[Susceptibilité nématique électronique dans les supraconducteurs à base de fer]
Nous présentons dans cette revue nos récents résultats expérimentaux concernant la phase nématique électronique des composés BaFe2As2 dopés et FeSe. La susceptibilité nématique, extraite de nos mesures du module de cisaillement (obtenue par des essais de flexion trois points par dilatométrie capacitive) dans le cadre de la théorie de Landau, est comparée aux résultats obtenus par des mesures d'élastorésistivité et de spectroscopie Raman. FeSe est un composé particulièrement intéressant dans ce contexte car son diagramme de phase présente une large phase nématique i.e. une phase paramagnétique accompagnée d'une distorsion structurelle. La loi d'échelle reliant la susceptibilité nématique au taux de relaxation spin-réseau observé par RMN, prédite par la théorie nématique de spin, est observée pour les composés BaFe2As2 dopés en électrons et en trous. La relation complexe entre la susceptibilité nématique et les degrés de liberté orbitaux et de spin est discutée en détail.
We review our recent experimental results on the electronic nematic phase in electron- and hole-doped BaFe2As2 and FeSe. The nematic susceptibility is extracted from shear-modulus data (obtained using a three-point-bending method in a capacitance dilatometer) using Landau theory and is compared to the nematic susceptibility obtained from elastoresistivity and Raman data. FeSe is particularly interesting in this context, because of a large nematic, i.e., a structurally distorted but paramagnetic, region in its phase diagram. Scaling of the nematic susceptibility with the spin lattice relaxation rate from NMR, as predicted by the spin-nematic theory, is found in both electron- and hole-doped BaFe2As2, but not in FeSe. The intricate relationship of the nematic susceptibility to spin and orbital degrees of freedom is discussed.
Mot clés : Supraconducteurs à base de fer, Propriétés thermodynamiques, Propriétés mécaniques
Anna E. Böhmer 1 ; Christoph Meingast 1
@article{CRPHYS_2016__17_1-2_90_0, author = {Anna E. B\"ohmer and Christoph Meingast}, title = {Electronic nematic susceptibility of iron-based superconductors}, journal = {Comptes Rendus. Physique}, pages = {90--112}, publisher = {Elsevier}, volume = {17}, number = {1-2}, year = {2016}, doi = {10.1016/j.crhy.2015.07.001}, language = {en}, }
Anna E. Böhmer; Christoph Meingast. Electronic nematic susceptibility of iron-based superconductors. Comptes Rendus. Physique, Volume 17 (2016) no. 1-2, pp. 90-112. doi : 10.1016/j.crhy.2015.07.001. https://comptes-rendus.academie-sciences.fr/physique/articles/10.1016/j.crhy.2015.07.001/
[1] Nematic Fermi fluids in condensed matter physics, Annu. Rev. Condens. Matter Phys., Volume 1 (2010), p. 153
[2] What drives nematic order in iron-based superconductors?, Nat. Phys., Volume 10 (2014), pp. 97-104
[3] Manifestations of nematic degrees of freedom in the magnetic, elastic, and superconducting properties of the iron pnictides, Supercond. Sci. Technol., Volume 25 (2012), p. 084005
[4] Magnetic order close to superconductivity in the iron-based layered systems, Nature, Volume 453 (2008), pp. 899-902
[5] Spin-density-wave anomaly at 140 K in the ternary iron arsenide BaFe2As2, Phys. Rev. B, Volume 78 (2008), p. 020503
[6] Crystallographic phase transition and high- superconductivity in LaFeAsO:F, Supercond. Sci. Technol., Volume 21 (2008), p. 125028
[7] Magnetism in Fe-based superconductors, J. Phys. Condens. Matter, Volume 22 (2010), p. 203203
[8] Interplay of magnetic and structural transitions in iron-based pnictide superconductors, Phys. Rev. B, Volume 82 (2010), p. 020408
[9] Magnetoelastic coupling in the phase diagram of as seen via neutron diffraction, Phys. Rev. B, Volume 83 (2011), p. 172503
[10] Character of the structural and magnetic phase transitions in the parent and electron-doped BaFe2As2 compounds, Phys. Rev. B, Volume 83 (2011), p. 134522
[11] Effects of Co substitution on thermodynamic and transport properties and anisotropic in single crystals, Phys. Rev. B, Volume 78 (2008), p. 214515
[12] Determination of the phase diagram of the electron-doped superconductor , Phys. Rev. B, Volume 79 (2009), p. 014506
[13] Neutron scattering study of the interplay between structure and magnetism in , Phys. Rev. B, Volume 79 (2009), p. 144523
[14] Suppression of antiferromagnetic order and orthorhombic distortion in superconducting Ba(Fe0.0.961Rh0.039)2As2, Phys. Rev. B, Volume 81 (2010), p. 134512
[15] Temperature versus doping phase diagrams for (, Cu, Cu/Co) single crystals, Phys. Rev. B, Volume 82 (2010), p. 024519
[16] The electronic phase diagram of the superconductor, Nat. Mater., Volume 8 (2009), pp. 305-309
[17] Control of the competition between a magnetic phase and a superconducting phase in cobalt-doped and nickel-doped NaFeAs using electron count, Phys. Rev. Lett., Volume 104 (2010), p. 057007
[18] Ising and spin orders in the iron-based superconductors, Phys. Rev. B, Volume 78 (2008), p. 020501
[19] Theory of electron nematic order in LaFeAsO, Phys. Rev. B, Volume 77 (2008), p. 224509
[20] Anomalous suppression of the orthorhombic lattice distortion in superconducting single crystals, Phys. Rev. Lett., Volume 104 (2010), p. 057006
[21] Effects of nematic fluctuations on the elastic properties of iron arsenide superconductors, Phys. Rev. Lett., Volume 105 (2010), p. 157003
[22] Tetragonal-to-orthorhombic structural phase transition at 90 K in the superconductor Fe1.01Se, Phys. Rev. Lett., Volume 103 (2009), p. 057002
[23] Nematic susceptibility of hole-doped and electron-doped BaFe2As2 iron-based superconductors from shear modulus measurements, Phys. Rev. Lett., Volume 112 (2014), p. 047001
[24] Competing phases in iron-based superconductors studied by high-resolution thermal-expansion and shear-modulus measurements, Fakultät für Physik, Karlsruhe Institute of Technology (KIT), Karlsruhe, 2014 http://digbib.ubka.uni-karlsruhe.de/volltexte/1000042623 (Ph.D. thesis, Diss.)
[25] Divergent nematic susceptibility in an iron arsenide superconductor, Science, Volume 337 (2012), pp. 710-712
[26] Scaling between magnetic and lattice fluctuations in iron pnictide superconductors, Phys. Rev. Lett., Volume 111 (2013), p. 137001
[27] Origin of the tetragonal-to-orthorhombic phase transition in FeSe: a combined thermodynamic and NMR study of nematicity, Phys. Rev. Lett., Volume 114 (2015), p. 027001
[28] In-plane resistivity anisotropy in an underdoped iron arsenide superconductor, Science, Volume 329 (2010), pp. 824-826
[29] Measurements of the anisotropic in-plane resistivity of underdoped FeAs-based pnictide superconductors, Phys. Rev. Lett., Volume 107 (2011), p. 067001
[30] Effect of Co doping on the in-plane anisotropy in the optical spectrum of underdoped , Phys. Rev. Lett., Volume 109 (2012), p. 217003
[31] Anisotropy of the in-plane resistivity of underdoped superconductors induced by impurity scattering in the antiferromagnetic orthorhombic phase, Phys. Rev. Lett., Volume 110 (2013), p. 207001
[32] Effect of doping on the magnetostructural ordered phase of iron arsenides: a comparative study of the resistivity anisotropy in doped BaFe2As2 with doping into three different sites, J. Am. Chem. Soc., Volume 135 (2013), pp. 3158-3163
[33] Sign-reversal of the in-plane resistivity anisotropy in hole-doped iron pnictides, Nat. Commun., Volume 4 (2013) (Art. No. 1914)
[34] In-plane electronic anisotropy in the antiferromagnetic-orthorhombic phase of isovalent-substituted , 2015 | arXiv
[35] Anisotropic in-plane resistivity in the nematic phase of the iron pnictides, Phys. Rev. Lett., Volume 107 (2011), p. 217002
[36] Emergent defect states as a source of resistivity anisotropy in the nematic phase of iron pnictides, Phys. Rev. Lett., Volume 113 (2014), p. 127001
[37] Suppression of superconductivity by twin boundaries in FeSe, Phys. Rev. Lett., Volume 109 (2012), p. 137004
[38] Anisotropic impurity states, quasiparticle scattering and nematic transport in underdoped , Nat. Phys., Volume 9 (2013), pp. 220-224
[39] Visualization of electron nematicity and unidirectional antiferroic fluctuations at high temperatures in NaFeAs, Nat. Phys., Volume 10 (2014), pp. 225-232
[40] Anisotropic electronic mobilities in the nematic state of the parent phase NaFeAs, 2015 | arXiv
[41] Anisotropic charge dynamics in detwinned , Europhys. Lett., Volume 93 (2011), p. 37002
[42] Hysteretic behavior in the optical response of the underdoped Fe-arsenide in the electronic nematic phase, Phys. Rev. B, Volume 89 (2014), p. 060501
[43] Nematic-driven anisotropic electronic properties of underdoped detwinned revealed by optical spectroscopy, Phys. Rev. B, Volume 90 (2014), p. 155125
[44] Origin of the resistive anisotropy in the electronic nematic phase of BaFe2As2 revealed by optical spectroscopy, 2015 | arXiv
[45] Effect of disorder on the resistivity anisotropy near the electronic nematic phase transition in pure and electron-doped BaFe2As2, Phys. Rev. Lett., Volume 112 (2014), p. 227001
[46] Symmetry-breaking orbital anisotropy observed for detwinned above the spin density wave transition, Proc. Natl. Acad. Sci. USA, Volume 108 (2011), pp. 6878-6883
[47] Conductivity anisotropy in the antiferromagnetic state of iron pnictides, Phys. Rev. Lett., Volume 105 (2010), p. 207202
[48] Orbital-weight redistribution triggered by spin order in the pnictides, Phys. Rev. B, Volume 81 (2010), p. 180514
[49] Magnetism and charge dynamics in iron pnictides, Nat. Phys., Volume 7 (2011), pp. 294-297
[50] Thermopower as a sensitive probe of electronic nematicity in iron pnictides, Phys. Rev. Lett., Volume 110 (2013), p. 067001
[51] NMR search for the spin nematic state in a LaFeAsO single crystal, Phys. Rev. Lett., Volume 109 (2012), p. 247001
[52] Nematic spin fluid in the tetragonal phase of BaFe2As2, Phys. Rev. B, Volume 84 (2011), p. 054544
[53] Nematic spin correlations in the tetragonal state of uniaxial-strained , Science, Volume 345 (2014), pp. 657-660
[54] Spin fluctuations in iron pnictides and chalcogenides: from antiferromagnetism to superconductivity, C. R. Phys., Volume 16 (2015) (this issue)
[55] Ultrafast observation of critical nematic fluctuations and giant magnetoelastic coupling in iron pnictides, Nat. Commun., Volume 5 (2014) (Article No. 3229)
[56] In-plane electronic anisotropy of underdoped ‘122’ Fe-arsenide superconductors revealed by measurements of detwinned single crystals, Rep. Prog. Phys., Volume 74 (2011), p. 124506
[57] Susceptibility anisotropy in an iron arsenide superconductor revealed by X-ray diffraction in pulsed magnetic fields, Phys. Rev. Lett., Volume 109 (2012), p. 027004
[58] Persistent detwinning of iron-pnictide EuFe2As2 crystals by small external magnetic fields, Phys. Rev. Lett., Volume 113 (2014), p. 227001
[59] Effect of tensile stress on the in-plane resistivity anisotropy in BaFe2As2, Phys. Rev. B, Volume 85 (2012), p. 144509
[60] Effect of uniaxial strain on the structural and magnetic phase transitions in BaFe2As2, Phys. Rev. Lett., Volume 108 (2012), p. 087001
[61] Pressure effects on magnetically driven electronic nematic states in iron pnictide superconductors, Phys. Rev. B, Volume 85 (2012), p. 100507
[62] Nematic crossover in BaFe2As2 under uniaxial stress, 2015 (arXiv e-prints) | arXiv
[63] Observation of incipient charge nematicity in , Phys. Rev. Lett., Volume 111 (2013), p. 267001
[64] Origin of orthorhombic transition, magnetic transition, and shear-modulus softening in iron pnictide superconductors: analysis based on the orbital fluctuations theory, Phys. Rev. B, Volume 84 (2011), p. 024528
[65] Superconductivity from orbital nematic fluctuations, Phys. Rev. B, Volume 88 (2013), p. 180502
[66] Anomalous elastic behavior and its correlation with superconductivity in iron-based superconductor , Mod. Phys. Lett. B, Volume 26 (2012), p. 1230011
[67] Pressure evolution of the low-temperature crystal structure and bonding of the superconductor FeSe (), Phys. Rev. B, Volume 80 (2009), p. 064506
[68] Pressure induced static magnetic order in superconducting , Phys. Rev. Lett., Volume 104 (2010), p. 087003
[69] Why does undoped FeSe become a high- superconductor under pressure?, Phys. Rev. Lett., Volume 102 (2009), p. 177005
[70] Lack of coupling between superconductivity and orthorhombic distortion in stoichiometric single-crystalline FeSe, Phys. Rev. B, Volume 87 (2013), p. 180505
[71] Coexistence of isotropic and extended s-wave order parameter in FeSe as revealed by low-temperature specific heat, Phys. Rev. B, Volume 84 (2011), p. 220507(R)
[72] Single crystal growth and characterization of tetragonal superconductors, CrystEngComm, Volume 15 (2013), pp. 1989-1993
[73] Orbital-driven nematicity in FeSe, Nat. Mater., Volume 14 (2015), pp. 210-214
[74] Emergence of the nematic electronic state in FeSe, Phys. Rev. B, Volume 91 (2015), p. 155106
[75] Lifting of orbital degeneracy at the structural transition in detwinned FeSe, Phys. Rev. B, Volume 90 (2014), p. 121111
[76] Unusual band renormalization in the simplest iron-based superconductor , Phys. Rev. B, Volume 89 (2014), p. 220506
[77] Reconstruction of band structure induced by electronic nematicity in an FeSe superconductor, Phys. Rev. Lett., Volume 113 (2014), p. 237001
[78] Strong spin fluctuations in β-FeSe observed by neutron spectroscopy, Phys. Rev. B, Volume 91 (2015), p. 180501
[79] Strong interplay between stripe spin fluctuations, nematicity and superconductivity in FeSe, 2015 | arXiv
[80] High-temperature superconductivity ( onset at 34 K) in the high-pressure orthorhombic phase of FeSe, Europhys. Lett., Volume 86 (2009), p. 27001
[81] Coexistence of superconductivity and magnetism in under pressure, Phys. Rev. B, Volume 85 (2012), p. 064517
[82] Enhanced superconductivity on the tetragonal lattice in FeSe under hydrostatic pressure, J. Phys. Soc. Jpn., Volume 83 (2014), p. 013702
[83] Pressure-induced antiferromagnetic transition and phase diagram in FeSe, J. Phys. Soc. Jpn., Volume 84 (2015), p. 063701
[84] Resistivity and magnetoresistance of FeSe single crystals under helium-gas pressure, Phys. Rev. B, Volume 91 (2015), p. 174510
[85] Superconductivity at 27 K in tetragonal FeSe under high pressure, Appl. Phys. Lett., Volume 93 (2008), p. 152505
[86] Electronic and magnetic phase diagram of β-Fe1.01 with superconductivity at 36.7 K under pressure, Nat. Mater., Volume 8 (2009), pp. 630-633
[87] Antiferroquadrupolar and Ising-nematic orders of a frustrated bilinear–biquadratic Heisenberg model and implications for the magnetism of FeSe, 2015 | arXiv
[88] Effect of magnetic frustration on nematicity and superconductivity in Fe chalcogenides, 2015 | arXiv
[89] Is FeSe a nematic quantum paramagnet?, 2015 | arXiv
[90] Model of electronic structure and superconductivity in orbitally ordered FeSe, 2015 | arXiv
[91] The origin of nematic order in FeSe, 2015 | arXiv
[92] Magnetically driven suppression of nematic order in an iron-based superconductor, Nat. Commun., Volume 5 (2014), p. 3845
[93] Spin reorientation in Ba0.65Na0.35Fe2As2 studied by single-crystal neutron diffraction, Phys. Rev. B, Volume 91 (2015), p. 060505
[94] Symmetry of reentrant tetragonal phase in : Magnetic versus orbital ordering mechanism, Phys. Rev. B, Volume 90 (2014), p. 174511
[95] Interplay between tetragonal magnetic order, stripe magnetism, and superconductivity in iron-based materials, Phys. Rev. B, Volume 91 (2015), p. 121104
[96] Competing magnetic double-Q phases and superconductivity-induced re-entrance of magnetic stripe order in iron pnictides, 2015 | arXiv
[97] et al. APS March Meeting 2015, Abstract L5.00006, 2015
[98] Superconductivity-induced reentrance of orthorhombic distortion in , 2014 | arXiv
[99] Phase Transitions in Ferroelastic and Co-Elastic Crystals, Cambridge University Press, 1993 http://www.cambridge.org/ve/academic/subjects/earth-and-environmental-science/mineralogy-petrology-and-volcanology/phase-transitions-ferroelastic-and-co-elastic-crystals
[100] Quadrupole effects in layered iron pnictide superconductor Ba(Fe0.9Co0.1)2As2, J. Phys. Soc. Jpn., Volume 80 (2011), p. 073702
[101] Structural quantum criticality and superconductivity in iron-based superconductor , J. Phys. Soc. Jpn., Volume 81 (2012), p. 024604
[102] Strange inter-layer properties of appearing in ultrasonic measurements, J. Phys. Soc. Jpn., Volume 82 (2013), p. 114604
[103] Acoustic characteristics of FeSe single crystals, Europhys. Lett., Volume 101 (2013), p. 56005
[104] Nematic state of pnictides stabilized by interplay between spin, orbital, and lattice degrees of freedom, Phys. Rev. Lett., Volume 111 (2013), p. 047004
[105] Diverging nematic susceptibility, physical meaning of scale, and pseudogap in the spin fermion model for the pnictides, Phys. Rev. B, Volume 90 (2014), p. 184507
[106] The study of structural phase transitions by means of ultrasonic experiments, Adv. Phys., Volume 22 (1973), pp. 721-755
[107] Experimental observation of a soft mode in ammonium hydrogen oxalate hemihydrate by Brillouin scattering, J. Phys. France, Volume 47 (1986), pp. 815-819
[108] Acoustic phonon instabilities and structural phase transitions, Phys. Rev. B, Volume 13 (1976), pp. 4877-4885
[109] Critical statics of elastic phase transitions, Z. Phys. B, Condens. Matter, Volume 25 (1976), pp. 69-81
[110] Mean field theory, the Ginzburg criterion, and marginal dimensionality of phase transitions, Am. J. Phys., Volume 45 (1977), pp. 554-560
[111] Low-frequency elastic properties of the incommensurate ferroelastic [N(CH3)4]2CuCl4, Phys. Rev. B, Volume 53 (1996), pp. 6337-6344
[112] Physical Methods of Chemistry, vol. 7 (B.W. Rossiter; R.C. Baetzold, eds.), Wiley, New York, N.Y., 1991 http://eu.wiley.com/WileyCDA/WileyTitle/productCd-0471534382.html
[113] Anisotropic pressure dependence of in single crystal YBa2Cu3O7 via thermal expansion, Phys. Rev. B, Volume 41 (1990), pp. 11299-11304
[114] Thermal expansion and Grüneisen parameters of —a thermodynamic quest for quantum criticality, Phys. Rev. Lett., Volume 108 (2012), p. 177004
[115] Low amplitude, low frequency elastic measurements using dynamic mechanical analyzer (DMA) spectroscopy, Z. Kristallogr., Volume 226 (2010), pp. 1-17
[116] Currently unpublished, measurements were made in Prof. W. Schranz's group in Vienna, 2015.
[117] Close correlation between magnetic properties and the soft phonon mode of the structural transition in BaFe2As2 and SrFe2As2, Phys. Rev. B, Volume 91 (2015), p. 134426
[118] Giant domain wall response of highly twinned ferroelastic materials, Appl. Phys. Lett., Volume 101 (2012), p. 141913
[119] Superelastic softening of ferroelastic multidomain crystals, Ferroelectrics, Volume 426 (2012), pp. 242-250
[120] Temperature dependence of the elastic constants, Phys. Rev. B, Volume 2 (1970), pp. 3952-3958
[121] Electronic nematicity above the structural and superconducting transition in , Nature, Volume 486 (2012), p. 382
[122] Thermodynamic phase diagram, phase competition, and uniaxial pressure effects in studied by thermal expansion, Phys. Rev. B, Volume 86 (2012), p. 094521
[123] Antiferromagnetic and nematic phase transitions in studied by ac microcalorimetry and SQUID magnetometry, Phys. Rev. B, Volume 91 (2015), p. 094512
[124] Linear response theory for shear modulus and Raman quadrupole susceptibility: evidence for nematic orbital fluctuations in Fe-based superconductors, Phys. Rev. Lett., Volume 113 (2014), p. 047001
[125] CXXIII. Thermodynamics of a sheared superconductor, Lond. Edinb. Dublin Philos. Mag. J. Sci., Volume 46 (1955), pp. 1115-1118
[126] Nematicity as a probe of superconducting pairing in iron-based superconductors, Phys. Rev. Lett., Volume 111 (2013), p. 127001
[127] Anomalous Fermi surface in FeSe seen by Shubnikov–de Haas oscillation measurements, Phys. Rev. B, Volume 90 (2014), p. 144517
[128] Field-induced superconducting phase of FeSe in the BCS–BEC cross-over, Proc. Natl. Acad. Sci. USA, Volume 111 (2014), pp. 16309-16313
[129] F. Hardy, et al., 2015 (in preparation).
[130] Calorimetric evidence of multiband superconductivity in Ba(Fe0.925Co0.075)2As2 single crystals, Phys. Rev. B, Volume 81 (2010), p. 060501
[131] C. Meingast, 2015 (currently unpublished).
[132] Doping evolution of superconducting gaps and electronic densities of states in iron pnictides, Europhys. Lett., Volume 91 (2010), p. 47008
[133] Measurement of the elastoresistivity coefficients of the underdoped iron arsenide Ba(Fe0.975Co0.025)2As2, Phys. Rev. B, Volume 88 (2013), p. 085113
[134] Ubiquitous signatures of nematic quantum criticality in optimally doped Fe-based superconductors, 2015 | arXiv
[135] Raman scattering as a probe of charge nematic fluctuations in iron based superconductors, JPS Conf. Proc., Volume 3 (2013), p. 015001
[136] APS March Meeting, 2015 (Abstract Y51.00003)
[137] Y. Gallais, Private communication, 2015.
[138] Charge nematicity and electronic Raman scattering in iron-based superconductors, C. R. Physique, Volume 17 (2016) no. 1–2, pp. 113-139 ( this issue )
[139] Contrasting spin dynamics between underdoped and overdoped , Phys. Rev. Lett., Volume 104 (2010), p. 037001
[140] Critical behavior of the spin density wave transition in underdoped (): 75As NMR investigation, Phys. Rev. B, Volume 89 (2014), p. 214511
[141] Angle-resolved NMR: quantitative theory of 75As relaxation rate in BaFe2As2, Phys. Rev. B, Volume 84 (2011), p. 184437
[142] Potential antiferromagnetic fluctuations in hole-doped iron-pnictide superconductor studied by 75As nuclear magnetic resonance measurement, J. Phys. Soc. Jpn., Volume 81 (2012), p. 054704
[143] Normal-state spin dynamics in the iron-pnictide superconductors and probed with NMR measurements, Phys. Rev. B, Volume 87 (2013), p. 174507
[144] A semimetal model of the normal state magnetic susceptibility and transport properties of , Physica C, Supercond., Volume 470 (2010), pp. 304-308
[145] Flux-free growth of large superconducting crystal of FeSe by traveling-solvent floating-zone technique, Supercond. Sci. Technol., Volume 27 (2014), p. 122001
[146] Nematic resonance in the Raman response of iron-based superconductors, 2015 | arXiv
[147] Enhancement of superconductivity near a nematic quantum critical point, Phys. Rev. Lett., Volume 114 (2015), p. 097001
Cité par Sources :
Commentaires - Politique