Comptes Rendus
Snowpack permittivity profile retrieval from tomographic SAR data
Comptes Rendus. Physique, Volume 18 (2017) no. 1, pp. 57-65.

This work deals with 3D structure characterization and permittivity profile retrieval of snowpacks by tomographic SAR data processing. The acquisition system is a very high resolution ground based SAR system, developed and operated by the SAPHIR team, of IETR, University of Rennes-1 (France). It consists mainly of a vector network analyser and a multi-static antenna system, moving along two orthogonal directions, so as to obtain a two-dimensional synthetic array. Data were acquired during the AlpSAR campaign carried by the European Space Agency and led by ENVEO. In this study, tomographic imaging is performed using Time Domain Back Projection and consists in coherently combining the different recorded backscatter contributions. The assumption of free-space propagation during the focusing process is discussed and illustrated by focusing experimental data. An iterative method for estimating true refractive indices of the snow layers is presented. The antenna pattern is also compensated for. The obtained tomograms after refractive index correction are compared to the stratigraphy of the observed snowpack.

Received:
Accepted:
Published online:
DOI: 10.1016/j.crhy.2015.12.016
Keywords: Snowpack, Snow permittivity, SAR, SAR tomography, GB-SAR, Time domain back projection

Badreddine Rekioua 1, 2; Matthieu Davy 2; Laurent Ferro-Famil 3; Stefano Tebaldini 2

1 IETR UMR CNRS 6164, Université de Rennes-1, 35000 Rennes, France
2 Ecole militaire polytechnique de Bordj El Bahri, 16111, Alger, Algeria
3 Dipartimento di Electronica, Informazione e Bioingegneria, Politecnico di Milano, 20133 Milano, Italy
@article{CRPHYS_2017__18_1_57_0,
     author = {Badreddine Rekioua and Matthieu Davy and Laurent Ferro-Famil and Stefano Tebaldini},
     title = {Snowpack permittivity profile retrieval from tomographic {SAR} data},
     journal = {Comptes Rendus. Physique},
     pages = {57--65},
     publisher = {Elsevier},
     volume = {18},
     number = {1},
     year = {2017},
     doi = {10.1016/j.crhy.2015.12.016},
     language = {en},
}
TY  - JOUR
AU  - Badreddine Rekioua
AU  - Matthieu Davy
AU  - Laurent Ferro-Famil
AU  - Stefano Tebaldini
TI  - Snowpack permittivity profile retrieval from tomographic SAR data
JO  - Comptes Rendus. Physique
PY  - 2017
SP  - 57
EP  - 65
VL  - 18
IS  - 1
PB  - Elsevier
DO  - 10.1016/j.crhy.2015.12.016
LA  - en
ID  - CRPHYS_2017__18_1_57_0
ER  - 
%0 Journal Article
%A Badreddine Rekioua
%A Matthieu Davy
%A Laurent Ferro-Famil
%A Stefano Tebaldini
%T Snowpack permittivity profile retrieval from tomographic SAR data
%J Comptes Rendus. Physique
%D 2017
%P 57-65
%V 18
%N 1
%I Elsevier
%R 10.1016/j.crhy.2015.12.016
%G en
%F CRPHYS_2017__18_1_57_0
Badreddine Rekioua; Matthieu Davy; Laurent Ferro-Famil; Stefano Tebaldini. Snowpack permittivity profile retrieval from tomographic SAR data. Comptes Rendus. Physique, Volume 18 (2017) no. 1, pp. 57-65. doi : 10.1016/j.crhy.2015.12.016. https://comptes-rendus.academie-sciences.fr/physique/articles/10.1016/j.crhy.2015.12.016/

[1] H. Maitre Processing of Synthetic Aperture Radar (SAR) Images, ISTE, Wiley, 2010

[2] M.J. Butt; M. Bilal Application of snowmelt runoff model for water resource management, Hydrol. Process., Volume 25 (2011), pp. 3735-3747

[3] T. Guneriussen; K. Hogda; K. Sand ERS-1 SAR for snow monitoring, IGARSS '93 (1993), pp. 2008-2010

[4] J. Shi; J. Dozier SIR-C/X-SAR investigations of snow properties in Alpine region, IGARSS '95 (1995), pp. 1582-1584

[5] J. Koskinen; J. Pulliainen; M. Hallikainen The use of ERS-1 SAR data in snow melt monitoring, IEEE Trans. Geosci. Remote Sens., Volume 35 (1997) no. 3, pp. 601-610

[6] T. Schellenberger; B. Ventura; M. Zebisch; C. Notarnicola Wet snow cover mapping algorithm based on multitemporal cosmo-skymed x-band SAR images, IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens., Volume 5 (2012) no. 3, pp. 1045-1053

[7] A. Kondoh; N. Kamibayashi; T. Okada; S. Ishimori; S. Fujii Dependence of radar backscattering coefficient on the water equivalent and other snow conditions at c-band of ERS-1 SAR, IGARSS '93 (1993), pp. 1050-1052

[8] J. Shi; J. Dozier Estimation of snow water equivalence using SIR-C/X-SAR, IGARSS '96 (1996), pp. 2002-2004

[9] A. Arslan; J. Koshinen; J. Praks; H. Alasaimi; N. Kruopis; M. Hallikainen Retrieving snow water equivalence on C- and L-band SAR data for dry snow, IGARSS '98 (1998), pp. 1870-1872

[10] G. Macelloni; M. Brogioni; F. Montomoli; J. Lemmetyinen; J. Pulliainen; H. Rott Retrieval of snow water equivalent in forested area using multifrequency SAR data, EUSAR 2014 (2014), pp. 1-3

[11] J. Shi; J. Dozier Estimation of snow water equivalence using SIR-C/X-SAR. II. Inferring snow depth and particle size, IEEE Trans. Geosci. Remote Sens., Volume 38 (2000) no. 6, pp. 2475-2488

[12] S. Leinss; G. Parrella; I. Hajnsek Snow height determination by polarimetric phase differences in X-band SAR data, IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens., Volume 7 (2014) no. 9, pp. 3794-3810

[13] J. Evans; F. Kruse Determination of snow depth using elevation differences determined by interferometric SAR (INSAR), IGARSS (2014), pp. 962-965

[14] Z. Li; H. Guo; J. Shi Estimation of snow density with L-band polarimetric SAR data, IGARSS 2000 (2000), pp. 1757-1759

[15] J. Shi; J. Dozier Estimation of snow water equivalence using SIR-C/X-SAR. I. Inferring snow density and subsurface properties, IEEE Trans. Geosci. Remote Sens., Volume 38 (2000) no. 6, pp. 2465-2474

[16] J. Shi; J. Dozier; H. Rott Active microwave measurements of snow cover progress in polarimetric SAR, IGARSS '94 (1994), pp. 1922-1924

[17] J. Piesbergen; F. Holecz; H. Haefner Snow cover monitoring using multitemporal ERS-1 SAR data, IGARSS '95 (1995), pp. 1750-1752

[18] L. Ferro-Famil; C. Leconte; F. Boutet; X. Phan; M. Gay; Y. Durand Posar: a VHR tomographic GB-SAR system application to snow cover 3-d imaging at X and Ku bands, EURAD (2012), pp. 130-133

[19] L. Ferro-Famil; S. Tebaldini; M. Davy; C. Leconte; F. Boutet Very high-resolution three-dimensional imaging of natural environments using a tomographic ground-based SAR system, EuCAP (2014), pp. 3221-3224

[20] A. Reigber; A. Moreira First demonstration of airborne SAR tomography using multibaseline l-band data, IEEE Trans. Geosci. Remote Sens., Volume 38 (2000) no. 5, pp. 2142-2152

[21] M. Hallikainen; F. Ulaby; M. Abdel-Razik Measurements of the dielectric properties of snow in the 4–18 GHz frequency range, Proc. 12th European Microwave Conference, 1982, pp. 151-156

[22] M. Hallikainen; F. Ulaby; M. Abdelrazik Dielectric properties of snow in the 3 to 37 GHz range, IEEE Trans. Antennas Propag., Volume 34 (1986) no. 11, pp. 1329-1340

[23] M. Born; E. Wolf; A. Bhatia; D. Gabor; A. Stokes; A. Taylor; P. Wayman; W. Wilcock Principles of Optics: Electromagnetic Theory of Propagation, Interference and Diffraction of Light, Cambridge University Press, 2000

[24] J.A. Sethian A fast marching level set method for monotonically advancing fronts, Proc. Natl. Acad. Sci. USA, Volume 93 (1996) no. 4, pp. 1591-1595

[25] S. Tebaldini; M. Mariotti d'Alessandro; F. Banda; C. Prati Tomographic-quality phase calibration via phase center double localization, IGARSS (2013), pp. 89-92

[26] J. Zhou; D.-G. Fang Effective polarized backscattering coefficients of a slightly rough surface to an EM beam, Proc. Antennas and Propagation Society International Symposium, 1993, AP-S Digest, vol. 3, 1993, pp. 1320-1323

[27] C. hao Kuo; M. Moghaddam Two-dimensional full-wave scattering from discrete random media in layered rough surfaces, Proc. IEEE Antennas and Propagation Society International Symposium, 2007, pp. 4801-4804

Cited by Sources:

Comments - Policy