The most energetic neutron stars, powered by their rotation, are capable of producing pulsed radiation from the radio up to γ rays with nearly TeV energies. These pulsars are part of the universe of energetic and powerful particle accelerators, using their uniquely fast rotation and formidable magnetic fields to accelerate particles to ultra-relativistic speed. The extreme properties of these stars provide an excellent testing ground, beyond Earth experience, for nuclear, gravitational, and quantum-electrodynamical physics. A wealth of γ-ray pulsars has recently been discovered with the Fermi Gamma-Ray Space Telescope. The energetic γ rays enable us to probe the magnetospheres of neutron stars and particle acceleration in this exotic environment. We review the latest developments in this field, beginning with a brief overview of the properties and mysteries of rotation-powered pulsars, and then discussing γ-ray observations and magnetospheric models in more detail.
Les étoiles à neutrons les plus puissantes, qui tirent leur énergie de leur rotation, sont capables d'émettre des impulsions lumineuses des ondes radio jusqu'aux rayons γ, d'énergies proches du TeV. Ces pulsars font partie des puissants accélérateurs de particules de l'Univers, profitant de leur rotation unique et de leur formidable champ magnétique pour accélérer des particules jusqu'à des vitesses ultra-relativistes. Les propriétés extrêmes de ces étoiles permettent de tester la physique nucléaire, la gravitation et l'électrodynamique quantique dans des conditions inaccessibles sur Terre. Le télescope gamma spatial Fermi vient de révéler un riche échantillon de pulsars γ. Leur rayonnement γ énergétique permet de sonder la magnétosphère des étoiles à neutrons et d'étudier l'accélération de particules dans cet environnement exotique. Nous présentons les derniers développements de ce domaine, en commençant par une rapide revue des propriétés et mystères soulevés par ces pulsars, puis en détaillant plus avant les observations γ et les modèles magnétosphériques.
Mots-clés : Pulsa, Étoile à neutrons, Magnétosphère, Rayons gamma, Accélération
Isabelle A. Grenier 1; Alice K. Harding 2
@article{CRPHYS_2015__16_6-7_641_0, author = {Isabelle A. Grenier and Alice K. Harding}, title = {Gamma-ray pulsars: {A} gold mine}, journal = {Comptes Rendus. Physique}, pages = {641--660}, publisher = {Elsevier}, volume = {16}, number = {6-7}, year = {2015}, doi = {10.1016/j.crhy.2015.08.013}, language = {en}, }
Isabelle A. Grenier; Alice K. Harding. Gamma-ray pulsars: A gold mine. Comptes Rendus. Physique, Gamma-ray astronomy / Astronomie des rayons gamma, Volume 16 (2015) no. 6-7, pp. 641-660. doi : 10.1016/j.crhy.2015.08.013. https://comptes-rendus.academie-sciences.fr/physique/articles/10.1016/j.crhy.2015.08.013/
[1] https://confluence.slac.stanford.edu/display/GLAMCOG/Public+List+of+LAT-Detected+Gamma-Ray+Pulsars
[2] http://www.atnf.csiro.au/research/pulsar/psrcat/
[3] Phys. Rep., 442 (2007), p. 109
[4] Astrophys. J., 778 (2013), p. 66
[5] et al. Science, 340 (2013), p. 448
[6] Astrophys. J., 765 (2013)
[7] et al., 2014 | arXiv
[8] Nature, 217 (1968), p. 709
[9] Nature, 221 (1969), p. 525
[10] Science, 164 (1969), p. 709
[11] Nature, 222 (1969), p. 728
[12] et al. Nature, 251 (1974), p. 397
[13] Nature, 218 (1968), p. 731
[14] Astrophys. J., 648 (2006)
[15] Astrophys. J., 606 (2004), p. 1125
[16] Astrophys. J., 715 (2010), p. 1282
[17] Astrophys. J., 349 (1990), p. 538
[18] Astrophys. J., 157 (1969), p. 869
[19] Astrophys. J., 793 (2014), p. 97
[20] Astrophys. J., 245 (1981), p. 267
[21] Astrophys. J., 576 (2002), p. 366
[22] Astrophys. J., 274 (1983), p. 333
[23] Mon. Not. R. Astron. Soc., 234 (1988), p. 477
[24] Proc. of the 270. WE-Heraeus Seminar on Neutron Stars, Pulsars, and Supernova Remnants (W. Becker; H. Lesch; J. Trümper, eds.), 2002, p. 230
[25] Young neutron stars and their environments (F. Camilo; B.M. Gaensler, eds.), IAU Symp., vol. 218, Astronomical Society of the Pacific, San Francisco, CA, USA, 2004, p. 349
[26] Mon. Not. R. Astron. Soc., 414 (2011), p. 1679
[27] , IAU Symposium, vol. 291, 2013, p. 295
[28] et al. Science, 339 (2013), p. 436
[29] Astrophys. J., 283 (1984), p. 694
[30] Int. J. Mod. Phys. Conf. Ser., 28 (2014)
[31] C. R. Physique, 16 (2015), pp. 600-609 ( this issue )
[32] et al. Astron. Astrophys., 492 (2008), p. 923
[33] Annu. Rev. Astron. Astrophys., 52 (2014), p. 211
[34] Astrophys. J., 652 (2006)
[35] et al. Science, 322 (2008), p. 1218
[36] http://www.einsteinathome.org/gammaraypulsar/FGRP1_discoveries.html
[37] Astron. Astrophys., 545 (2012)
[38] et al. Astrophys. J. Suppl. Ser., 183 (2009), p. 46
[39] et al. Astrophys. J. Suppl. Ser., 188 (2010), p. 405
[40] et al. Astrophys. J. Suppl. Ser., 199 (2012), p. 31
[41] et al. Astrophys. J. Suppl. Ser., 218 (2015), p. 23
[42] Astrophys. J., 671 (2007), p. 713
[43] et al., 2012 | arXiv
[44] et al. Science, 325 (2009), p. 845
[45] et al. Astron. Astrophys., 524 (2010), p. 75
[46] Astrophys. J. Lett., 712 (2010)
[47] et al. Science, 334 (2011), p. 1107
[48] et al. Astrophys. J. Suppl. Ser., 208 (2013), p. 17
[49] et al. Astrophys. J., 696 (2009), p. 1084
[50] et al. Astrophys. J., 797 (2014)
[51] et al. Astron. Astrophys., 540 (2012)
[52] et al. Astrophys. J., 713 (2010), p. 154
[53] Astrophys. J., 748 (2012), p. 84
[54] Astrophys. J., 695 (2009), p. 1289
[55] Astrophys. J., 727 (2011), p. 123
[56] Astrophys. J., 726 (2011), p. 44
[57] et al. Astron. Astrophys., 575 (2014)
[58] Astrophys. J., 798 (2015)
[59] Mon. Not. R. Astron. Soc., 424 (2012), p. 2023
[60] Astrophys. J., 716 (2010)
[61] Astron. Astrophys., 204 (1988), p. 117
[62] et al. Astrophys. J., 754 (2012)
[63] arXiv
, 2014 |[64] Mon. Not. R. Astron. Soc., 415 (2011), p. 1827
[65] Astrophys. J., 438 (1995), p. 314
[66] et al. Nature, 300 (1982), p. 615
[67] Nature, 300 (1982), p. 28
[68] Nature, 394 (1998), p. 344
[69] et al. Astrophys. J., 790 (2014), p. 39
[70] et al. Astrophys. J. Lett., 800 (2014)
[71] Astrophys. J., 622 (2005), p. 531
[72] Astron. Astrophys., 398 (2003), p. 639
[73] Astrophys. J., 743 (2011), p. 181
[74] et al. Astron. Astrophys., 359 (2000), p. 615
[75] Astrophys. J., 744 (2012), p. 34
[76] Adv. Space Res., 35 (2005), p. 1152
[77] Astrophys. J., 707 (2009), p. 800
[78] et al. Astrophys. J. Suppl. Ser., 213 (2014), p. 6
[79] N. Renault, et al. Astron. Astrophys., submitted for publication.
[80] N. Renault, et al. Astron. Astrophys., submitted for publication.
[81] Am. Inst. Phys. Conf. Ser., 1357 (2011), p. 127
[82] Astrophys. J., 754 (2012)
[83] et al. Science, 338 (2012), p. 1314
[84] et al. Astrophys. J. Lett., 763 (2013), p. L13
[85] Astrophys. J. Lett., 743 (2011)
[86] Astrophys. J. (2012)
[87] et al. Bull. Am. Astron. Soc., 223 (2014) (140.07)
[88] Astrophys. J., 403 (1993), p. 249
[89] Astrophys. J., 358 (1990), p. 561
[90] C. R. Physique, 16 (2015), pp. 661-673 ( this issue )
[91] et al. Astrophys. J., 760 (2012), p. 92
[92] et al. Astrophys. J., 783 (2014), p. 69
[93] et al. Astrophys. J., 742 (2011), p. 97
[94] et al. Phys. Rev. Lett., 111 (2013)
[95] et al. Phys. Rev. Lett., 113 (2014)
[96] et al. Astrophys. J., 807 (2015), p. 130
[97] et al. Astrophys. J., 806 (2015), p. 148
[98] et al. Astrophys. J., 797 (2014), p. 111
[99] et al. Mon. Not. R. Astron. Soc., 444 (2014), p. 1783
[100] et al. Astrophys. J., 785 (2014), p. 131
[101] et al. Astrophys. J. (2013) | arXiv
[102] Astrophys. J., 477 (1997), p. 439
[103] J. Phys. Conf. Ser., 122 (2008) no. 1
[104] Astrophys. J., 750 (2012), p. 89
[105] Astrophys. J. Lett., 265 (1983), p. 39
[106] J. Phys. Conf. Ser., 363 (2012) no. 1
[107] Astrophys. J., 204 (1976)
[108] Prog. Theor. Phys., 117 (2007), p. 241
[109] et al. Astrophys. J., 762 (2013), p. 94
[110] Phys. Rev. Lett., 13 (1964), p. 789
[111] et al. Nature, 467 (2010), p. 1081
[112] et al. Astrophys. J., 757 (2012), p. 89
[113] et al. Astrophys. J., 634 (2005), p. 1242
[114] A.K. Harding, A.G. Muslimov, Astrophys. J. 568, 862.
[115] Astrophys. J., 762 (2013), p. 96
[116] et al. Astrophys. J., 679 (2008), p. 675
[117] Astrophys. J., 670 (2007), p. 668
[118] Proc. SPIE, 8443 (2012), p. 13
[119] Class. Quantum Gravity, 29 (2012), p. 4007
[120] et al. Astrophys. J., 743 (2011), p. 102
[121] D. Horns, A. Jacholkowska, to be published in a forthcoming dossier of C. R. Physique, continuation of the present one (2016).
[122] et al. Nature, 505 (2014), p. 520
[123] Astrophys. J., 225 (1978), p. 226
[124] Astron. Astrophys., 71 (1979), p. 51
[125] Astrophys. J., 458 (1996), p. 278
[126] Astrophys. J., 300 (1986), p. 500
[127] Astrophys. J., 266 (1983), p. 215
[128] Astrophys. J., 606 (2004), p. 1143
[129] Ann. Astrophys., 18 (1955), p. 1
[130] Astrophys. J., 180 (1973)
[131] Astrophys. J., 511 (1999), p. 351
[132] Mon. Not. R. Astron. Soc., 368 (2006), p. 1055
[133] et al. Astrophys. J., 749 (2012), p. 2
[134] Astrophys. J., 746 (2012), p. 60
[135] et al. Astrophys. J., 804 (2015), p. 84
[136] Astrophys. J., 785 (2014)
[137] Astron. Astrophys., 387 (2002), p. 520
[138] Astron. Astrophys., 144 (1985), p. 72
[139] Astron. Astrophys., 384 (2002), p. 414
[140] Astron. Astrophys., 411 (2003), p. 203
[141] Neutron Stars in Supernova Remnants, vol. 271, 2002, p. 81
[142] Astrophys. J., 164 (1971), p. 529
[143] Astrophys. J., 252 (1982), p. 337
[144] Rev. Mod. Phys., 38 (1966), p. 626
[145] Astrophys. J., 273 (1982), p. 761
[146] Mon. Not. R. Astron. Soc., 382 (2007), p. 1833
[147] Astrophys. J., 231 (1979), p. 854
[148] Mon. Not. R. Astron. Soc., 255 (1982), p. 61
[149] Mon. Not. R. Astron. Soc., 408 (2010), p. 2092
[150] Mon. Not. R. Astron. Soc., 429 (2013), p. 20
[151] Astrophys. J., 810 (2015), p. 144
[152] Astrophys. J., 487 (1997), p. 370
[153] Astrophys. J., 676 (2008), p. 562
[154] Open Astron. J. (2008) | arXiv
[155] Publ. Astron. Soc. Jpn., 64 (2012), p. 43
[156] Astrophys. J., 795 (2014)
[157] Astron. Astrophys., 311 (1996), p. 172
[158] Mon. Not. R. Astron. Soc., 412 (2011), p. 1870
[159] Astrophys. J., 780 (2014), p. 3
[160] et al. Astrophys. J., 801 (2015), p. 109
[161] Science, 329 (2010), p. 408
[162] Neutron Stars and Pulsars, Astrophysics and Space Science Library, vol. 357, 2009
[163] et al. Astrophys. J., 777 (2013)
[164] C. R. Physique, 16 (2015), pp. 674-685 ( this issue )
[165] Science, 331 (2011), p. 736
[166] et al. Science, 331 (2011), p. 739
[167] et al. Astrophys. J., 749 (2012), p. 26
[168] et al. Astrophys. J., 765 (2013), p. 56
[169] et al. Astrophys. J. Lett., 775 (2013)
[170] et al. Astrophys. J., 781 (2014), p. 11
[171] et al. Astron. Astrophys., 562 (2014)
[172] Astron. Astrophys., 523 (2010), p. 2
[173] Rep. Prog. Phys., 77 (2014), p. 6901
[174] Mon. Not. R. Astron. Soc., 205 (1983), p. 593
[175] et al. Astrophys. J., 457 (1996), p. 253
[176] Astrophys. J. Lett., 737 (2011)
[177] Astrophys. J., 396 (1992), p. 161
[178] Astron. Astrophys. Suppl. Ser., 120 (1996), p. 453
[179] Mon. Not. R. Astron. Soc., 167 (1974), p. 1
[180] Astrophys. J., 698 (2011), p. 1523
[181] et al. Astrophys. J., 390 (1992), p. 454
[182] Astrophys. J., 547 (2001), p. 437
[183] Astron. Astrophys., 473 (2007), p. 683
[184] Astrophys. J., 741 (2011), p. 39
[185] Astrophys. J., 746 (2012), p. 148
[186] et al. Astrophys. J., 770 (2013), p. 147
[187] Mon. Not. R. Astron. Soc., 414 (2011), p. 2017
[188] Mon. Not. R. Astron. Soc., 422 (2012), p. 3118
[189] Mon. Not. R. Astron. Soc., 344 (2003), p. 93
[190] Bull. Am. Astron. Soc., 223 (2014) (114.08)
Cited by Sources:
Comments - Policy