[Oscillations de Friedel dans les systèmes à base de graphène, sondées par Microscopie à Effet Tunnel]
Depuis 25 ans, les scientifiques utilisent la microscopie à effet tunnel afin de visualiser dans l'espace direct la réponse d'un gaz d'électron bidimensionnel à des impuretés de taille atomique. L'analyse des oscillations de Friedel générées autour de telles impuretés donne des informations précieuses sur le système 2D : propriétés de diffusion élastique, structure de bande, niveau de dopage et symétrie des états électroniques. Cet article est consacré à l'analyse par microscopie à effet tunnel des oscillations de Friedel dans le graphène, matériau 2D star de cette dernière décennie. En particulier, nous montrons comment cette technique permet d'accéder au pseudospin, un degré de liberté unique propre aux fermions de Dirac du graphène.
For the last 25 years, scientists have demonstrated the capabilities of Scanning Tunneling Microscopy (STM) to visualize in real space the response of a two-dimensional electron gas to atomic-scale impurities. The analysis of the Friedel oscillations surrounding the impurities yields valuable information regarding the elastic scattering properties, the band structure, the doping level and the symmetry of the electronic states in the two-dimensional host system. We will address in this article the use of this technique for probing the electronic properties of graphene, the star two-dimensional compound of the last decade. In particular, we will emphasize how this technique can be pushed up to unravel the electronic pseudospin, a distinctive degree of freedom of graphene's Dirac fermions.
Mots-clés : Oscillations de Friedel, Graphène, Fermions de Dirac, Pseudospin électronique, Microscope à effet tunnel
Pierre Mallet 1, 2 ; Iván Brihuega 3 ; Vladimir Cherkez 1, 2, 4 ; Jose Marìa Gómez-Rodríguez 3 ; Jean-Yves Veuillen 1, 2
@article{CRPHYS_2016__17_3-4_294_0, author = {Pierre Mallet and Iv\'an Brihuega and Vladimir Cherkez and Jose Mar{\`\i}a G\'omez-Rodr{\'\i}guez and Jean-Yves Veuillen}, title = {Friedel oscillations in graphene-based systems probed by {Scanning} {Tunneling} {Microscopy}}, journal = {Comptes Rendus. Physique}, pages = {294--301}, publisher = {Elsevier}, volume = {17}, number = {3-4}, year = {2016}, doi = {10.1016/j.crhy.2015.12.013}, language = {en}, }
TY - JOUR AU - Pierre Mallet AU - Iván Brihuega AU - Vladimir Cherkez AU - Jose Marìa Gómez-Rodríguez AU - Jean-Yves Veuillen TI - Friedel oscillations in graphene-based systems probed by Scanning Tunneling Microscopy JO - Comptes Rendus. Physique PY - 2016 SP - 294 EP - 301 VL - 17 IS - 3-4 PB - Elsevier DO - 10.1016/j.crhy.2015.12.013 LA - en ID - CRPHYS_2016__17_3-4_294_0 ER -
%0 Journal Article %A Pierre Mallet %A Iván Brihuega %A Vladimir Cherkez %A Jose Marìa Gómez-Rodríguez %A Jean-Yves Veuillen %T Friedel oscillations in graphene-based systems probed by Scanning Tunneling Microscopy %J Comptes Rendus. Physique %D 2016 %P 294-301 %V 17 %N 3-4 %I Elsevier %R 10.1016/j.crhy.2015.12.013 %G en %F CRPHYS_2016__17_3-4_294_0
Pierre Mallet; Iván Brihuega; Vladimir Cherkez; Jose Marìa Gómez-Rodríguez; Jean-Yves Veuillen. Friedel oscillations in graphene-based systems probed by Scanning Tunneling Microscopy. Comptes Rendus. Physique, Physique de la matière condensée au XXIe siècle: l’héritage de Jacques Friedel, Volume 17 (2016) no. 3-4, pp. 294-301. doi : 10.1016/j.crhy.2015.12.013. https://comptes-rendus.academie-sciences.fr/physique/articles/10.1016/j.crhy.2015.12.013/
[1] Science, 324 (2009), p. 1530
[2] et al. Nanoscale, 7 (2015), p. 4598
[3] Phys. Rev., 71 (1947), p. 622
[4] Rev. Mod., 81 (2009), p. 109
[5] Nat. Phys., 2 (2006), p. 620
[6] et al. Phys. Rev. Lett., 100 (2008)
[7] et al. Nat. Nanotechnol., 3 (2008), p. 206
[8] et al. Nano Lett., 11 (2011), p. 2396
[9] Science, 306 (2004), p. 666
[10] et al. Nature, 438 (2005), p. 197
[11] Nature, 438 (2005), p. 201
[12] et al. Phys. Rev. Lett., 97 (2006)
[13] et al. Solid State Commun., 143 (2007), p. 33
[14] Phys. Rev. Lett., 98 (2007)
[15] Phys. Rev. Lett., 103 (2009)
[16] Nat. Phys., 5 (2009), p. 222
[17] Phys. Rev. Lett., 102 (2009)
[18] Suppl. Nuovo Cim., 2 (1958), p. 287
[19] J. Phys. Soc. Jpn., 67 (1998), p. 1704
[20] Phys. Rev. Lett., 97 (2006) (In this publication, it is shown that the charge density modulations have a
[21] Phys. Rev. B, 76 (2007)
[22] Phys. Rev. Lett., 100 (2008)
[23] Phys. Rev. B, 78 (2008)
[24] Phys. Rev. B, 79 (2009)
[25] New J. Phys., 11 (2009)
[26] Phys. Rev. B, 82 (2010)
[27] Nature, 363 (1993), p. 524
[28] Phys. Rev. Lett., 71 (1993), p. 1071
[29] et al. Phys. Rev. Lett., 101 (2008)
[30] et al. Phys. Rev. B, 86 (2012)
[31] Helv. Phys. Acta, 55 (1982), p. 726
[32] Phys. Rev. Lett., 50 (1983), p. 1998
[33] Principles of the Theory of Solids, Cambridge University Press, 1972
[34] Solid State Physics, Oxford University Press, Oxford, UK, 1987 (HRW International edn. chapter 17)
[35] Phys. Rev. Lett., 18 (1967), p. 546
[36] Science, 262 (1993), p. 218
[37] Phys. Rev. B, 63 (2001)
[38] et al. Phys. Rev. B, 57 (1998)
[39] J. Electron Spectrosc. Relat. Phenom., 109 (2000), p. 97
[40] Phys. Rev. Lett., 79 (1997), p. 265
[41] et al. Nature, 422 (2003), p. 592
[42] Phys. Rev. B, 67 (2003)
[43] et al. Phys. Rev. Lett., 95 (2005)
[44] et al. Phys. Rev. Lett., 96 (2006)
[45] J. Phys. D, Appl. Phys., 44 (2011), p. 464010
[46] Surf. Sci., 443 (1999), p. 154
[47] et al. Phys. Rev. Lett., 93 (2004)
[48] et al. Phys. Rev. B, 76 (2007)
[49] et al. Phys. Rev. Lett., 99 (2007)
[50] Phys. Rev. B, 77 (2008)
[51] Nat. Phys., 3 (2007), p. 36
[52] et al. Nat. Mater., 6 (2007), p. 770
[53] et al. Phys. Rev. Lett., 98 (2007)
[54] Science, 317 (2007), p. 219
[55] Eur. Phys. J. B, 69 (2009), p. 351
[56] Nano Lett., 10 (2010), p. 943
[57] et al. Eur. Phys. J. B, 75 (2010), p. 31
[58] Science, 244 (1989), p. 559
[59] Phys. Rev. Lett., 84 (2000), p. 4910
[60] et al. Phys. Rev. B, 71 (2005)
[61] Phys. Rev. Lett., 104 (2010)
[62] et al. Phys. Rev. Lett., 107 (2011)
[63] Phys. Rev. Lett., 99 (2007)
[64] Nano Lett., 10 (2010), p. 804
[65] et al. Phys. Rev. Lett., 103 (2009)
[66] Nat. Phys., 6 (2009), p. 109
[67] et al. Phys. Rev. Lett., 109 (2012)
[68] Phys. Rev. B, 77 (2008)
[69] Nanotechnology, 23 (2012)
[70] et al. Rev. Sci. Instrum., 78 (2007)
- An overview of physical and chemical long-range phenomena governed by Friedel oscillations: a bridge between physics and chemistry, Materials Chemistry Frontiers, Volume 9 (2025) no. 4, p. 541 | DOI:10.1039/d4qm00766b
- Irreducible momentum-space spin structure of Weyl semimetals and its signatures in Friedel oscillations, Physical Review B, Volume 109 (2024) no. 3 | DOI:10.1103/physrevb.109.035145
- Distinct quasiparticle interference patterns for surface impurity scattering on various Weyl semimetals, Physical Review B, Volume 109 (2024) no. 5 | DOI:10.1103/physrevb.109.054201
- π Band Folding and Interlayer Band Filling of Graphene upon Interface Potassium Intercalation, Advanced Materials Interfaces, Volume 9 (2022) no. 25 | DOI:10.1002/admi.202200585
- Visualization of the flat electronic band in twisted bilayer graphene near the magic angle twist, Nature Physics, Volume 17 (2021) no. 2, p. 184 | DOI:10.1038/s41567-020-0974-x
- Quasiparticle interference patterns in bilayer graphene with trigonal warping, Physical Review B, Volume 104 (2021) no. 23 | DOI:10.1103/physrevb.104.235425
- Static density response function studied by inelastic x-ray scattering: Friedel oscillations in solid and liquid Li, Physical Review B, Volume 102 (2020) no. 5 | DOI:10.1103/physrevb.102.054208
- Electronic properties of Pb islands on graphene: Consequences of a weak interface coupling from a combined STM and ab initio study, Physical Review B, Volume 98 (2018) no. 19 | DOI:10.1103/physrevb.98.195441
- Anisotropic Friedel oscillations in a two-dimensional electron gas with a Rashba–Dresselhaus spin–orbit interaction, Low Temperature Physics, Volume 43 (2017) no. 7, p. 855 | DOI:10.1063/1.4995636
- Scanning tunneling spectroscopy study of the Dirac spectrum of germanene, Journal of Physics: Condensed Matter, Volume 28 (2016) no. 28, p. 284006 | DOI:10.1088/0953-8984/28/28/284006
- Friedel oscillations: Decoding the hidden physics, Comptes Rendus. Physique, Volume 17 (2015) no. 3-4 | DOI:10.1016/j.crhy.2015.11.006
Cité par 11 documents. Sources : Crossref
Commentaires - Politique