

[17] K.U. Schreiber; J.-P.R. Wells Invited review: large ring lasers for rotation sensing, Rev. Sci. Instrum., Volume 84 (2013), p. 041101

[18] W. Tian On tidal tilt corrections to large ring laser gyroscope observations, Geophys. J. Int., Volume 169 (2014) no. 1, pp. 189-193

[19] K.U. Schreiber; A. Gebauer; J.-P.R. Wells Long term frequency stabilization of a 16 m2 ring laser gyroscope, Opt. Lett., Volume 37 (2012) no. 11, p. 1925

[20] A. Gebauer; K.U. Schreiber; T. Klügel; N. Schön; U. Ulbrich High-frequency noise caused by wind in large ring laser gyroscope data, J. Seismol., Volume 16 (2012) no. 4, pp. 777-786 | DOI

[21] K. Aki; P. Richards Theoretical Seismology, Freeman and Company, 1980 (Second edition: 2002)

[22] H. Igel; K.U. Schreiber; B. Schuberth; A. Flaws; A. Velikoseltsev; A. Cochard Observation and modelling of rotational motions induced by distant large earthquakes: the M8.1 Tokachi-Oki earthquake September 25, 2003, Geophys. Res. Lett., Volume 32 (2005), p. L08309 | DOI

[23] H. Igel; A. Cochard; J. Wassermann; A. Flaws; U. Schreiber; A. Velikoseltsev; N.D. Pham Broad-band observations of earthquake-induced rotational ground motions, Geophys. J. Int., Volume 168 (2007) no. 1, p. 182 | DOI

[24] A. Cochard; H. Igel; B. Schuberth; W. Suryanto; A. Velikoseltsev; K.U. Schreiber; J. Wassermann; F. Scherbaum; D. Vollmer Earthquake Source Asymmetry, Structural Media and Rotational Effects, Chapter 30, Rotational Motions in Seismology: Theory, Observation, Simulation, Springer, 2006 | DOI

[25] A. Fichtner; H. Igel Sensitivity densities for rotational ground motion measurements, Bull. Seismol. Soc. Am., Volume 99 (2009), pp. 1302-1314

[26] M. Bernauer; A. Fichtner; H. Igel Inferring Earth structure from combined measurements of rotational and translational ground motions, Geophysics, Volume 74 (2009) no. 6, p. WCD41-WCD47

[27] H. Igel; M.-F. Nader; D. Kurrle; A.-M.G. Ferreira; J. Wassermann; K.U. Schreiber Observations of Earth's toroidal free oscillations with a rotation sensor: the 2011 magnitude 9.0 Tohoku-Oki earthquake, Geophys. Res. Lett., Volume 38 (2011), p. L21303 | DOI

[28] R. Widmer-Schnidrig; W. Zürn Perspectives for ring laser gyroscopes in low-frequency seismology, Bull. Seismol. Soc. Am., Volume 99 (2009) no. 2B, p. 1199 | DOI

[29] M.F. Nader; H. Igel; A.M.G. Ferreira; D. Kurrle; J. Wassermann; K.U. Schreiber Toroidal free oscillations of the Earth observed by a ring laser system: a comparative study, J. Seismol., Volume 16 (2012) no. 4, pp. 745-755 | DOI

[30] M.F. Nader; H. Igel; A.M.G. Ferreira; D. Al-Attar; J. Wassermann; K.U. Schreiber Normal mode coupling observations with a rotation sensor, Geophys. J. Int. (2014) (submitted for publication)

[31] C. Hadziioannou; P. Gaebler; K.U. Schreiber; J. Wassermann; H. Igel Examining ambient noise using co-located measurements of rotational and translational motion, J. Seismol. (2012) | DOI

Cité par Sources :

Commentaires - Politique


Ces articles pourraient vous intéresser

A ring lasers array for fundamental physics

Angela Di Virgilio; Maria Allegrini; Alessandro Beghi; ...

C. R. Phys (2014)


The fiber-optic gyroscope, a century after Sagnac's experiment: The ultimate rotation-sensing technology?

Hervé C. Lefèvre

C. R. Phys (2014)