[Les diagrammes de phases des supraconducteurs à base de fer : la théorie et les expériences]
Les diagrammes de phase jouent un rôle de première importance dans la compréhension des propriétés des matériaux. En ce qui concerne les supraconducteurs à base de fer (Fe-SC), la définition correcte de leurs diagrammes de phase est cruciale à cause de l'intime interaction entre leurs propriétés cristallochimiques et magnétiques, d'une part, et la possible coexistence de magnétisme et de supraconductivité, d'autre part.
Les deux difficultés principales pour la compréhension des diagrammes de phase Fe-SC sont : 1) l'origine de la transformation structurelle ayant lieu pendant le refroidissement et sa relation avec le magnétisme ; 2) la description correcte de la région où survient un recouvrement entre les états fondamentaux électroniques, magnétiques et supraconducteur électronique survient. De ce fait, une définition appropriée et précise des frontières des phases structurelle, magnétique et électronique fournit un outil extrêmement puissant pour les scientifiques du domaine des matériaux.
Pour cette raison, une définition exacte des champs de phases thermodynamiques caractérisant les différentes propriétés structurelles et physiques impliquées est nécessaire, bien qu'elle ne soit pas aisée à obtenir dans de nombreux cas. De plus, les propriétés physiques peuvent souvent dépendre fortement de la survenue de caractéristiques micro-structurelles ou autres à l'échelle locale (micro-contraintes dans le réseau, fluctuations chimiques, parois de domaines, joints de grains, défauts), qui, d'ordinaire, ne sont pas décrites dans un diagramme de phases structurelles.
Dans cette revue, nous résumons de manière critique les résultats obtenus pour les systèmes composites le plus étudiés de types 11, 122 et 1111, qui établissent une corrélation entre les preuves expérimentales et la théorie.
Phase diagrams play a primary role in the understanding of materials properties. For iron-based superconductors (Fe-SC), the correct definition of their phase diagrams is crucial because of the close interplay between their crystallochemical and magnetic properties, on one side, and the possible coexistence of magnetism and superconductivity, on the other.
The two most difficult issues for understanding the Fe-SC phase diagrams are: 1) the origin of the structural transformation taking place during cooling and its relationship with magnetism; 2) the correct description of the region where a crossover between the magnetic and superconducting electronic ground states takes place. Hence a proper and accurate definition of the structural, magnetic and electronic phase boundaries provides an extremely powerful tool for material scientists.
For this reason, an exact definition of the thermodynamic phase fields characterizing the different structural and physical properties involved is needed, although it is not easy to obtain in many cases. Moreover, physical properties can often be strongly dependent on the occurrence of micro-structural and other local-scale features (lattice micro-strain, chemical fluctuations, domain walls, grain boundaries, defects), which, as a rule, are not described in a structural phase diagram.
In this review, we critically summarize the results for the most studied 11-, 122- and 1111-type compound systems, providing a correlation between experimental evidence and theory.
Mot clés : Supraconducteurs à base de fer, Diagrammes de phase, Transformations structurels, Supraconductivité, Magnétisme, Phase nématique
Alberto Martinelli 1 ; Fabio Bernardini 2, 3 ; Sandro Massidda 3
@article{CRPHYS_2016__17_1-2_5_0, author = {Alberto Martinelli and Fabio Bernardini and Sandro Massidda}, title = {The phase diagrams of iron-based superconductors: {Theory} and experiments}, journal = {Comptes Rendus. Physique}, pages = {5--35}, publisher = {Elsevier}, volume = {17}, number = {1-2}, year = {2016}, doi = {10.1016/j.crhy.2015.06.001}, language = {en}, }
TY - JOUR AU - Alberto Martinelli AU - Fabio Bernardini AU - Sandro Massidda TI - The phase diagrams of iron-based superconductors: Theory and experiments JO - Comptes Rendus. Physique PY - 2016 SP - 5 EP - 35 VL - 17 IS - 1-2 PB - Elsevier DO - 10.1016/j.crhy.2015.06.001 LA - en ID - CRPHYS_2016__17_1-2_5_0 ER -
Alberto Martinelli; Fabio Bernardini; Sandro Massidda. The phase diagrams of iron-based superconductors: Theory and experiments. Comptes Rendus. Physique, Volume 17 (2016) no. 1-2, pp. 5-35. doi : 10.1016/j.crhy.2015.06.001. https://comptes-rendus.academie-sciences.fr/physique/articles/10.1016/j.crhy.2015.06.001/
[1] Spin-orbital frustrations and anomalous metallic state in iron-pnictide superconductors, Phys. Rev. B, Volume 79 (2009), p. 054504
[2] Orbital ordering induces structural phase transition and the resistivity anomaly in iron pnictides, Phys. Rev. B, Volume 80 (2009), p. 224506
[3] Orbital order and spontaneous orthorhombicity in iron pnictides, Phys. Rev. B, Volume 82 (2010), p. 100504(R)
[4] Preemptive nematic order, pseudogap, and orbital order in the iron pnictides, Phys. Rev. B, Volume 85 (2012), p. 024534
[5] Competing orders and spin-density-wave instability in LaO1 − xFxFeAs, Europhys. Lett., Volume 83 (2008), p. 27006
[6] The optical phonon spectrum of SmFeAsO, Europhys. Lett., Volume 84 (2008), p. 67013
[7] Symmetry – mode and spontaneous strain analysis of the structural transition in Fe1 + yTe and REFeAsO compounds, J. Phys. Condens. Matter, Volume 25 (2013), p. 125703
[8] The puzzle of high temperature superconductivity in layered iron pnictides and chalcogenides, Adv. Phys., Volume 59 (2010), p. 803
[9] Magnetism in Fe-based superconductors, J. Phys. Condens. Matter, Volume 22 (2010), p. 203203
[10] Magnetic interactions in iron superconductors: a review, C. R. Physique, Volume 17 (2016) no. 1–2, pp. 36-59 ( in this issue )
[11] Density functional study of LaFeAsO1 − xFx: a low carrier density superconductor near itinerant magnetism, Phys. Rev. Lett., Volume 100 (2008), p. 237003
[12] Unconventional superconductivity with a sign reversal in the order parameter of LaFeAsO1 − xFx, Phys. Rev. Lett., Volume 101 (2008), p. 057003
[13] Spin fluctuations in iron pnictides and chalcogenides: from antiferromagnetism to superconductivity, C. R. Physique, Volume 17 (2016) no. 1–2, pp. 60-89 ( in this issue )
[14] Origin of the 150 K anomaly in LaFeAsO: competing antiferromagnetic interactions, frustration, and a structural phase transition, Phys. Rev. Lett., Volume 101 (2008), p. 057010
[15] Arsenic-bridged antiferromagnetic superexchange interactions in LaFeAsO, Phys. Rev. B, Volume 78 (2008), p. 224517
[16] Strong correlations and magnetic frustration in the high iron pnictides, Phys. Rev. Lett., Volume 101 (2008), p. 076401
[17] Ferro-orbital order and strong magnetic anisotropy in the parent compounds of iron-pnictide superconductors, Phys. Rev. Lett., Volume 103 (2009), p. 267001
[18] Orbital-dependent modifications of electronic structure across the magnetostructural transition in BaFe2As2, Phys. Rev. Lett., Volume 104 (2010), p. 057002
[19] (T. Hahn, ed.), International Tables for Crystallography, vol. A, International Union of Crystallography, 2005
[20] What drives nematic order in iron-based superconductors?, Nat. Phys., Volume 10 (2014), p. 97
[21] A view from inside iron-based superconductors, Phys. Scr., Volume 88 (2013), p. 068504
[22] Quantum criticality in the iron pnictides and chalcogenides, J. Phys. Condens. Matter, Volume 23 (2011), p. 223201
[23] The centennial of the Gibbs–Konovalov rule for congruent points – its underlying theoretical basis and its application to phase diagram evaluation, Bull. Alloy Phase Diagr., Volume 2 (1981), p. 29
[24] Thermodinamically improbabile phase diagrams, J. Phase Equilib., Volume 12 (1991), p. 148
[25] Thermodynamics and phase diagrams of materials (G. Kostorz, ed.), Phase Transformations in Materials, Wiley–VCH, Weinheim, Germany, 2001 (chapter 1)
[26] Evolution of two-step structural phase transition in Fe1 + dTe detected by low-temperature x-ray diffraction, Solid State Commun., Volume 152 (2012), p. 1047
[27] Tunable ()-type antiferromagnetic order in α-Fe(Te, Se) superconductors, Phys. Rev. Lett., Volume 102 (2009), p. 247001
[28] Low-temperature phase diagram of Fe1 + yTe studied using X-ray diffraction, Phys. Rev. B, Volume 88 (2013), p. 094509
[29] Magnetic and structural properties near the Lifshitz point in Fe1 + xTe, Phys. Rev. B, Volume 88 (2013), p. 165110
[30] First-order magnetic and structural phase transitions in Fe1 + ySexTe1 − x, Phys. Rev. B, Volume 79 (2009), p. 054503
[31] From antiferromagnetism to superconductivity in Fe1 + yTe1 − xSex (): neutron powder diffraction analysis, Phys. Rev. B, Volume 81 (2010), p. 094115
[32] Interstitial iron tuning of the spin fluctuations in the nonsuperconducting parent phase Fe1 + xTe, Phys. Rev. B, Volume 84 (2011), p. 045124
[33] Chalcogen-height dependent magnetic interactions and magnetic order switching in FeSexTe1 − x, Phys. Rev. Lett., Volume 104 (2010), p. 057003
[34] First-principles calculations of the electronic structure of tetragonal α-FeTe and α-FeSe crystals: evidence for a bicollinear antiferromagnetic order, Phys. Rev. Lett., Volume 102 (2009), p. 177003
[35] Theoretical and experimental investigation of magnetotransport in iron chalcogenides, Sci. Technol. Adv. Mater., Volume 13 (2012), p. 054402
[36] Theoretical investigation of FeTe magnetic ordering under hydrostatic pressure, Phys. Rev. B, Volume 87 (2013), p. 094516
[37] Theory of magnetic order in Fe1 + yTe1 − xSex, Europhys. Lett., Volume 86 (2009), p. 67005
[38] Structural and thermodynamic properties of Fe1.12Te with multiple phase transitions, J. Appl. Phys., Volume 115 (2014), p. 123912
[39] Pressure-induced lattice collapse in the tetragonal phase of single-crystalline Fe1.05Te, Phys. Rev. B, Volume 80 (2009), p. 144519
[40] Compressibility of Fe1.087Te: a high pressure X-ray diffraction study, High Press. Res., Volume 31 (2011), p. 603
[41] Magnetic ordering in Fe1.087Te under pressure, Eur. Phys. J. B, Volume 86 (2013), p. 18
[42] Pressure-induced ferromagnetism in antiferromagnetic Fe1.03Te, Phys. Rev. B, Volume 87 (2013), p. 060409(R)
[43] Pressure-induced successive structural transitions and high-pressure tetragonal phase of Fe1.08Te, Phys. Rev. B, Volume 86 (2012), p. 094505
[44] Theoretical investigation of FeTe magnetic ordering under hydrostatic pressure, Phys. Rev. B, Volume 87 (2013), p. 094516
[45] The Fe–Se (iron–selenium) system, J. Phase Equilib., Volume 12 (1991), p. 383
[46] Crystal structure of the new FeSe1 − x superconductor, Chem. Commun. (2008), p. 5607
[47] Synthesis, crystal structure, and chemical stability of the superconductor FeSe1 − x, Phys. Rev. B, Volume 80 (2009), p. 024517
[48] Structural and superconductivity study on α-FeSex, J. Phys. Chem. Solids, Volume 71 (2010), p. 495
[49] Extreme sensitivity of superconductivity to stoichiometry in Fe1 + δSe, Phys. Rev. B, Volume 79 (2009), p. 014522
[50] Tetragonal-to-orthorhombic structural phase transition at 90 K in the superconductor Fe1.01Se, Phys. Rev. Lett., Volume 103 (2009), p. 057002
[51] Iron isotope effect on the superconducting transition temperature and the crystal structure of FeSe1 − x, New J. Phys., Volume 12 (2010), p. 073024
[52] Origin of the tetragonal-to-orthorhombic phase transition in FeSe: a combined thermodynamic and NMR study of nematicity, Phys. Rev. Lett., Volume 114 (2015), p. 027001
[53] Orbital-driven nematicity in FeSe, Nat. Mater. (2014), pp. 210-214
[54] Observation of two distinct band splittings in FeSe, Phys. Rev. B, Volume 91 (2015), p. 214503
[55] Why does undoped FeSe become a high- superconductor under pressure?, Phys. Rev. Lett., Volume 102 (2009), p. 177005
[56] Strong spin fluctuations in β-FeSe observed by neutron spectroscopy, Phys. Rev. B, Volume 91 (2015), p. 180501(R)
[57] Electronic and magnetic phase diagram of β-Fe1.01Se with superconductivity at 36.7 K under pressure, Nat. Mater., Volume 8 (2009), p. 630
[58] Superconducting and normal phases of FeSe single crystals at high pressure, J. Phys. Condens. Matter, Volume 21 (2009), p. 232202
[59] High-temperature superconductivity ( onset at 34 K) in the high-pressure orthorhombic phase of FeSe, Europhys. Lett., Volume 86 (2009), p. 27001
[60] Simultaneous measurement of pressure evolution of crystal structure and superconductivity in FeSe0.92 using designer diamonds, Europhys. Lett., Volume 99 (2012), p. 26002
[61] Crystal and electronic structure of FeSe at high pressure and low temperature, J. Phys. Chem. B, Volume 114 (2010), p. 12597
[62] Pressure evolution of the low-temperature crystal structure and bonding of the superconductor FeSe (), Phys. Rev. B, Volume 80 (2009), p. 064506
[63] Pressure induced static magnetic order in superconducting FeSe1 − x, Phys. Rev. Lett., Volume 104 (2010), p. 087003
[64] Coexistence of superconductivity and magnetism in FeSe1 − x under pressure, Phys. Rev. B, Volume 85 (2012), p. 064517
[65] A new approach for improving global critical current density in Fe(Se0.5Te0.5) polycrystalline materials, Supercond. Sci. Technol., Volume 25 (2012), p. 115018
[66] Phase separation in the iron chalcogenide superconductor Fe1 + yTexSe1 − x, New J. Phys., Volume 13 (2011), p. 053031
[67] Nanoscale chemical phase separation in FeTe0.55Se0.45 as seen via scanning tunneling spectroscopy, Phys. Rev. B, Volume 83 (2011), p. 220502
[68] Phase separation and superconductivity in Fe1 + xTe0.5Se0.5, Chem. Commun., Volume 47 (2011), p. 11297
[69] Local atomic structure of superconducting FeSe1 − xTex, Phys. Rev. B, Volume 81 (2010), p. 134524
[70] Evidence of local structural inhomogeneity in FeSe1 − xTex from extended x-ray absorption fine structure, Phys. Rev. B, Volume 82 (2010), p. 020502(R)
[71] The crystal structure of FeSe0.44Te0.56, Solid State Commun., Volume 150 (2010), p. 383
[72] Structural phase transitions and superconductivity in Fe1 + δSe0.57Te0.43 at ambient and elevated pressures, J. Am. Chem. Soc., Volume 131 (2009), p. 16944
[73] Anisotropic superconducting properties of single-crystalline FeSe0.5Te0.5, Phys. Rev. B, Volume 81 (2010), p. 224520
[74] From () magnetic order to superconductivity with () magnetic resonance in Fe1.02Te1 − xSex, Nat. Mater., Volume 9 (2010), p. 716
[75] Investigation of the spin-glass regime between the antiferromagnetic and superconducting phases in Fe1 + ySexTe1 − x, J. Phys. Soc. Jpn., Volume 79 (2010), p. 113702
[76] Coexistence of incommensurate magnetism and superconductivity in Fe1 + ySexTe1 − x, Phys. Rev. B, Volume 80 (2009), p. 140511(R)
[77] Disappearance of static magnetic order and evolution of spin fluctuations in Fe1 + δSexTe1 − x, Phys. Rev. B, Volume 82 (2010), p. 104525
[78] Short-range incommensurate magnetic order near the superconducting phase boundary in Fe1 + δTe1 − xSex, Phys. Rev. B, Volume 80 (2009), p. 104506
[79] A magnetic glassy phase in Fe1 + ySexTe1 − x single crystals, J. Phys. Condens. Matter, Volume 25 (2014), p. 156004
[80] Effect of Fe excess on structural, magnetic and superconducting properties of single-crystalline Fe1 + xTe1 − ySey, J. Solid State Chem., Volume 183 (2010), p. 769
[81] Charge-carrier localization induced by excess Fe in the superconductor Fe1 + yTe1 − xSex, Phys. Rev. B, Volume 80 (2009), p. 174509
[82] Tuning the superconducting and magnetic properties of FeySe0.25Te0.75 by varying the iron content, Phys. Rev. B, Volume 82 (2010), p. 212504
[83] Tellurium substitution effect on superconductivity of the α-phase iron selenide, Europhys. Lett., Volume 84 (2008), p. 37002
[84] Chalcogen height dependence of magnetism and Fermiology in FeTexSe1 − x, Supercond. Sci. Technol., Volume 25 (2012), p. 095002
[85] Spin gap and resonance at the nesting wave vector in superconducting FeSe0.4Te0.6, Phys. Rev. Lett., Volume 103 (2009), p. 067008
[86] Incommensurate itinerant antiferromagnetic excitations and spin resonance in the FeTe0.6Se0.4 superconductor, Phys. Rev. B, Volume 81 (2010), p. 220503(R)0
[87] Bulk superconductivity at 14 K in single crystals of Fe1 + yTexSe1 − x, Phys. Rev. B, Volume 79 (2009), p. 094521
[88] Revised phase diagram for the FeTe1 − xSex system with fewer excess Fe atoms, Phys. Rev. B, Volume 84 (2011), p. 224506
[89] Phase diagram and oxygen annealing effect of FeTe1 − xSex iron-based superconductor, Solid State Commun., Volume 152 (2012), p. 1135
[90] Dynamics and mechanism of oxygen annealing in Fe1 + yTe0.6Se0.4 single crystal, Sci. Rep., Volume 4 (2014), p. 4585
[91] Physics and chemistry of layered chalcogenide superconductors, Sci. Technol. Adv. Mater., Volume 13 (2012), p. 054303
[92] Superconductivity at 38 K in the iron arsenide (Ba1 − xKx)Fe2As2, Phys. Rev. Lett., Volume 101 (2008), p. 107006
[93] A large iron isotope effect in SmFeAsO1 − xFx and Ba1 − xKxFe2As2, Nature, Volume 459 (2009), p. 64
[94] Symmetry analysis of the structural and magnetic phase transitions in 122 iron arsenides, Acta Crystallogr., Sect. B Struct. Sci., Volume 68 (2012), p. 209
[95] Structural and magnetic phase transitions in the ternary iron arsenides SrFe2As2 and EuFe2As2, J. Phys. Condens. Matter, Volume 20 (2008), p. 452201
[96] Spin-density-wave anomaly at 140 K in the ternary iron arsenide BaFe2As2, Phys. Rev. B, Volume 78 (2008), p. 020503(R)
[97] Neutron diffraction study of the magnetic and structural phase transitions in BaFe2As2, Phys. Rev. B, Volume 79 (2009), p. 184519
[98] Lattice and magnetic instabilities in CaFe2As2: a single-crystal neutron diffraction study, Phys. Rev. B, Volume 78 (2008), p. 100506(R)
[99] First-order structural phase transition in CaFe2As2, Phys. Rev. B, Volume 78 (2008), p. 014523
[100] Determination of the nature of the tetragonal to orthorhombic phase transition in SrFe2As2 by measurement of the local order parameter, Phys. Rev. B, Volume 81 (2010), p. 214111
[101] Strong coupling between magnetic and structural order parameters in SrFe2As2, Phys. Rev. B, Volume 78 (2008), p. 180504(R)
[102] Neutron-diffraction measurements of magnetic order and a structural transition in the parent BaFe2As2 compound of FeAs-based high-temperature superconductors, Phys. Rev. Lett., Volume 101 (2008), p. 257003
[103] First-order magnetic transition in single-crystalline CaFe2As2 detected by 75As nuclear magnetic resonance, Phys. Rev. B, Volume 79 (2009), p. 052504
[104] Phase diagram of Ba1 − xKxFe2As2, Phys. Rev. B, Volume 85 (2012), p. 184507
[105] Structural, magnetic, and superconducting properties of Ba1 − xNaxFe2As2, Phys. Rev. B, Volume 88 (2013), p. 094510
[106] Magnetic Group Tables, 1-, 2- and 3-Dimensional Magnetic Subperiodic Groups and Magnetic Space Groups, International Union of Crystallography, 2013
[107] Magnetic properties of ternary lanthanoid transition metal arsenides studied by Mössbauer and susceptibility measurements, J. Phys. Chem. Solids, Volume 54 (1993), p. 135
[108] Superconductivity up to 29 K in SrFe2As2 and BaFe2As2 at high pressures, J. Phys. Condens. Matter, Volume 21 (2008), p. 012208
[109] Complete pressure-dependent phase diagrams for SrFe2As2 and BaFe2As2, Phys. Rev. B, Volume 79 (2009), p. 224518
[110] Effect of uniaxial stress for pressure-induced superconductor SrFe2As2, J. Phys. Soc. Jpn., Volume 78 (2009), p. 083702
[111] Pressure-induced superconductivity in CaFe2As2, J. Phys. Condens. Matter, Volume 20 (2008), p. 322204
[112] Pressure-induced superconductivity in CaFe2As2, Phys. Rev. Lett., Volume 101 (2008), p. 057006
[113] Evidence for a reentrant superconducting state in EuFe2As2 under pressure, Phys. Rev. B, Volume 79 (2009), p. 212509
[114] Character of the structural and magnetic phase transitions in the parent and electron-doped BaFe2As2 compounds, Phys. Rev. B, Volume 83 (2011), p. 134522
[115] Heat capacity study of BaFe2As2: effects of annealing, Phys. Rev. B, Volume 82 (2010), p. 144525
[116] Structure–property relationships of iron arsenide superconductors, J. Mater. Chem., Volume 21 (2011), p. 13726
[117] Pressure-induced volume-collapsed tetragonal phase of CaFe2As2 as seen via neutron scattering, Phys. Rev. B, Volume 78 (2008), p. 184517
[118] Lattice collapse and quenching of magnetism in CaFe2As2 under pressure: a single-crystal neutron and X-ray diffraction investigation, Phys. Rev. B, Volume 79 (2009), p. 024513
[119] Collapsed tetragonal phase and superconductivity of BaFe2As2 under high pressure, Phys. Rev. B, Volume 82 (2010), p. 144118
[120] Phase transition and superconductivity of SrFe2As2 under high pressure, J. Phys. Condens. Matter, Volume 23 (2011), p. 122201
[121] Anomalous compressibility effects and superconductivity of EuFe2As2 under high pressures, J. Phys. Condens. Matter, Volume 22 (2010), p. 292202
[122] Interplay of magnetic and structural transitions in iron-based pnictide superconductors, Phys. Rev. B, Volume 82 (2010), p. 020408(R)
[123] Nematic susceptibility of hole-doped and electron-doped BaFe2As2 iron-based superconductors from shear modulus measurements, Phys. Rev. Lett., Volume 112 (2014), p. 047001
[124] Phase diagrams of Ba(Fe1 − xMx)2As2 single crystals (M = Rh and Pd), Phys. Rev. B, Volume 80 (2009), p. 024511
[125] High-pressure synthesis of the indirectly electron-doped iron pnictide superconductor Sr1 − xLaxFe2As2 with maximum , Phys. Rev. B, Volume 82 (2010), p. 180512(R)
[126] Structural collapse and superconductivity in rare-earth-doped CaFe2As2, Phys. Rev. B, Volume 85 (2012), p. 024525
[127] Electronic specific heat of Ba1 − xKxFe2As2 from 2 to 380 K, Phys. Rev. B, Volume 88 (2013), p. 144502
[128] Nematic susceptibility of hole-doped and electron-doped BaFe2As2 iron-based superconductors from shear modulus measurements, Phys. Rev. Lett., Volume 112 (2014), p. 047001
[129] Microscopic coexistence of superconductivity and magnetism in Ba1 − xKxFe2As2, Phys. Rev. Lett., Volume 107 (2011), p. 237001
[130] Magnetoelastic coupling in the phase diagram of Ba1 − xKxFe2As2 as seen via neutron diffraction, Phys. Rev. B, Volume 83 (2011), p. 172503
[131] Coexistence of competing antiferromagnetic and superconducting phases in the underdoped Ba(Fe0.953Co0.047)2As2 compound using X-ray and neutron scattering techniques, Phys. Rev. Lett., Volume 103 (2009), p. 087001
[132] Muon spin rotation study of magnetism and superconductivity in Ba(Fe1 − xCox)2As2 single crystals, Phys. Rev. B, Volume 86 (2012), p. 184509
[133] Coexistence and competition of magnetism and superconductivity on the nanometer scale in underdoped BaFe1.89Co0.11As2, Phys. Rev. Lett., Volume 105 (2010), p. 057001
[134] Competition of magnetism and superconductivity in underdoped (Ba1 − xKx)Fe2As2, New J. Phys., Volume 11 (2009), p. 025014
[135] Nanoscale-textured superconductivity in Ru-substituted BaFe2As2: a challenge to a universal phase diagram for the pnictides, Phys. Rev. B, Volume 86 (2012), p. 020510(R)
[136] First- and second-order magnetic and structural transitions in BaFe2(1 − x)Co2xAs2, Phys. Rev. B, Volume 84 (2011), p. 092501
[137] Electronic structure and doping in BaFe2As2 and LiFeAs: density functional calculations, Phys. Rev. B, Volume 78 (2008), p. 094511
[138] Electron–hole asymmetry in the superconductivity of doped BaFe2As2 seen via the rigid chemical-potential shift in photoemission, Phys. Rev. B, Volume 83 (2011), p. 094522
[139] Unconventional pairing in the iron arsenide superconductors, Phys. Rev. B, Volume 81 (2010), p. 140501
[140] Competing order and nature of the pairing state in the iron pnictides, Phys. Rev. B, Volume 82 (2010), p. 014521
[141] Atomic coexistence of superconductivity and incommensurate magnetic order in the pnictides Ba(Fe1 − xCox)2As2 single crystals, Phys. Rev. B, Volume 80 (2009), p. 140501(R)
[142] Static and dynamic magnetism in underdoped superconductor BaFe1.92Co0.08As2, Phys. Rev. Lett., Volume 103 (2009), p. 087002
[143] Electron-doping evolution of the low-energy spin excitations in the iron arsenide superconductor BaFe2 − xNixAs2, Phys. Rev. B, Volume 81 (2010), p. 174524
[144] Suppression of antiferromagnetic order and orthorhombic distortion in superconducting Ba(Fe0.961Rh0.039)2As2, Phys. Rev. B, Volume 81 (2010), p. 134512
[145] Incommensurate spin-density wave order in electron-doped BaFe2As2 superconductors, Phys. Rev. Lett., Volume 106 (2011), p. 257001
[146] Anomalous suppression of the orthorhombic lattice distortion in superconducting Ba(Fe1 − xCox)2As2 single crystals, Phys. Rev. Lett., Volume 104 (2010), p. 057006
[147] Superconductivity and spin-density waves in multiband metals, Phys. Rev. B, Volume 81 (2010), p. 174538
[148] Observation of incipient charge nematicity in Ba(Fe1 − xCox)2As2, Phys. Rev. Lett., Volume 111 (2013), p. 267001
[149] Transport properties and superconductivity in Ba1 − xMxFe2As2 (M = La and K) with double FeAs layers, Europhys. Lett., Volume 84 (2008), p. 27010
[150] Suppression of the structural phase transition and lattice softening in slightly underdoped Ba1 − xKxFe2As2 with electronic phase separation, Phys. Rev. B, Volume 79 (2009), p. 224503
[151] Microscopic coexistence of magnetism and superconductivity in charge-compensated Ba1 − xKx(Fe1 − yCoy)2As2, Phys. Rev. B, Volume 89 (2014), p. 144511
[152] Recovery of a parentlike state in Ba1 − xKxFe1.86Co0.14As2, Angew. Chem. Int. Ed., Volume 50 (2011), p. 7919
[153] Indifference of superconductivity and magnetism to size-mismatched cations in the layered iron arsenides Ba1 − xNaxFe2As2, Chem. Mater., Volume 22 (2010), p. 4304
[154] Indifference of superconductivity and magnetism to size-mismatched cations in the layered iron arsenides Ba1 − xNaxFe2As2, Chem. Mater., Volume 22 (2010), p. 4304
[155] Magnetically driven suppression of nematic order in an iron-based superconductor, Nat. Commun., Volume 5 (2014), p. 3845
[156] Symmetry of reentrant tetragonal phase in Ba1 − xNaxFe2As2: magnetic versus orbital ordering mechanism, Phys. Rev. B, Volume 90 (2014), p. 174511
[157] Spin reorientation in Ba0.65Na0.35Fe2As2 studied by single-crystal neutron diffraction, Phys. Rev. B, Volume 91 (2015), p. 060505
[158] Superconductivity up to 30 K in the vicinity of the quantum critical point in BaFe2(As1 − xPx)2, J. Phys. Condens. Matter, Volume 21 (2009), p. 382203
[159] Coincident structural and magnetic order in BaFe2(As1 − xPx)2 revealed by high-resolution neutron diffraction, Phys. Rev. B, Volume 90 (2014), p. 104513
[160] A sharp peak of the zero-temperature penetration depth at optimal composition in BaFe2(As1 − xPx)2, Science, Volume 336 (2012), p. 1554
[161] Structural and magnetic phase transitions near optimal superconductivity in BaFe2(As1 − xPx)2, Phys. Rev. Lett., Volume 114 (2015), p. 157002
[162] Emergence of orbital nematicity in the tetragonal phase of BaFe2(As1 − xPx)2, J. Phys. Soc. Jpn., Volume 84 (2015), p. 043705
[163] Different response of the crystal structure to isoelectronic doping in BaFe2(As1 − xPx)2 and (Ba1 − xSrx)Fe2As2, Phys. Rev. B, Volume 82 (2010), p. 014513
[164] Electronic nematicity above the structural and superconducting transition in BaFe2(As1 − xPx)2, Nature, Volume 486 (2012), p. 382
[165] Unconventional superconductivity and antiferromagnetic quantum critical behavior in the isovalent-doped BaFe2(As1 − xPx)2, Phys. Rev. Lett., Volume 105 (2010), p. 107003
[166] Thermodynamic evidence for pressure-induced bulk superconductivity in the FeAs pnictide superconductor CaFe2As2, New J. Phys., Volume 14 (2012), p. 053034
[167] Single crystal growth and superconductivity of Ca(Fe1 − xCox)2As2, Philos. Mag., Volume 92 (2012), p. 3113
[168] Interplay of superconductivity and Fermi-liquid transport in Rh-doped CaFe2As2 with lattice-collapse transition, J. Phys. Soc. Jpn., Volume 80 (2011), p. 103701
[169] Abrupt recovery of Fermi-liquid transport by the c-axis collapse in CaFe2(As1 − xPx)2 single crystals, Phys. Rev. B, Volume 83 (2011), p. 060505(R)
[170] Probing the ground state properties of iron-based superconducting pnictides and related systems by muon-spin spectroscopy, Physica C, Volume 469 (2009), p. 606
[171] Neutron diffraction study of phase transitions and thermal expansion of SrFeAsF, Phys. Rev. B, Volume 81 (2010), p. 094523
[172] Evidence of magnetically driven structural phase transition in RFeAsO (R = La, Sm, Gd, and Tb): a low-temperature x-ray diffraction study, Phys. Rev. B, Volume 80 (2009), p. 224511
[173] Magnetic order in the CaFe1 − xCoxAsF () superconducting compounds, Phys. Rev. B, Volume 79 (2009), p. 060504(R)
[174] Superconductivity in LaFeAs1 − xPxO: effect of chemical pressures and bond covalency, Europhys. Lett., Volume 86 (2009), p. 47002
[175] Superconductivity in phosphorus-doped SmFeAs1 − xPxO, Physica C, Volume 470 (2010), p. S493
[176] Phase diagram of CeFeAs1 − xPxO obtained from electrical resistivity, magnetization, and specific heat measurements, Phys. Rev. B, Volume 81 (2010), p. 134422
[177] Lattice distortion and magnetic quantum phase transition in CeFeAs1 − xPxO, Phys. Rev. Lett., Volume 104 (2010), p. 017204
[178] Ferromagnetism and superconductivity in CeFeAs1 − xPxO (), Phys. Rev. B, Volume 86 (2012), p. 020501(R)
[179] Structural properties and phase diagram of the La(Fe1 − xRux)AsO system, J. Phys. Condens. Matter, Volume 25 (2013), p. 395701
[180] Tuning the magnetic and structural phase transitions of PrFeAsO via Fe/Ru spin dilution, Phys. Rev. B, Volume 90 (2014), p. 064515
[181] Superconductivity under high pressure in LaFeAsO, J. Phys. Soc. Jpn., Volume 77 (2008), p. 113712
[182] High-pressure studies on superconductivity in LaFeAsO1 − xFx and SmFeAsO1 − xFx, J. Supercond. Nov. Magn., Volume 22 (2009), p. 595
[183] Search for pressure-induced superconductivity in CeFeAsO and CeFePO iron pnictides, Phys. Rev. B, Volume 83 (2011), p. 094528
[184] Superconductivity at 43 K in an iron-based layered compound LaO1 − xFxFeAs, Nature, Volume 453 (2008), p. 376
[185] High-pressure study on LaFeAs(O1 − xFx) and LaFeAsOδ with different , Europhys. Lett., Volume 84 (2008), p. 67009
[186] Superconductivity at 43 K at ambient pressure in the iron-based layered compound La1 − xYxFeAsOy, Phys. Rev. B, Volume 78 (2008), p. 172503
[187] Superconductivity in the mixed rare earth iron oxyarsenide La1 − xSmxFeAsO0.85, Supercond. Sci. Technol., Volume 21 (2008), p. 125022
[188] Effect of chemical pressure on spin density wave and superconductivity in undoped and 15% F-doped La1−yYyFeAsO compounds, Phys. Rev. B, Volume 79 (2009), p. 174523
[189] Phase diagram and superconductivity at 58.1 K in α-FeAs-free SmFeAsO1 − xFx, Supercond. Sci. Technol., Volume 26 (2013), p. 085023
[190] Remarkable suppression of by pressure in NdFeAsO1 − y (), J. Phys. Soc. Jpn., Volume 77 (2008), p. 075003
[191] Magnetic order close to superconductivity in the iron-based layered La(O1 − xFx)FeAs systems, Nature, Volume 453 (2008), p. 899
[192] The electronic phase diagram of the LaO1 − xFxFeAs superconductor, Nat. Mater., Volume 8 (2009), p. 305
[193] Phase transitions in LaFeAsO: structural, magnetic, elastic, and transport properties, heat capacity and Mössbauer spectra, Phys. Rev. B, Volume 78 (2008), p. 094517
[194] Crystallographic phase transition and high-Tc superconductivity in LaFeAsO:F, Supercond. Sci. Technol., Volume 21 (2008), p. 125028
[195] Doping evolution of antiferromagnetic order and structural distortion in LaFeAsO1 − xFx, Phys. Rev. B, Volume 78 (2008), p. 054529
[196] Crystal and magnetic structure of the oxypnictide superconductor LaFeAsO1 − xFx: a neutron-diffraction study, Phys. Rev. B, Volume 82 (2010), p. 184521
[197] Commensurate spin density wave in LaFeAsO: a local probe study, Phys. Rev. Lett., Volume 101 (2008), p. 077005
[198] Structural and magnetic phase diagram of CeFeAsO1 − xFx and its relation to high-temperature superconductivity, Nat. Mater., Volume 7 (2008), p. 953
[199] Anisotropic magnetoelastic coupling in single-crystalline CeFeAsO as seen via high-resolution X-ray diffraction, Phys. Rev. B, Volume 84 (2011), p. 220501(R)
[200] Phase diagram of the PrFeAsO1 − xFx superconductor, Phys. Rev. B, Volume 80 (2009), p. 144517
[201] Lattice and magnetic structures of PrFeAsO, PrFeAsO0.85F0.15, and PrFeAsO0.85, Phys. Rev. B, Volume 78 (2008), p. 132504
[202] The effect of internal pressure on the tetragonal to monoclinic structural phase transition in ReOFeAs: the case of NdOFeAs, Supercond. Sci. Technol., Volume 21 (2008), p. 092002
[203] Crystal structure and antiferromagnetic order in NdFeAsO1 − xFx ( and 0.2) superconducting compounds from neutron diffraction measurements, Phys. Rev. Lett., Volume 101 (2008), p. 257002
[204] Phase diagram of NdFeAsO1 − xFx: essential role of chemical composition, J. Am. Chem. Soc., Volume 132 (2010), p. 2417
[205] Magnetic order of the iron spins in NdFeAsO, Phys. Rev. B, Volume 78 (2008), p. 064515
[206] Mössbauer study of superconducting NdFeAsO0.88F0.12 and its parent compound NdFeAsO, J. Phys. Condens. Matter, Volume 21 (2009), p. 455701
[207] Crystal structure and phase transitions across the metal-superconductor boundary in the SmFeAsO1 − xFx () family, Phys. Rev. B, Volume 79 (2009), p. 014503
[208] Electronic and magnetic phase diagram of superconductors, SmFeAsO1 − xFx, New J. Phys., Volume 12 (2010), p. 033005
[209] Retention of the tetragonal to orthorhombic structural transition in F-substituted SmFeAsO: a new phase diagram for SmFeAs(O1 − xFx), Phys. Rev. Lett., Volume 106 (2011), p. 227001
[210] The influence of elastic strain heterogeneities in silicate solid solutions (Charles A. Geiger, ed.), Solid Solutions in Silicate and Oxide Systems, EMU Notes in Mineralogy, vol. 3, 2001, p. 155
[211] Revised effective ionic radii and systematic studies of interatomic distances in halides and chalcogenides, Acta Crystallogr. A, Volume 32 (1976), p. 751
[212] Microstructure and ordering of iron vacancies in the superconductor system KyFexSe2 as seen via transmission electron microscopy, Phys. Rev. B, Volume 83 (2011), p. 140505(R)
[213] Vacancy-induced nanoscale phase separation in KxFe2 − ySe2 single crystals evidenced by Raman scattering and powder X-ray diffraction, Phys. Rev. B, Volume 86 (2012), p. 054503
[214] 57Fe Mössbauer study of magnetic ordering in superconducting K0.80Fe1.76Se2.00 single crystals, Phys. Rev. B, Volume 83 (2011), p. 104526
[215] Nanoscale electronic order in iron pnictides, Phys. Rev. Lett., Volume 104 (2010), p. 097001
[216] Nanoscopic coexistence of magnetic and superconducting states within the FeAs layers of CeFeAsO1 − xFx, Phys. Rev. B, Volume 82 (2010), p. 060508(R)
[217] Anomalous transport properties and phase diagram of the FeAs-based SmFeAsO1 − xFx superconductors, Phys. Rev. Lett., Volume 101 (2008), p. 087001
[218] Coexistence of magnetic fluctuations and superconductivity in the pnictide high temperature superconductor SmFeAsO1 − xFx measured by muon spin rotation, Phys. Rev. Lett., Volume 101 (2008), p. 097010
[219] Coexistence of static magnetism and superconductivity in SmFeAsO1 − xFx as revealed by muon spin rotation, Nat. Mater., Volume 8 (2009), p. 310
[220] Magnetic-superconducting phase boundary of SmFeAsO1 − xFx studied via muon spin rotation: unified behavior in a pnictide family, Phys. Rev. B, Volume 80 (2009), p. 052503
[221] Tuning of competing magnetic and superconducting phase volumes in LaFeAsO0.945F0.055 by hydrostatic pressure, Phys. Rev. B, Volume 84 (2011), p. 100501(R)
[222] Phase separation at the magnetic–superconducting transition in La0.7Y0.3FeAsO1 − xFx, Phys. Status Solidi B, Volume 250 (2013), p. 599
[223] Long- to short-range magnetic order in fluorine-doped CeFeAsO, Phys. Rev. B, Volume 84 (2011), p. 195123
[224] Magnetic ordering and negative thermal expansion in PrFeAsO, Phys. Rev. B, Volume 78 (2008), p. 140503(R)
[225] Specific heat of the iron-based high- superconductor SmO1 − xFxFeAs, Phys. Rev. B, Volume 77 (2008), p. 180510(R)
[226] Coexistence of long-ranged magnetic order and superconductivity in the pnictide superconductor SmFeAsO1 − xFx (, 0.15), Phys. Rev. B, Volume 80 (2009), p. 220503(R)
[227] Retention of the tetragonal to orthorhombic structural transition in F-substituted SmFeAsO: a new phase diagram for SmFeAs(O1 − xFx), Phys. Rev. Lett., Volume 106 (2011), p. 227001
[228] Evidence of a structural phase transition in superconducting SmFeAsO1 − xFx from 19F NMR, J. Phys. Condens. Matter, Volume 25 (2013), p. 025701
[229] Hydrogen in layered iron arsenides: indirect electron doping to induce superconductivity, Phys. Rev. B, Volume 84 (2011), p. 024521
[230] Two-dome structure in electron-doped iron arsenide superconductors, Nat. Commun., Volume 3 (2012), p. 943
[231] Structural analysis and superconductivity of CeFeAsO1 − xHx, Phys. Rev. B, Volume 85 (2012), p. 014514
[232] Superconductivity and phase diagram in iron-based arsenic-oxides ReFeAsO1 − δ (Re = rare-earth metal) without fluorine doping, Europhys. Lett., Volume 83 (2008), p. 17002
[233] Structural and electronic response upon hole doping of rare-earth iron oxyarsenides Nd1 − xSrxFeAsO (), Chem. Commun. (2009), p. 707
[234] Synthesis, structural, and transport properties of the hole-doped superconductor Pr1 − xSrxFeAsO, Phys. Rev. B, Volume 79 (2009), p. 104501
[235] A structural study of the hole-doped superconductors Pr1 − xSrxFeAsO, New J. Phys., Volume 11 (2009), p. 083003
[236] Superconductivity at 15.6 K in calcium-doped Tb1 − xCaxFeAsO: the structure requirement for achieving superconductivity in the hole-doped 1111 phase, Europhys. Lett., Volume 89 (2010), p. 27002
[237] Superconductivity at 25 K in hole-doped (La1 − xSrx)OFeAs, Europhys. Lett., Volume 82 (2008), p. 17009
[238] Superconductivity above 50 K in LnFeAsO1 − y (Ln = Nd, Sm, Gd, Tb, and Dy) synthesized by high-pressure technique, J. Phys. Soc. Jpn., Volume 78 (2009), p. 034712
[239] Superconductivity and phase diagram in iron-based arsenic-oxides ReFeAsO1 − δ (Re = rare-earth metal) without fluorine doping, Europhys. Lett., Volume 83 (2008), p. 17002
[240] Effect of structural parameters on superconductivity in fluorine-free LnFeAsO1 − y (Ln = La, Nd), J. Phys. Soc. Jpn., Volume 77 (2008), p. 083704
[241] Poisoning effect of Mn in LaFe1 − xMnxAsO0.89F0.11: unveiling a quantum critical point in the phase diagram of iron-based superconductors, Phys. Rev. B, Volume 89 (2014), p. 134503
[242] Studies on effects of impurity doping and NMR measurements of La 1111 and/or Nd 1111 Fe-pnictide superconductors, J. Phys. Soc. Jpn., Volume 79 (2010), p. 014710
[243] Effects of Mn and Ni doping on the superconductivity of SmFeAs(O,F), Physica C, Volume 494 (2013), p. 57
[244] Effects of cobalt doping and phase diagrams of LFe1 − xCoxAsO (L = La and Sm), Phys. Rev. B, Volume 79 (2009), p. 054521
[245] Role of in-plane and out-of-plane dilution in CeFeAsO: charge doping versus disorder, Phys. Rev. B, Volume 87 (2013), p. 174519
[246] Tunable interplay between 3d and 4f electrons in Co-doped iron pnictides, Phys. Rev. B, Volume 87 (2013), p. 075148
[247] Charge compensation effect in Pr1 − ySryFe1 − xCoxAsO codoped with Sr and Co, Phys. Rev. B, Volume 83 (2011), p. 014503
[248] Growth and characterization of Nd(Fe1 − xCox)AsO single crystals, Supercond. Sci. Technol., Volume 23 (2010), p. 054008
[249] Superconductivity and magnetic properties in SmFe1 − xCoxAsO ( to 1), Europhys. Lett., Volume 96 (2011), p. 17007
[250] Appearance and disappearance of superconductivity with Fe site co substitution in SmFe1 − xCoxAsO ( to 1.0), J. Supercond. Nov. Magn., Volume 24 (2011), p. 151
[251] Superconductivity in NdFe1 − xCoxAsO () and rare-earth magnetic ordering in NdCoAsO, Phys. Rev. B, Volume 81 (2010), p. 064511
[252] Superconductivity in LaFe1 − xCoxAsO, Phys. Rev. B, Volume 78 (2008), p. 104505
[253] Comparison of crystal structures and the effects of Co substitution in a new member of the Fe-1111 superconductor family AeFeAsF (Ae = Ca and Sr): a possible candidate for a higher- superconductor, Supercond. Sci. Technol., Volume 22 (2009), p. 055016
[254] Coexistence of magnetic fluctuations and superconductivity in SmFe0.95Co0.05AsO seen in 57Fe Mössbauer spectroscopy, Phys. Rev. B, Volume 84 (2011), p. 064423
[255] Insular superconductivity in a Co-doped iron pnictide CaFe1 − xCoxAsF, Phys. Rev. Lett., Volume 103 (2009), p. 027002
[256] Magnetic order in the CaFe1 − xCoxAsF () superconducting compounds, Phys. Rev. B, Volume 79 (2009), p. 060504(R)
[257] Isoelectronic Ru substitution at Fe-site in Sm(Fe1 − xRux)As(O0.85F0.15) compound and its effects on structural, superconducting and normal state properties, Phys. Rev. B, Volume 81 (2010), p. 184504
[258] Structural control of d–f interaction in the CeFe1 − xRuxAsO system, Europhys. Lett., Volume 99 (2012), p. 57009
[259] Correlated trends of coexisting magnetism and superconductivity in optimally electron-doped oxy-pnictides, Phys. Rev. Lett., Volume 107 (2011), p. 227003
[260] Onset of magnetism in optimally electron-doped LFe1 − xRuxAsO1 − yFy (L = La, Nd, or Sm) superconductors around , Phys. Rev. B, Volume 87 (2013), p. 134518
[261] Iron-based layered superconductor: LaOFeP, J. Am. Chem. Soc., Volume 128 (2006), p. 10012
[262] Superconductivity in LaFeAs1 − xPxO: effect of chemical pressures and bond covalency, Europhys. Lett., Volume 86 (2009), p. 47002
[263] Hydrostatic and chemical pressure tuning of CeFeAs1 − xPxO single crystals, Phys. Rev. B, Volume 86 (2012), p. 134523
[264] Interplay of composition, structure, magnetism, and superconductivity in SmFeAs1 − xPxO1 − y, Phys. Rev. B, Volume 84 (2011), p. 134526
[265] High-temperature superconductivity in iron-based materials, Nat. Phys., Volume 6 (2010), p. 645
[266] Magnetically mediated superconductivity in heavy fermion compounds, Nature, Volume 394 (1998), p. 39
[267]
, Academic Press (2013), p. 359[268] Lattice symmetry breaking in cuprate superconductors: stripes, nematics, and superconductivity, Adv. Phys., Volume 58 (2009), p. 699
[269] Direct observation of competition between superconductivity and charge density wave order in YBa2Cu3O6.67, Nat. Phys., Volume 8 (2012), p. 871
[270] Oxygen stoichiometry in high- superconductors, Acta Crystallogr. A, Volume 47 (1991), p. 640
[271] From spin-Peierls to superconductivity: (TMTTF)2PF6 under high pressure, J. Phys. Condens. Matter, Volume 13 (2001), p. L89
[272] Superconductivity in the non-magnetic state of iron under pressure, Nature, Volume 412 (2001), p. 316
[273] Iron cast in exotic role, Nature, Volume 412 (2001), p. 290
[274] Manifestations of nematic degrees of freedom in the magnetic, elastic, and superconducting properties of the iron pnictides, Supercond. Sci. Technol., Volume 25 (2012), p. 084005
[275] Effects of nematic fluctuations on the elastic properties of iron arsenide superconductors, Phys. Rev. Lett., Volume 105 (2010), p. 157003
[276] Lifting of xz/yz orbital degeneracy at the structural transition in detwinned FeSe, Phys. Rev. B, Volume 90 (2014), p. 121111(R)
[277] Phys. Rev. B, 91 (2015), p. 155106
[278] Electronic structure of detwinned BaFe2As2 from photoemission and first principles, Phys. Rev. B, Volume 83 (2011), p. 064509
[279] Symmetry-breaking orbital anisotropy observed for detwinned Ba(Fe1 − xCox)2As2 above the spin density wave transition, Proc. Natl. Acad. Sci. USA, Volume 108 (2011), p. 6878
[280] Pseudogap formation above the superconducting dome in iron pnictides, Phys. Rev. B, Volume 89 (2014), p. 045101
Cité par Sources :
Commentaires - Politique