[Un réseau de lasers en anneaux pour la physique fondamentale]
After reviewing the importance of light as a probe for testing the structure of space-time, we describe the GINGER project. GINGER will be a three-dimensional array of large-size ring-lasers able to measure the de Sitter and Lense–Thirring effects. The instrument will be located at the underground laboratory of Gran Sasso, in Italy. We describe the preliminary actions and measurements already under way and present the full road map to GINGER. The intermediate apparatuses GP2 and GINGERino are described. GINGER is expected to be fully operating in few years.
Après avoir passé en revue l'importance de la lumière comme sonde pour évaluer la structure de l'espace-temps, nous décrivons le projet GINGER. GINGER sera un réseau tridimensionnel de lasers en anneaux de grandes tailles capable de mesurer les effets de Sitter et Lense–Thirring. Cet instrument sera localisé dans le laboratoire souterrain du Gran Sasso, en Italie. Nous décrivons les actions préliminaires et les mesures déjà en cours, puis nous présentons la feuille de route complète de GINGER. Les équipements intermédiaires GP2 et GINGERino sont décrits. GINGER devrait être complètement opérationnel d'ici quelques années.
Mots-clés : Effet Sagnac, Laser à anneaux, Capteur inertiel, Magnétisme gravitationnel, Effet Lense–Thirring, Longueur du jour
Angela Di Virgilio 1 ; Maria Allegrini 2 ; Alessandro Beghi 3 ; Jacopo Belfi 1 ; Nicolò Beverini 2 ; Filippo Bosi 1 ; Bachir Bouhadef 1 ; Massimo Calamai 2 ; Giorgio Carelli 2 ; Davide Cuccato 3, 4 ; Enrico Maccioni 2 ; Antonello Ortolan 4 ; Giuseppe Passeggio 5 ; Alberto Porzio 5, 6 ; Matteo Luca Ruggiero 7 ; Rosa Santagata 8 ; Angelo Tartaglia 7
@article{CRPHYS_2014__15_10_866_0, author = {Angela Di Virgilio and Maria Allegrini and Alessandro Beghi and Jacopo Belfi and Nicol\`o Beverini and Filippo Bosi and Bachir Bouhadef and Massimo Calamai and Giorgio Carelli and Davide Cuccato and Enrico Maccioni and Antonello Ortolan and Giuseppe Passeggio and Alberto Porzio and Matteo Luca Ruggiero and Rosa Santagata and Angelo Tartaglia}, title = {A ring lasers array for fundamental physics}, journal = {Comptes Rendus. Physique}, pages = {866--874}, publisher = {Elsevier}, volume = {15}, number = {10}, year = {2014}, doi = {10.1016/j.crhy.2014.10.005}, language = {en}, }
TY - JOUR AU - Angela Di Virgilio AU - Maria Allegrini AU - Alessandro Beghi AU - Jacopo Belfi AU - Nicolò Beverini AU - Filippo Bosi AU - Bachir Bouhadef AU - Massimo Calamai AU - Giorgio Carelli AU - Davide Cuccato AU - Enrico Maccioni AU - Antonello Ortolan AU - Giuseppe Passeggio AU - Alberto Porzio AU - Matteo Luca Ruggiero AU - Rosa Santagata AU - Angelo Tartaglia TI - A ring lasers array for fundamental physics JO - Comptes Rendus. Physique PY - 2014 SP - 866 EP - 874 VL - 15 IS - 10 PB - Elsevier DO - 10.1016/j.crhy.2014.10.005 LA - en ID - CRPHYS_2014__15_10_866_0 ER -
%0 Journal Article %A Angela Di Virgilio %A Maria Allegrini %A Alessandro Beghi %A Jacopo Belfi %A Nicolò Beverini %A Filippo Bosi %A Bachir Bouhadef %A Massimo Calamai %A Giorgio Carelli %A Davide Cuccato %A Enrico Maccioni %A Antonello Ortolan %A Giuseppe Passeggio %A Alberto Porzio %A Matteo Luca Ruggiero %A Rosa Santagata %A Angelo Tartaglia %T A ring lasers array for fundamental physics %J Comptes Rendus. Physique %D 2014 %P 866-874 %V 15 %N 10 %I Elsevier %R 10.1016/j.crhy.2014.10.005 %G en %F CRPHYS_2014__15_10_866_0
Angela Di Virgilio; Maria Allegrini; Alessandro Beghi; Jacopo Belfi; Nicolò Beverini; Filippo Bosi; Bachir Bouhadef; Massimo Calamai; Giorgio Carelli; Davide Cuccato; Enrico Maccioni; Antonello Ortolan; Giuseppe Passeggio; Alberto Porzio; Matteo Luca Ruggiero; Rosa Santagata; Angelo Tartaglia. A ring lasers array for fundamental physics. Comptes Rendus. Physique, The Sagnac effect: 100 years later / L'effet Sagnac : 100 ans après, Volume 15 (2014) no. 10, pp. 866-874. doi : 10.1016/j.crhy.2014.10.005. https://comptes-rendus.academie-sciences.fr/physique/articles/10.1016/j.crhy.2014.10.005/
[1] et al. Phys. Rev. Lett., 106 (2011), p. 221101
[2] Nature, 431 (2004), pp. 958-960
[3] et al. Eur. Phys. J. Plus, 126 (2011), pp. 1-19
[4] et al. Eur. Phys. J. Plus, 127 (2012), pp. 127-133
[5] Astrophys. J., 345 (1989), pp. 434-459
[6] Helv. Phys. Acta (6), 6 (1933), pp. 110-127
[7] Rev. Mod. Phys., 75 (2003) no. 2, pp. 559-606
[8] C. R. Acad. Sci. Paris, 157 (1913), pp. 708-710
[9] et al. Phys. Rev. Lett., 166 (2009), pp. 1485-1498
[10] et al. Int. J. Mod. Phys. D, 19 (2010), p. 2331
[11] Rev. Sci. Instrum., 84 (2013), p. 041101
[12] et al. Interferometric length metrology for the dimensional control of ultra-stable ring laser gyroscopes, Class. Quantum Gravity (2014) (in press)
[13] Sub-microarcsecond astrometry with SIM-Lite: a testbed-based performance assessment, 2008 http://ntrs.nasa.gov/archive/nasa/casi.ntrs.nasa.gov/20110023976.pdf (The Micro-Arcsecond Metrology Testbed, NASA's Jet Propulsion Laboratory, Pasadena, California) | arXiv
[14] Metrologia, 51 (2014), pp. 97-107
[15] J. Seismol. (2012), pp. 1-10
[16] Rev. Sci. Instrum., 84 (2013), pp. 041101-041126
[17] et al. Class. Quantum Gravity, 17 (2000), pp. 2385-2398
[18] Phys. Rev. A, 87 (2013) no. 3, p. 033823
[19] Class. Quantum Gravity, 24 (2007), p. 4533
[20] et al. Phys. Rev. D, 84 (2011), p. 122002
- 地下实验室
· 深地观测· 科学问题——来自深地多物理场观测的启示, SCIENTIA SINICA Terrae (2025) | DOI:10.1360/sste-2024-0079 - Underground laboratories · Deep underground observation · Scientific questions—Insights from observations of multi-physic fields in deep underground labs, Science China Earth Sciences, Volume 68 (2025) no. 2, p. 343 | DOI:10.1007/s11430-024-1466-6
- Three-wave differential locking scheme in a 12-m-perimeter large-scale passive laser gyroscope, Applied Optics, Volume 62 (2023) no. 4, p. 1109 | DOI:10.1364/ao.482060
- GINGER, Mathematics and Mechanics of Complex Systems, Volume 11 (2023) no. 2, p. 203 | DOI:10.2140/memocs.2023.11.203
- Passive resonant laser gyroscope with improvement of the suppression of residual amplitude modulation effects through correlation analysis, Measurement Science and Technology, Volume 34 (2023) no. 4, p. 045201 | DOI:10.1088/1361-6501/acadfc
- Detecting gravitomagnetism with space-based gravitational wave observatories, Classical and Quantum Gravity, Volume 39 (2022) no. 19, p. 195010 | DOI:10.1088/1361-6382/ac8962
- Constraints on ultralight axions, vector gauge bosons, and unparticles from geodetic and frame-dragging measurements, The European Physical Journal C, Volume 82 (2022) no. 11 | DOI:10.1140/epjc/s10052-022-10956-z
- Detecting the gravito-magnetic field of the dark halo of the Milky Way - the LaDaHaD mission concept, Experimental Astronomy, Volume 51 (2021) no. 3, p. 1773 | DOI:10.1007/s10686-021-09700-4
- Proposal for phase-sensitive heterodyne detection in large-scale passive resonant gyroscopes, Optics Express, Volume 29 (2021) no. 7, p. 9737 | DOI:10.1364/oe.415916
- Gravity Probe Spin: Prospects for measuring general-relativistic precession of intrinsic spin using a ferromagnetic gyroscope, Physical Review D, Volume 103 (2021) no. 4 | DOI:10.1103/physrevd.103.044056
- Deconstructing Frame-Dragging, Universe, Volume 7 (2021) no. 2, p. 27 | DOI:10.3390/universe7020027
- Relativistic positioning and sagnac-like measurements for fundamental physics in space, Advances in Space Research, Volume 66 (2020) no. 12, p. 2757 | DOI:10.1016/j.asr.2020.05.039
- 3 m × 3 m heterolithic passive resonant gyroscope with cavity length stabilization, Classical and Quantum Gravity, Volume 37 (2020) no. 21, p. 215008 | DOI:10.1088/1361-6382/aba80d
- Gravito-electromagnetic approach for the space-time of a plane gravitational wave, Journal of Physics Communications, Volume 4 (2020) no. 5, p. 055013 | DOI:10.1088/2399-6528/ab9320
- Sagnac gyroscopes, GINGERINO, and GINGER, Journal of Physics: Conference Series, Volume 1468 (2020) no. 1, p. 012243 | DOI:10.1088/1742-6596/1468/1/012243
- Noise Analysis of a Passive Resonant Laser Gyroscope, Sensors, Volume 20 (2020) no. 18, p. 5369 | DOI:10.3390/s20185369
- Identification and correction of Sagnac frequency variations: an implementation for the GINGERINO data analysis, The European Physical Journal C, Volume 80 (2020) no. 2 | DOI:10.1140/epjc/s10052-020-7659-6
- Large-scale passive laser gyroscope for earth rotation sensing, Optics Letters, Volume 44 (2019) no. 11, p. 2732 | DOI:10.1364/ol.44.002732
- Analysis of ring laser gyroscopes including laser dynamics, The European Physical Journal C, Volume 79 (2019) no. 7 | DOI:10.1140/epjc/s10052-019-7089-5
- Test of gravitomagnetism with satellites around the Earth, The European Physical Journal Plus, Volume 134 (2019) no. 5 | DOI:10.1140/epjp/i2019-12602-6
- , 2018 5th IEEE International Workshop on Metrology for AeroSpace (MetroAeroSpace) (2018), p. 198 | DOI:10.1109/metroaerospace.2018.8453585
- How to use the Sun–Earth Lagrange points for fundamental physics and navigation, General Relativity and Gravitation, Volume 50 (2018) no. 1 | DOI:10.1007/s10714-017-2332-6
- , 2017 IEEE International Workshop on Metrology for AeroSpace (MetroAeroSpace) (2017), p. 108 | DOI:10.1109/metroaerospace.2017.7999548
- GINGER, International Journal of Modern Physics D, Volume 26 (2017) no. 05, p. 1741016 | DOI:10.1142/s0218271817410164
- Retrograde diurnal motion of the instantaneous rotation axis observed by a large ring laser gyroscope, Journal of Geodesy, Volume 91 (2017) no. 1, p. 91 | DOI:10.1007/s00190-016-0939-0
- The GINGER Project, Nuclear and Particle Physics Proceedings, Volume 291-293 (2017), p. 140 | DOI:10.1016/j.nuclphysbps.2017.06.028
- Deep underground rotation measurements: GINGERino ring laser gyroscope in Gran Sasso, Review of Scientific Instruments, Volume 88 (2017) no. 3 | DOI:10.1063/1.4977051
- GINGER: A feasibility study, The European Physical Journal Plus, Volume 132 (2017) no. 4 | DOI:10.1140/epjp/i2017-11452-6
- , 2016 European Frequency and Time Forum (EFTF) (2016), p. 1 | DOI:10.1109/eftf.2016.7477837
- , 2016 IEEE Metrology for Aerospace (MetroAeroSpace) (2016), p. 266 | DOI:10.1109/metroaerospace.2016.7573224
- Gravitomagnetic field of rotating rings, Astrophysics and Space Science, Volume 361 (2016) no. 4 | DOI:10.1007/s10509-016-2723-2
- , Interferometry XVIII, Volume 9960 (2016), p. 99600G | DOI:10.1117/12.2237638
- Experimental gravitation, International Journal of Modern Physics D, Volume 25 (2016) no. 10, p. 1630022 | DOI:10.1142/s0218271816300226
- Computing Laser Beam Paths in Optical Cavities: An Approach Based on Geometric Newton Method, Journal of Optimization Theory and Applications, Volume 171 (2016) no. 1, p. 297 | DOI:10.1007/s10957-016-0981-3
- , 2015 Joint Conference of the IEEE International Frequency Control Symposium the European Frequency and Time Forum (2015), p. 51 | DOI:10.1109/fcs.2015.7138790
- On Monte Carlo simulations of the LAser RElativity Satellite experiment, Acta Astronautica, Volume 113 (2015), p. 164 | DOI:10.1016/j.actaastro.2015.04.009
- Sagnac Effect, Ring Lasers and Terrestrial Tests of Gravity, Galaxies, Volume 3 (2015) no. 2, p. 84 | DOI:10.3390/galaxies3020084
- Gravito-electromagnetic effects of massive rings, International Journal of Modern Physics D, Volume 24 (2015) no. 08, p. 1550060 | DOI:10.1142/s0218271815500601
Cité par 38 documents. Sources : Crossref
Commentaires - Politique