We will show that the book Dislocations by Jacques Friedel, published half a century ago, can still be recommended, in agreement with the author's intention, as a textbook “for research students at University and for students at engineering schools as well as for research engineers”. Indeed, today dislocations are known to occur not only in solid crystals but also in many other systems discovered more recently such as colloidal crystals or liquid crystals having periodic structures. Moreover, the concept of dislocations is an excellent starting point for lectures on topological defects occurring in systems equipped with order parameters resulting from broken symmetries: disclinations in nematic or hexatic liquid crystals, dispirations in chiral smectics or disorientations in lyotropic liquid crystals. The discussion of dislocations in Blue Phases will give us an opportunity to call on mind Sir Charles Frank, friend of Jacques Friedel since his Bristol years, who called these ephemeral mesophases “topological oddities”. Being made of networks of disclinations, Blue Phases are similar to Twist Grain Boundary (TGB) smectic phases, which are made of networks of screw dislocations and whose existence was predicted by de Gennes in 1972 on the basis of the analogy between smectics and superconductors. We will stress that the book by Jacques Friedel contains seeds of this analogy.
Nous allons montrer que l'ouvrage Dislocations de Jacques Friedel, publié voici un demi-siècle, peut toujours être recommandé, ainsi que le voulait l'auteur, comme un manuel « pour des étudiants chercheurs universitaires et pour des élèves d'écoles d'ingénieurs, aussi bien que pour des ingénieurs chercheurs ». En effet, les dislocations sont connues aujourd'hui pour intervenir non seulement dans les cristaux solides, mais aussi dans de nombreux autres systèmes découverts plus récemment, tels que les cristaux colloïdaux ou des cristaux liquides avec des structures périodiques. De plus, le concept de dislocation constitue un excellent point de départ des exposés sur les défauts topologiques dans les systèmes munis de paramètres d'ordre résultant de symétries brisées : disinclinaisons dans des cristaux liquides nématiques ou hexatiques, dispirations dans les phases smectiques chirales ou disorientations dans les cristaux liquides lyotropes. La discussion sur les dislocations dans les phases bleues nous fournira une occasion pour nous souvenir de Sir Charles Frank, un ami de Jacques Friedel depuis ses années à Bristol, qui appelait ces mésophases éphémères « bizarreries topologiques ». Étant formées de réseaux de disclinations, les phases bleues sont similaires aux phases smectiques à joints de grains torsadés (Twist Grain Boundaries, TGB), qui sont constituées de réseaux de dislocations vis et dont l'existence a été prévue par de Gennes en 1972 à partir de l'analogie entre les phases smectiques et les supraconducteurs. Nous insisterons sur le fait que le livre de Jacques Friedel contient les germes de cette analogie.
Mot clés : Dislocations, Défauts topologiques, Cristaux liquides
Pawel Pieranski 1
@article{CRPHYS_2016__17_3-4_242_0, author = {Pawel Pieranski}, title = {Dislocations and other topological oddities}, journal = {Comptes Rendus. Physique}, pages = {242--263}, publisher = {Elsevier}, volume = {17}, number = {3-4}, year = {2016}, doi = {10.1016/j.crhy.2015.12.002}, language = {en}, }
Pawel Pieranski. Dislocations and other topological oddities. Comptes Rendus. Physique, Volume 17 (2016) no. 3-4, pp. 242-263. doi : 10.1016/j.crhy.2015.12.002. https://comptes-rendus.academie-sciences.fr/physique/articles/10.1016/j.crhy.2015.12.002/
[1] Graine de mandarin, Éditions Odile Jacob, Paris, 1994
[2] The growth of crystals and the equilibrium structure of their surfaces, Philos. Trans. R. Soc. Lond. Ser. A, Math. Phys. Sci., Volume 243 (1951), pp. 299-358
[3] Crystal growth award of the American association for crystal growth, J. Cryst. Growth, Volume 46 (1979), pp. 591-594
[4] One of referees remarked that this quotation of F.C. Frank could misleadingly be taken as an universal rule. Actually, not all crystals are full of dislocations like metals submitted to metalworking processes. On the contrary, huge, 30 cm in diameter, silicon crystals grown by the Czochralski method and used for production of wafers in electronic industry are dislocation-free!.
[5] Dislocations, Pergamon Press, 1964
[6] Melting of colloidal crystals, Phys. Rev. Lett., Volume 35 (1975), pp. 1448-1451
[7] Single colloidal crystals, Nature, Volume 281 (1979), pp. 57-60
[8] Colloidal crystals, Contemp. Phys., Volume 24 (1983), pp. 25-73
[9] J. Phys. (Paris), 46 (1984) (Colloque C3)
[10] Microspectroscopy, J. Phys. (Paris), Volume 46 (1984) (C3-281–293, Colloque C3)
[11] Observation of edge dislocations in ordered polystyrene latexes, J. Phys. (Paris), Volume 40 (1979), pp. 853-859
[12] Thin colloidal crystals: a series of structural transitions, J. Physique, Volume 44 (1983), pp. 531-536
[13] Thin colloidal crystals, Phys. Rev. Lett., Volume 50 (1983), pp. 500-503
[14] Layering transitions in colloidal crystals as observed by diffraction and direct-lattice imaging, Phys. Rev. A, Volume 34 (1986), pp. 562-573
[15] Structures of thin layers of hard spheres: high pressure limit, J. Phys. (Paris), Volume 45 (1984), pp. 331-339
[16] Phase diagram of hard spheres confined between two parallel planes, Phys. Rev. E, Volume 55 (1997), pp. 7228-7241
[17] Buckled colloidal monolayers connect geometric frustration in soft and hard matter, Soft Matter, Volume 9 (2013), pp. 6565-6570
[18] The Friedel–Donnay–Harker rule: “the prominence order of the facets of a crystal is the same as the decreasing order of the interplanar distances, taking into account an eventual reduction by a factor of two, three or four as a result of the group space symmetries”. In the case of the space group , the fourfold screw axis 41 perpendicular to the (100) facet reduces the interplanar distance by the factor of four. As a result the height of elementary steps, on the (100) facet is reduced by the factor of four. Such small terraces are easier to nucleate and the (100) facet becomes very instable.
[19] An Introduction to Crystallography, Longmans, New York, 1960
[20] Leçons de cristallographie, Librairie Scientifique Albert Blanchard, Paris, 1964
[21] J. Disp. Technol., 8 (2012), pp. 98-103
[22] Blue phases (H.-S. Kitzerow; C. Bahr, eds.), Chirality in Liquid Crystals, Springer, 2001 (Chapter 7)
[23] Shape and growth of crystals (C. Godreche, ed.), Solids Far from Equilibrium, Cambridge University Press, 1992 (Chapter 1)
[24] Physique de la croissance crustalline, Aléa Saclay, Eyroles, 1995 (English version: J. Villain, A. Pimpinelli, Physics of Crystal Growth, Cambridge University Press, 1998)
[25] On molecular structure and physical properties of thermotropic liquid crystals, Mol. Cryst. Liq. Cryst., Volume 7 (1969), pp. 69-74
[26] Symmetry, topology and faceting in bicontinuous lyotropic crystals, EPJE, Volume 36 (2013), p. 88
[27] Facets of lyotropic liquid crystals, Langmuir, Volume 30 (2014), pp. 488-495
[28] Steps and dislocations in cubic lyotropic crystals, J. Phys. Condens. Matter, Volume 18 (2006), pp. 6453-6468
[29] Équilibre des corps multiplement connexes, Ann. Sci. Éc. Norm. Super., Volume 24 (1907), p. 401 (It is interesting to emphasize that the concept of dislocations as well as their existence in crystals was unknown to Vito Volterra who was only interested in solutions of equations of elasticity in multiply connected continuous elastic media such as a hollow cylinder. Nevertheless, the Volterra work was certainly seminal because it opened new perspectives and inspired other great minds)
[30] Aqueous-phase behavior and cubic phase-containing emulsions in the C12E2-water system, Langmuir, Volume 16 (2000), pp. 3537-3542
[31] An analogy between superconductors and smectics A, Solid State Commun., Volume 10 (1972), pp. 753-756
[32] Characterisation of a new helical smectic liquid crystal, Nature, Volume 337 (1989), pp. 449-452
[33] On “An analogy between superconductors and smectics A”, P.G. de Gennes Impact on Science, vol. 1, World Scientific, 2009
[34] Ordering, metastability and phase transitions in two-dimensional systems, J. Phys. C, Volume 6 (1973), pp. 1181-1203
[35] Consequences of bond-orientational order on the macroscopic orientation patterns of thin tilted hexatic liquid-crystal films, Phys. Rev. Lett., Volume 68 (1986), pp. 1819-1822
[36] Disclinations, dislocations, and continuous defetcs: a reappraisal, Rev. Mod. Phys., Volume 80 (2008), pp. 61-80
[37] The Physics of Liquid Crystals, Oxford University Press, 1993
[38] Nematic and Cholesteric Liquid Crystals, Taylor & Francis, 2005
[39] Smectic and Columnar Liquid Crystals, Taylor & Francis, 2006
[40] Principles of Condensed Matter Physics, Cambridge University Press, 1995
[41] Soft Matter Physics: An Introduction, Springer, 2003
[42] Geometrical Frustration, Cambridge University Press, 1999
[43] Mechanical equilibrium of conformal crystals, Phys. Rev. E, Volume 53 (1996), pp. 2828-2842
[44] The demonstration of conformal maps with two-dimensional foams, Eur. J. Phys., Volume 25 (2004), pp. 429-438
[45] The variety of ordering transitions in liquids characterized by a locally favoured structure, Europhys. Lett., Volume 96 (2011)
[46] Crystals of interfaces: the cubic phases of amphiphile/water systems, J. Phys. (Paris), Volume 46 (1984) no. 3 (Colloque C3)
[47] Equilibrium shape of lyotropic cubic monocrystals, J. Phys. (Paris) II, Volume 1 (1991), pp. 763-772
Cited by Sources:
Comments - Policy