Comptes Rendus
Thermoelectric mesoscopic phenomena / Phénomènes thermoélectriques mésoscopiques
Thermoelectrics with Coulomb-coupled quantum dots
Comptes Rendus. Physique, Volume 17 (2016) no. 10, pp. 1109-1122.

In this article we review the thermoelectric properties of three terminal devices with Coulomb-coupled quantum dots (QDs) as observed in recent experiments [1,2]. The system we consider consists of two Coulomb-blockade QDs, one of which can exchange electrons with only a single reservoir (heat reservoir), while the other dot is tunnel coupled with two reservoirs at a lower temperature (conductor). The heat reservoir and the conductor interact only via the Coulomb coupling of the quantum dots. It has been found that two regimes have to be considered. In the first one, the heat flow between the two systems is small. In this regime, thermally driven occupation fluctuations of the hot QD modify the transport properties of the conductor system. This leads to an effect called thermal gating. Experiments have shown how this can be used to control charge flow in the conductor by means of temperature in a remote reservoir. We further substantiate the observations with model calculations, and implications for the realisation of an all-thermal transistor are discussed. In the second regime, the heat flow between the two systems is relevant. Here the system works as a nanoscale heat engine, as proposed recently (Sánchez and Büttiker [3]). We review the conceptual idea, its experimental realisation and the novel features arising in this new kind of thermoelectric device such as decoupling of heat and charge flow.

Dans cet article, nous passons en revue les propriétés thermoélectriques de systèmes à trois terminaux faits de boîtes quantiques (BQ) en couplage coulombien, comme observé dans des expériences récentes [1,2]. Le système considéré est fait de deux BQ en régime de blocage de Coulomb ; l'une d'entre elles peut échanger des électrons avec un seul réservoir (réservoir de chaleur), tandis que l'autre est couplée par effet tunnel à deux réservoirs de plus basse température (conducteur). Le réservoir de chaleur et le conducteur n'interagissent seulement que par le biais du couplage coulombien entre les boîtes quantiques. Il a été trouvé que deux régimes doivent être considérés. Dans le premier, le flux de chaleur entre les deux systèmes est petit. Dans ce régime, des fluctuations de l'occupation de la BQ chaude engendrées thermiquement modifient les propriétés de transport du système conducteur. Cela conduit à un effet dit de grille thermique. Des expériences ont montré comment ceci pouvait être utilisé pour contrôler le flux de charge dans le conducteur en jouant sur la température d'un réservoir à distance. Nous détaillons ces observations par des calculs sur un modèle et discutons les conséquences relatives à la réalisation d'un transistor tout thermique. Dans le deuxième régime, le flux de chaleur entre les deux systèmes est pertinent. Ici, le sytème travaille comme un nano-moteur thermique, comme cela a été proposé recemment (Sánchez and Büttiker [3]). Nous passons en revue les concepts, les réalisations expérimentales et les propriétés nouvelles émergeant de cette nouvelle sorte de systèmes thermoélectriques, tels que le découplage entre les flux de charge et de chaleur.

Published online:
DOI: 10.1016/j.crhy.2016.08.001
Keywords: Mesoscopic thermoelectrics, Quantum dot, Coulomb blockade, Thermal gating, Energy harvesting
Mot clés : Thermoélectrique mésoscopique, Boîte quantique, Blocage de Coulomb, Grille thermique, Récolte d'énergie

Holger Thierschmann 1, 2; Rafael Sánchez 3; Björn Sothmann 4; Hartmut Buhmann 1; Laurens W. Molenkamp 1

1 Experimentelle Physik 3, Physikalisches Institut, Universität Würzburg, Am Hubland, 97074 Würzburg, Germany
2 Kavli Institut of Nanoscience, Faculty of Applied Sciences, Delft University of Technology, Lorentzweg 1, 2628 CJ Delft, The Netherlands
3 Instituto Gregorio Millán, Universidad Carlos III de Madrid, 28911 Leganés, Madrid, Spain
4 Institute for Theoretical Physics and Astrophysics, University of Würzburg, Am Hubland, 97074 Würzburg, Germany
@article{CRPHYS_2016__17_10_1109_0,
     author = {Holger Thierschmann and Rafael S\'anchez and Bj\"orn Sothmann and Hartmut Buhmann and Laurens W. Molenkamp},
     title = {Thermoelectrics with {Coulomb-coupled} quantum dots},
     journal = {Comptes Rendus. Physique},
     pages = {1109--1122},
     publisher = {Elsevier},
     volume = {17},
     number = {10},
     year = {2016},
     doi = {10.1016/j.crhy.2016.08.001},
     language = {en},
}
TY  - JOUR
AU  - Holger Thierschmann
AU  - Rafael Sánchez
AU  - Björn Sothmann
AU  - Hartmut Buhmann
AU  - Laurens W. Molenkamp
TI  - Thermoelectrics with Coulomb-coupled quantum dots
JO  - Comptes Rendus. Physique
PY  - 2016
SP  - 1109
EP  - 1122
VL  - 17
IS  - 10
PB  - Elsevier
DO  - 10.1016/j.crhy.2016.08.001
LA  - en
ID  - CRPHYS_2016__17_10_1109_0
ER  - 
%0 Journal Article
%A Holger Thierschmann
%A Rafael Sánchez
%A Björn Sothmann
%A Hartmut Buhmann
%A Laurens W. Molenkamp
%T Thermoelectrics with Coulomb-coupled quantum dots
%J Comptes Rendus. Physique
%D 2016
%P 1109-1122
%V 17
%N 10
%I Elsevier
%R 10.1016/j.crhy.2016.08.001
%G en
%F CRPHYS_2016__17_10_1109_0
Holger Thierschmann; Rafael Sánchez; Björn Sothmann; Hartmut Buhmann; Laurens W. Molenkamp. Thermoelectrics with Coulomb-coupled quantum dots. Comptes Rendus. Physique, Volume 17 (2016) no. 10, pp. 1109-1122. doi : 10.1016/j.crhy.2016.08.001. https://comptes-rendus.academie-sciences.fr/physique/articles/10.1016/j.crhy.2016.08.001/

[1] H. Thierschmann; F. Arnold; M. Mitterüller; L. Maier; C. Heyn; W. Hansen; H. Buhmann; L.W. Molenkamp Thermal gating of charge currents with Coulomb coupled quantum dots, New J. Phys., Volume 17 (2015)

[2] H. Thierschmann; R. Sánchez; B. Sothmann; F. Arnold; C. Heyn; W. Hansen; H. Buhmann; L.W. Molenkamp Three-terminal energy harvester with coupled quantum dots, Nat. Nanotechnol., Volume 10 (2015), p. 845

[3] R. Sánchez; M. Büttiker Optimal energy quanta to current conversion, Phys. Rev. B, Volume 83 (2011)

[4] B.E. White Beyond the battery, Nat. Nanotechnol., Volume 3 (2008), pp. 71-72

[5] A. Shakouri Recent developments in semiconductor thermoelectric physics and materials, Annu. Rev. Mater. Res., Volume 41 (2011), pp. 399-431

[6] G.D. Mahan; J.O. Sofo The best thermoelectric, Proc. Natl. Acad. Sci., Volume 93 (1996), pp. 7436-7439

[7] H.B. Radousky; H. Liang Energy harvesting: an integrated view of materials, devices and applications, Nanotechnology, Volume 23 (2012), p. 502001

[8] L.W. Molenkamp; H. Van Houten; C.W.J. Beenakker; R. Eppenga; C.T. Foxon Quantum oscillations in the transverse voltage of a channel in the nonlinear transport regime, Phys. Rev. Lett., Volume 65 (1990), p. 1052

[9] L.W. Molenkamp; Th. Gravier; H. van Houten; O.J.A. Buijk; M.A.A. Mabesoone; C.T. Foxon Peltier coefficient and thermal conductance of a quantum point contact, Phys. Rev. Lett., Volume 68 (1992), p. 3765

[10] C. Riha; O. Chiatti; S.S. Buchholz; D. Reuter; A.D. Wieck; S.F. Fischer Heat flow, transport and fluctuations in etched semiconductor quantum wire structures, Phys. Status Solidi A, Volume 213 (2016), pp. 571-581

[11] A.A.M. Staring; L.W. Molenkamp; B.W. Alphenaar; H. van Houten; O.J.A. Buyk; M.A.A. Mabesoone; C.W.J. Beenakker; C.T. Foxon Coulomb-blockade oscillations in the thermopower of a quantum dot, Europhys. Lett., Volume 22 (1993), p. 57

[12] A.S. Dzurak; C.G. Smith; M. Pepper; D.A. Ritchie; J.E.F. Frost; G.A.C. Jones; D.G. Hasko Observation of Coulomb blockade oscillations in the thermopower of a quantum dot, Solid State Commun., Volume 87 (1993), p. 1145

[13] A.S. Dzurak; C.G. Smith; C.H.W. Barnes; M. Pepper; L. Martín-Moreno; C.T. Liang; D.A. Ritchie; G.A.C. Jones Thermoelectric signature of the excitation spectrum of a quantum dot, Phys. Rev. B, Volume 55 (1997)

[14] S.F. Godijn; S. Möller; H. Buhmann; L.W. Molenkamp; S.A. van Langen Thermopower of a chaotic quantum dot, Phys. Rev. Lett., Volume 82 (1999), p. 2927

[15] R. Scheibner; H. Buhmann; D. Reuter; M.N. Kiselev; L.W. Molenkamp Thermopower of a Kondo spin-correlated Kondo quantum dot, Phys. Rev. Lett., Volume 95 (2005)

[16] R. Scheibner; E.G. Novik; T. Borzenko; M. König; D. Reuter; A.D. Wieck; H. Buhmann; L.W. Molenkamp Sequential and cotunneling behavior in the temperature-dependent thermopower of few-electron quantum dots, Phys. Rev. B, Volume 75 (2007)

[17] S. Fahlvik Svensson; A.I. Persson; E.A. Hoffmann; N. Nakpathomkun; H.A. Nilsson; H.Q. Xu; L. Samuelson; H. Linke Lineshape of the thermopower of quantum dots, New J. Phys., Volume 14 (2012)

[18] S. Fahlvik Svensson; E.A. Hoffmann; N. Nakpathomkun; P.M. Wu; H. Xu; H.A. Nilsson; D. Sánchez; V. Kashcheyevs; H. Linke Nonlinear thermovoltage and thermocurrent in quantum dots, New J. Phys., Volume 15 (2013)

[19] H. Thierschmann; M. Henke; J. Knorr; L. Maier; C. Heyn; W. Hansen; H. Buhmann; L.W. Molenkamp Diffusion thermopower of a serial double quantum dot, New J. Phys., Volume 13 (2013)

[20] L.D. Hicks; M.S. Dresselhaus Effect of quantum-well structures on the thermoelectric figure of merit, Phys. Rev. B, Volume 47 (1993), p. 12727

[21] L.D. Hicks; M.S. Dresselhaus Thermoelectric figure of merit of a one-dimensional conductor, Phys. Rev. B, Volume 47 (1993), p. 16631

[22] T.E. Humphrey; R. Newbury; R.P. Taylor; H. Linke Reversible quantum brownian heat engines for electrons, Phys. Rev. Lett., Volume 89 (2002)

[23] T. Humphrey; H. Linke Reversible thermoelectric nanomaterials, Phys. Rev. Lett., Volume 94 (2005)

[24] N. Nakpathomkun; H. Xu; H. Linke Thermoelectric efficiency at maximum power in low-dimensional systems, Phys. Rev. B, Volume 82 (2010)

[25] J. Cai; G. Mahan Transport properties of quantum dot arrays, Phys. Rev. B, Volume 78 (2008)

[26] G. Rajput; K.C. Sharma Colossal enhancement in thermoelectric efficiency of weakly coupled double quantum dot system, J. Appl. Phys., Volume 110 (2011)

[27] S. Donsa; S. Andergassen; K. Held Double quantum dot as a minimal thermoelectric generator, Phys. Rev. B, Volume 89 (2014)

[28] R. Whitney Most efficient quantum thermoelectric at finite power output, Phys. Rev. Lett., Volume 112 (2014)

[29] R. Whitney Finding the quantum thermoelectric with maximal efficiency and minimal entropy production at given power output, Phys. Rev. B, Volume 91 (2015)

[30] X. Chen; H. Buhmann; L.W. Molenkamp Thermopower of the molecular state in a double quantum dot, Phys. Rev. B, Volume 61 (2000), p. 16801

[31] L.W. Molenkamp; K. Flensberg; M. Kemerink Scaling of the Coulomb energy due to quantum fluctuations in the charge on a quantum dot, Phys. Rev. Lett., Volume 75 (1995), p. 4282

[32] I.H. Chan; R.M. Westervelt; K.D. Maranowski; A.C. Gossard Strongly capacitively coupled quantum dots, Appl. Phys. Lett., Volume 80 (2002), p. 1818

[33] A. Hübel; J. Weis; W. Dietsche; K.v. Klitzing Two laterally arranged quantum dot systems with strong capacitive interdot coupling, Appl. Phys. Lett., Volume 91 (2007), p. 102101

[34] N.A. Mortensen; K. Flensberg; A.-P. Jauho Coulomb drag in coherent mesoscopic systems, Phys. Rev. Lett., Volume 86 (2001), p. 1841

[35] G. Shinkai; T. Hayashi; T. Ota; K. Muraki; T. Fujisawa Bidirectional current drag induced by two-electron cotunneling in coupled double quantum dots, Appl. Phys. Express, Volume 2 (2009)

[36] A. Levchenko; A. Kamenev Coulomb drag in quantum circuits, Phys. Rev. Lett., Volume 101 (2008)

[37] V. Moldoveanu; B. Tanatar Coulomb drag in parallel quantum dots, Europhys. Lett., Volume 86 (2009), p. 67004

[38] R. Sánchez; R. López; D. Sánchez; M. Büttiker Mesoscopic Coulomb drag, broken detailed balance, and fluctuation relations, Phys. Rev. Lett., Volume 104 (2010)

[39] M. Stark; S. Kohler Coherent quantum ratchets driven by tunnel oscillations, Europhys. Lett., Volume 91 (2010), p. 20007

[40] D. Laroche; G. Gervais; M.P. Lilly; J.L. Reno Positive and negative Coulomb drag in quantum wires, Nat. Nanotechnol., Volume 6 (2011) no. 12, p. 793

[41] D. Bischoff; M. Eich; O. Zilberberg; C. Rössler; T. Ihn; K. Ensslin Measurement back-action in stacked graphene quantum dots, Nano Lett., Volume 15 (2015), p. 6003

[42] K. Kaasbjerg; A.-P. Jauho Correlated Coulomb drag in capacitively coupled quantum-dot structures, Phys. Rev. Lett., Volume 116 (2016)

[43] D.T. McClure; L. DiCarlo; Y. Zhang; H.-A. Engel; C.M. Marcus; M.P. Hanson; A.C. Gossard Tunable noise cross correlations in a double quantum dot, Phys. Rev. Lett., Volume 98 (2007)

[44] M.C. Goorden; M. Büttiker Two-particle scattering matrix of two interacting mesoscopic conductors, Phys. Rev. Lett., Volume 99 (2007)

[45] M.C. Goorden; M. Büttiker Cross-correlation of two interacting conductors, Phys. Rev. B, Volume 77 (2008)

[46] G. Michałek; B.R. Bułka Dynamical correlations in electronic transport through a system of coupled quantum dots, Phys. Rev. B, Volume 80 (2009)

[47] M. Gattobigio; G. Iannaccone; adn M. Macucci Enhancement and suppression of shot noise in capacitively coupled metallic double dots, Phys. Rev. B, Volume 65 (2002)

[48] R. Sánchez; S. Kohler; P. Hänggi; G. Platero Electron bunching in stacks of coupled quantum dots, Phys. Rev. B, Volume 77 (2008)

[49] R. Hussein; S. Kohler; F. Sols Heat pump driven by the shot noise of a tunnel contact, Physica E, Volume 77 (2016), p. 156

[50] R.D. Astumian Reciprocal relations for nonlinear coupled transport, Phys. Rev. Lett., Volume 101 (2008)

[51] G. Bulnes Cuetara; M. Esposito; P. Garpard Fluctuation theorems for capacitively coupled electronic currents, Phys. Rev. B, Volume 84 (2011)

[52] S. Gustavsson; R. Leturcq; B. Simovič; R. Schleser; T. Ihn; P. Studerus; K. Ensslin; D.C. Driscoll; A.C. Gossard Counting statistics of single electron transport in a quantum dot, Phys. Rev. Lett., Volume 96 (2006)

[53] T. Fujisawa; T. Hayashi; R. Tomita; Y. Hirayama Bidirectional counting of single electrons, Science, Volume 312 (2006), p. 1634

[54] B. Küng; C. Rössler; M. Beck; M. Marthaler; D.S. Golubev; Y. Utsumi; T. Ihn; K. Ensslin Irreversibility on the level of single-electron tunnelling, Phys. Rev. X, Volume 2 (2012)

[55] P. Strasberg; G. Schaller; T. Brandes; M. Esposito Thermodynamics of a physical model implementing a Maxwell demon, Phys. Rev. Lett., Volume 110 (2013)

[56] J.V. Koski; A. Kutvonen; I.M. Khaymovich; T. Ala-Nissila; J.P. Pekola On-chip Maxwell's demon as an information-powered refrigerator, Phys. Rev. Lett., Volume 115 (2015)

[57] R. Whitney; R. Sánchez; F. Haupt; J. Splettstoesser Thermoelectricity without absorbing energy from the heat sources, Physica E, Volume 75 (2016), p. 257

[58] M. Terraneo; M. Peyrad; G. Casati Controlling the energy flow in nonlinear lattices: a model for a thermal rectifier, Phys. Rev. Lett., Volume 88 (2002)

[59] C.W. Chang; D. Okawa; A. Majumdar; A. Zettl Solid-state thermal rectifier, Science, Volume 314 (2006), p. 1121

[60] R. Scheibner; M. König; D. Reuter; A.D. Wieck; C. Gould; H. Buhmann; L.W. Molenkamp Quantum dot as a thermal rectifier, New J. Phys., Volume 10 (2008)

[61] T. Ruokola; T. Ojanen Single-electron heat diode: asymmetric heat transport between electronic reservoirs through Coulomb islands, Phys. Rev. B, Volume 83 (2011)

[62] J. Matthews; D. Sánchez; M. Larsson; H. Linke Thermally driven ballistic rectifier, Phys. Rev. B, Volume 85 (2012)

[63] Y.-C. Tseng; D.M.T. Kuo; Y.-C. Chang; Y.-T. Lin Heat rectification effect of serially coupled quantum dots, Appl. Phys. Lett., Volume 103 (2013)

[64] Y.-C. Tseng; D.M.T. Kuo; Y.-C. Chang; Y.-T. Lin Rectification effect of serially coupled quantum dots, Appl. Phys. Lett., Volume 103 (2013)

[65] R. Sánchez; B. Sothmann; A.N. Jordan Heat diode and engine based on quantum Hall edge states, New J. Phys., Volume 17 (2015)

[66] S. Yigen; A. Champagne Wiedemann–Franz relation and thermal-transistor effect in suspended graphene, Nano Lett., Volume 14 (2014), p. 289

[67] P. Ben-Abdallah; S.-A. Biehs Near-field thermal transistor, Phys. Rev. Lett., Volume 112 (2014)

[68] J.-H. Jiang; M. Kilkarni; D. Segal; Y. Imry Phonon thermoelectric transistors and rectifiers, Phys. Rev. B, Volume 92 (2015)

[69] L. Arrachea; M. Moskalets; L. Martin-Moreno Heat production and energy balance in nanoscale engines driven by time-dependent fields, Phys. Rev. B, Volume 75 (2007)

[70] M. Rey; M. Strass; S. Kohler; P. Hänggi; F. Sols Nonadiabatic electron heat pump, Phys. Rev. B, Volume 76 (2007)

[71] S. Juergens; F. Haupt; M. Moskalets; J. Splettstoesser Thermoelectric performance of a driven double quantum dot, Phys. Rev. B, Volume 87 (2013)

[72] H.L. Edwards; Q. Niu; G.A. Georgakis; A.L. de Lozanne Cryogenic cooling using tunnelling structures with sharp energy features, Phys. Rev. B, Volume 52 (1995), p. 5714

[73] J.R. Prance; C.G. Smith; J.P. Griffiths; S.J. Chorley; D. Anderson; G.A.C. Jones; I. Farrer; D.A. Ritchie Electronic refrigeration of a two-dimensional electron gas, Phys. Rev. Lett., Volume 102 (2009)

[74] D. Venturelli; R. Fazio; V. Giovanetti Minimal self-contained quantum refrigeration machine based on four quantum dots, Phys. Rev. Lett., Volume 110 (2013)

[75] J.P. Pekola; J.V. Koski; D.V. Averin Refrigerator based on the Coulomb barrier for single-electron tunnelling, Phys. Rev. B, Volume 89 (2014)

[76] A.V. Feshchenko; J.V. Koski; J.P. Pekola Experimental realisation of a Coulomb blockade refrigerator, Phys. Rev. B, Volume 90 (2014)

[77] B. Sothmann; R. Sánchez; A.N. Jordan; M. Büttiker Rectification of thermal fluctuations in a chaotic cavity heat engine, Phys. Rev. B, Volume 85 (2012)

[78] O. Entin-Wohlman; Y. Imry; A. Aharony Three-terminal thermoelectric transport through a molecular junction, Phys. Rev. B, Volume 82 (2010)

[79] J.-H. Jiang; O. Entin-Wohlman; Y. Imry Thermoelectric three-terminal hopping transport through one-dimensional nanosystems, Phys. Rev. B, Volume 85 (2012)

[80] J.-H. Jiang; O. Entin-Wohlman; Y. Imry Hopping thermoelectric transport in finite systems: boundary effects, Phys. Rev. B, Volume 87 (2013)

[81] B. Sothmann; M. Büttiker Magnon-driven quantum-dot heat engine, Europhys. Lett., Volume 99 (2012), p. 27001

[82] B. Rutten; M. Esposito; B. Cleuren Reaching optimal efficiencies using nanosized photoelectric devices, Phys. Rev. B, Volume 80 (2009)

[83] T. Ruokola; T. Ojanen Theory of single-electron heat engines coupled to electromagnetic environments, Phys. Rev. B, Volume 86 (2012)

[84] C. Bergenfeldt; P. Samuelsson; B. Sothmann; C. Flindt; M. Büttiker Hybrid microwave-cavity heat engine, Phys. Rev. Lett., Volume 112 (2014)

[85] L. Henriet; A.N. Jordan; K. Le Hur Electrical current from quantum vacuum fluctuations in nanoengines, Phys. Rev. B, Volume 92 (2015)

[86] P.P. Hofer; J.-R. Souquet; A.A. Clerk Quantum heat engine based on photon-assisted Cooper pair tunnelling, Phys. Rev. B, Volume 93 (2016)

[87] O. Entin-Wohlman; A. Aharony Three-terminal thermoelectric transport under broken time-reversal symmetry, Phys. Rev. B, Volume 85 (2012)

[88] K. Brandner; K. Saito; U. Seifert Strong bounds on Onsager coefficients and efficiency for three-terminal thermoelectric transport in a magnetic field, Phys. Rev. Lett., Volume 110 (2013)

[89] A.N. Jordan; B. Sothmann; R. Sánchez; M. Büttiker Powerful and efficient energy harvester with resonant-tunnelling quantum dots, Phys. Rev. B, Volume 87 (2013)

[90] F. Mazza; R. Bosisio; G. Benenti; V. Giovannetti; R. Fazio; F. Taddei Thermoelectric efficiency of three-terminal quantum thermal machines, New J. Phys., Volume 16 (2014)

[91] B. Sothmann; R. Sánchez; A.N. Jordan Thermoelectric energy harvesting with quantum dots, Nanotechnology, Volume 26 (2015)

[92] D. Sánchez; L. Serra Thermoelectric transport of mesoscopic conductors coupled to voltage and thermal probes, Phys. Rev. B, Volume 84 (2011)

[93] B. Sothmann; R. Sánchez; A.N. Jordan; M. Büttiker Powerful and efficient energy harvester based on resonant-tunnelling quantum wells, New J. Phys., Volume 15 (2013)

[94] J.-H. Jiang; O. Entin-Wohlman; Y. Imry Three-terminal semiconductor junction thermoelectric devices: improving performance, New J. Phys., Volume 15 (2013)

[95] R. Bosisio; G. Fleury; J.-L. Pichard; C. Gorini Nanowire-based thermoelectric ratchet in the hopping regime, Phys. Rev. B, Volume 93 (2016)

[96] Y. Choi; A.N. Jordan Three-terminal heat engine and refrigerator based on superlattices, Physica E, Volume 74 (2016), p. 465

[97] F. Mazza; S. Valentini; R. Bosisio; G. Benenti; V. Giovannetti; R. Fazio; F. Taddei Separation of heat and charge currents for boosted thermoelectric conversion, Phys. Rev. B, Volume 91 (2015)

[98] B. Sothmann; R. Sánchez; A.N. Jordan Quantum Nernst engines, Europhys. Lett., Volume 107 (2014), p. 47003

[99] R. Sánchez; B. Sothmann; A.N. Jordan Chiral thermoelectrics with quantum hall edge channels, Phys. Rev. Lett., Volume 114 (2015)

[100] P.P. Hofer; B. Sothmann Quantum heat engines based on electronic Mach–Zehnder interferometers, Phys. Rev. B, Volume 91 (2015)

[101] R. Sánchez; B. Sothmann; A.N. Jordan Effect of incoherent scattering on three-terminal quantum Hall thermoelectrics, Physica E, Volume 75 (2016), p. 86

[102] P. Reddy; S.-Y. Jang; R. Segalman; A. Majumdar Thermoelectricity in molecular junctions, Science, Volume 315 (2007), p. 5818

[103] F. Hartmann; P. Pfeffer; S. Höfling; M. Kamp; L. Worschech Voltage fluctuation to current converter with Coulomb-coupled quantum dots, Phys. Rev. Lett., Volume 114 (2015)

[104] B. Roche; P. Roulleau; T. Julien; Y. Jompol; I. Farrer; D.A. Ritchie; D.C. Glattli Harvesting dissipated energy with a mesoscopic ratchet, Nat. Commun., Volume 6 (2015), p. 6738

[105] P. Pfeffer; F. Hartmann; S. Höfling; M. Kamp; L. Worschech Logical stochastic resonance with a Coulomb-coupled quantum-dot rectifier, Rev. Phys. Appl., Volume 4 (2015)

[106] Single Charge Tunneling. Coulomb Blockade Phenomena in Nanostructures (H. Grabert; M.H. Devoret, eds.), Plenum Press, New York, 1992

[107] R. Sánchez; M. Büttiker; R. Sánchez; M. Büttiker Detection of single-electron heat transfer statistics, Europhys. Lett., Volume 100 (2012), p. 47008

[108] R. Sánchez; B. Sothmann; A.N. Jordan; M. Büttiker Correlations of heat and charge currents in quantum dot thermoelectric engines, New J. Phys., Volume 15 (2013)

[109] W.G. van der Wiel et al. Electron transport through double quantum dots, Rev. Mod. Phys., Volume 75 (2002), pp. 1-22

[110] C.W.J. Beenakker Theory of Coulomb-blockade oscillations in the conductance of a quantum dot, Phys. Rev. B, Volume 44 (1991), p. 1646

[111] C.W.J. Beenakker; A.A.M. Staring Theory of the thermopower of a quantum dot, Phys. Rev. B, Volume 46 (1992), pp. 9667-9676

[112] A. Svilans; A.M. Burke; S.F. Svensson; M. Leijnse; H. Linke Nonlinear thermoelectric response due to energy-dependent transport properties of a quantum dot, Physica E, Volume 82 (2015), pp. 34-38

[113] E. Fermi Thermodynamics, Dover Publications Inc., New York, 1956

Cited by Sources:

Comments - Policy