In this article we review the thermoelectric properties of three terminal devices with Coulomb-coupled quantum dots (QDs) as observed in recent experiments [1,2]. The system we consider consists of two Coulomb-blockade QDs, one of which can exchange electrons with only a single reservoir (heat reservoir), while the other dot is tunnel coupled with two reservoirs at a lower temperature (conductor). The heat reservoir and the conductor interact only via the Coulomb coupling of the quantum dots. It has been found that two regimes have to be considered. In the first one, the heat flow between the two systems is small. In this regime, thermally driven occupation fluctuations of the hot QD modify the transport properties of the conductor system. This leads to an effect called thermal gating. Experiments have shown how this can be used to control charge flow in the conductor by means of temperature in a remote reservoir. We further substantiate the observations with model calculations, and implications for the realisation of an all-thermal transistor are discussed. In the second regime, the heat flow between the two systems is relevant. Here the system works as a nanoscale heat engine, as proposed recently (Sánchez and Büttiker [3]). We review the conceptual idea, its experimental realisation and the novel features arising in this new kind of thermoelectric device such as decoupling of heat and charge flow.
Dans cet article, nous passons en revue les propriétés thermoélectriques de systèmes à trois terminaux faits de boîtes quantiques (BQ) en couplage coulombien, comme observé dans des expériences récentes [1,2]. Le système considéré est fait de deux BQ en régime de blocage de Coulomb ; l'une d'entre elles peut échanger des électrons avec un seul réservoir (réservoir de chaleur), tandis que l'autre est couplée par effet tunnel à deux réservoirs de plus basse température (conducteur). Le réservoir de chaleur et le conducteur n'interagissent seulement que par le biais du couplage coulombien entre les boîtes quantiques. Il a été trouvé que deux régimes doivent être considérés. Dans le premier, le flux de chaleur entre les deux systèmes est petit. Dans ce régime, des fluctuations de l'occupation de la BQ chaude engendrées thermiquement modifient les propriétés de transport du système conducteur. Cela conduit à un effet dit de grille thermique. Des expériences ont montré comment ceci pouvait être utilisé pour contrôler le flux de charge dans le conducteur en jouant sur la température d'un réservoir à distance. Nous détaillons ces observations par des calculs sur un modèle et discutons les conséquences relatives à la réalisation d'un transistor tout thermique. Dans le deuxième régime, le flux de chaleur entre les deux systèmes est pertinent. Ici, le sytème travaille comme un nano-moteur thermique, comme cela a été proposé recemment (Sánchez and Büttiker [3]). Nous passons en revue les concepts, les réalisations expérimentales et les propriétés nouvelles émergeant de cette nouvelle sorte de systèmes thermoélectriques, tels que le découplage entre les flux de charge et de chaleur.
Mot clés : Thermoélectrique mésoscopique, Boîte quantique, Blocage de Coulomb, Grille thermique, Récolte d'énergie
Holger Thierschmann 1, 2; Rafael Sánchez 3; Björn Sothmann 4; Hartmut Buhmann 1; Laurens W. Molenkamp 1
@article{CRPHYS_2016__17_10_1109_0, author = {Holger Thierschmann and Rafael S\'anchez and Bj\"orn Sothmann and Hartmut Buhmann and Laurens W. Molenkamp}, title = {Thermoelectrics with {Coulomb-coupled} quantum dots}, journal = {Comptes Rendus. Physique}, pages = {1109--1122}, publisher = {Elsevier}, volume = {17}, number = {10}, year = {2016}, doi = {10.1016/j.crhy.2016.08.001}, language = {en}, }
TY - JOUR AU - Holger Thierschmann AU - Rafael Sánchez AU - Björn Sothmann AU - Hartmut Buhmann AU - Laurens W. Molenkamp TI - Thermoelectrics with Coulomb-coupled quantum dots JO - Comptes Rendus. Physique PY - 2016 SP - 1109 EP - 1122 VL - 17 IS - 10 PB - Elsevier DO - 10.1016/j.crhy.2016.08.001 LA - en ID - CRPHYS_2016__17_10_1109_0 ER -
%0 Journal Article %A Holger Thierschmann %A Rafael Sánchez %A Björn Sothmann %A Hartmut Buhmann %A Laurens W. Molenkamp %T Thermoelectrics with Coulomb-coupled quantum dots %J Comptes Rendus. Physique %D 2016 %P 1109-1122 %V 17 %N 10 %I Elsevier %R 10.1016/j.crhy.2016.08.001 %G en %F CRPHYS_2016__17_10_1109_0
Holger Thierschmann; Rafael Sánchez; Björn Sothmann; Hartmut Buhmann; Laurens W. Molenkamp. Thermoelectrics with Coulomb-coupled quantum dots. Comptes Rendus. Physique, Volume 17 (2016) no. 10, pp. 1109-1122. doi : 10.1016/j.crhy.2016.08.001. https://comptes-rendus.academie-sciences.fr/physique/articles/10.1016/j.crhy.2016.08.001/
[1] Thermal gating of charge currents with Coulomb coupled quantum dots, New J. Phys., Volume 17 (2015)
[2] Three-terminal energy harvester with coupled quantum dots, Nat. Nanotechnol., Volume 10 (2015), p. 845
[3] Optimal energy quanta to current conversion, Phys. Rev. B, Volume 83 (2011)
[4] Beyond the battery, Nat. Nanotechnol., Volume 3 (2008), pp. 71-72
[5] Recent developments in semiconductor thermoelectric physics and materials, Annu. Rev. Mater. Res., Volume 41 (2011), pp. 399-431
[6] The best thermoelectric, Proc. Natl. Acad. Sci., Volume 93 (1996), pp. 7436-7439
[7] Energy harvesting: an integrated view of materials, devices and applications, Nanotechnology, Volume 23 (2012), p. 502001
[8] Quantum oscillations in the transverse voltage of a channel in the nonlinear transport regime, Phys. Rev. Lett., Volume 65 (1990), p. 1052
[9] Peltier coefficient and thermal conductance of a quantum point contact, Phys. Rev. Lett., Volume 68 (1992), p. 3765
[10] Heat flow, transport and fluctuations in etched semiconductor quantum wire structures, Phys. Status Solidi A, Volume 213 (2016), pp. 571-581
[11] Coulomb-blockade oscillations in the thermopower of a quantum dot, Europhys. Lett., Volume 22 (1993), p. 57
[12] Observation of Coulomb blockade oscillations in the thermopower of a quantum dot, Solid State Commun., Volume 87 (1993), p. 1145
[13] Thermoelectric signature of the excitation spectrum of a quantum dot, Phys. Rev. B, Volume 55 (1997)
[14] Thermopower of a chaotic quantum dot, Phys. Rev. Lett., Volume 82 (1999), p. 2927
[15] Thermopower of a Kondo spin-correlated Kondo quantum dot, Phys. Rev. Lett., Volume 95 (2005)
[16] Sequential and cotunneling behavior in the temperature-dependent thermopower of few-electron quantum dots, Phys. Rev. B, Volume 75 (2007)
[17] Lineshape of the thermopower of quantum dots, New J. Phys., Volume 14 (2012)
[18] Nonlinear thermovoltage and thermocurrent in quantum dots, New J. Phys., Volume 15 (2013)
[19] Diffusion thermopower of a serial double quantum dot, New J. Phys., Volume 13 (2013)
[20] Effect of quantum-well structures on the thermoelectric figure of merit, Phys. Rev. B, Volume 47 (1993), p. 12727
[21] Thermoelectric figure of merit of a one-dimensional conductor, Phys. Rev. B, Volume 47 (1993), p. 16631
[22] Reversible quantum brownian heat engines for electrons, Phys. Rev. Lett., Volume 89 (2002)
[23] Reversible thermoelectric nanomaterials, Phys. Rev. Lett., Volume 94 (2005)
[24] Thermoelectric efficiency at maximum power in low-dimensional systems, Phys. Rev. B, Volume 82 (2010)
[25] Transport properties of quantum dot arrays, Phys. Rev. B, Volume 78 (2008)
[26] Colossal enhancement in thermoelectric efficiency of weakly coupled double quantum dot system, J. Appl. Phys., Volume 110 (2011)
[27] Double quantum dot as a minimal thermoelectric generator, Phys. Rev. B, Volume 89 (2014)
[28] Most efficient quantum thermoelectric at finite power output, Phys. Rev. Lett., Volume 112 (2014)
[29] Finding the quantum thermoelectric with maximal efficiency and minimal entropy production at given power output, Phys. Rev. B, Volume 91 (2015)
[30] Thermopower of the molecular state in a double quantum dot, Phys. Rev. B, Volume 61 (2000), p. 16801
[31] Scaling of the Coulomb energy due to quantum fluctuations in the charge on a quantum dot, Phys. Rev. Lett., Volume 75 (1995), p. 4282
[32] Strongly capacitively coupled quantum dots, Appl. Phys. Lett., Volume 80 (2002), p. 1818
[33] Two laterally arranged quantum dot systems with strong capacitive interdot coupling, Appl. Phys. Lett., Volume 91 (2007), p. 102101
[34] Coulomb drag in coherent mesoscopic systems, Phys. Rev. Lett., Volume 86 (2001), p. 1841
[35] Bidirectional current drag induced by two-electron cotunneling in coupled double quantum dots, Appl. Phys. Express, Volume 2 (2009)
[36] Coulomb drag in quantum circuits, Phys. Rev. Lett., Volume 101 (2008)
[37] Coulomb drag in parallel quantum dots, Europhys. Lett., Volume 86 (2009), p. 67004
[38] Mesoscopic Coulomb drag, broken detailed balance, and fluctuation relations, Phys. Rev. Lett., Volume 104 (2010)
[39] Coherent quantum ratchets driven by tunnel oscillations, Europhys. Lett., Volume 91 (2010), p. 20007
[40] Positive and negative Coulomb drag in quantum wires, Nat. Nanotechnol., Volume 6 (2011) no. 12, p. 793
[41] Measurement back-action in stacked graphene quantum dots, Nano Lett., Volume 15 (2015), p. 6003
[42] Correlated Coulomb drag in capacitively coupled quantum-dot structures, Phys. Rev. Lett., Volume 116 (2016)
[43] Tunable noise cross correlations in a double quantum dot, Phys. Rev. Lett., Volume 98 (2007)
[44] Two-particle scattering matrix of two interacting mesoscopic conductors, Phys. Rev. Lett., Volume 99 (2007)
[45] Cross-correlation of two interacting conductors, Phys. Rev. B, Volume 77 (2008)
[46] Dynamical correlations in electronic transport through a system of coupled quantum dots, Phys. Rev. B, Volume 80 (2009)
[47] Enhancement and suppression of shot noise in capacitively coupled metallic double dots, Phys. Rev. B, Volume 65 (2002)
[48] Electron bunching in stacks of coupled quantum dots, Phys. Rev. B, Volume 77 (2008)
[49] Heat pump driven by the shot noise of a tunnel contact, Physica E, Volume 77 (2016), p. 156
[50] Reciprocal relations for nonlinear coupled transport, Phys. Rev. Lett., Volume 101 (2008)
[51] Fluctuation theorems for capacitively coupled electronic currents, Phys. Rev. B, Volume 84 (2011)
[52] Counting statistics of single electron transport in a quantum dot, Phys. Rev. Lett., Volume 96 (2006)
[53] Bidirectional counting of single electrons, Science, Volume 312 (2006), p. 1634
[54] Irreversibility on the level of single-electron tunnelling, Phys. Rev. X, Volume 2 (2012)
[55] Thermodynamics of a physical model implementing a Maxwell demon, Phys. Rev. Lett., Volume 110 (2013)
[56] On-chip Maxwell's demon as an information-powered refrigerator, Phys. Rev. Lett., Volume 115 (2015)
[57] Thermoelectricity without absorbing energy from the heat sources, Physica E, Volume 75 (2016), p. 257
[58] Controlling the energy flow in nonlinear lattices: a model for a thermal rectifier, Phys. Rev. Lett., Volume 88 (2002)
[59] Solid-state thermal rectifier, Science, Volume 314 (2006), p. 1121
[60] Quantum dot as a thermal rectifier, New J. Phys., Volume 10 (2008)
[61] Single-electron heat diode: asymmetric heat transport between electronic reservoirs through Coulomb islands, Phys. Rev. B, Volume 83 (2011)
[62] Thermally driven ballistic rectifier, Phys. Rev. B, Volume 85 (2012)
[63] Heat rectification effect of serially coupled quantum dots, Appl. Phys. Lett., Volume 103 (2013)
[64] Rectification effect of serially coupled quantum dots, Appl. Phys. Lett., Volume 103 (2013)
[65] Heat diode and engine based on quantum Hall edge states, New J. Phys., Volume 17 (2015)
[66] Wiedemann–Franz relation and thermal-transistor effect in suspended graphene, Nano Lett., Volume 14 (2014), p. 289
[67] Near-field thermal transistor, Phys. Rev. Lett., Volume 112 (2014)
[68] Phonon thermoelectric transistors and rectifiers, Phys. Rev. B, Volume 92 (2015)
[69] Heat production and energy balance in nanoscale engines driven by time-dependent fields, Phys. Rev. B, Volume 75 (2007)
[70] Nonadiabatic electron heat pump, Phys. Rev. B, Volume 76 (2007)
[71] Thermoelectric performance of a driven double quantum dot, Phys. Rev. B, Volume 87 (2013)
[72] Cryogenic cooling using tunnelling structures with sharp energy features, Phys. Rev. B, Volume 52 (1995), p. 5714
[73] Electronic refrigeration of a two-dimensional electron gas, Phys. Rev. Lett., Volume 102 (2009)
[74] Minimal self-contained quantum refrigeration machine based on four quantum dots, Phys. Rev. Lett., Volume 110 (2013)
[75] Refrigerator based on the Coulomb barrier for single-electron tunnelling, Phys. Rev. B, Volume 89 (2014)
[76] Experimental realisation of a Coulomb blockade refrigerator, Phys. Rev. B, Volume 90 (2014)
[77] Rectification of thermal fluctuations in a chaotic cavity heat engine, Phys. Rev. B, Volume 85 (2012)
[78] Three-terminal thermoelectric transport through a molecular junction, Phys. Rev. B, Volume 82 (2010)
[79] Thermoelectric three-terminal hopping transport through one-dimensional nanosystems, Phys. Rev. B, Volume 85 (2012)
[80] Hopping thermoelectric transport in finite systems: boundary effects, Phys. Rev. B, Volume 87 (2013)
[81] Magnon-driven quantum-dot heat engine, Europhys. Lett., Volume 99 (2012), p. 27001
[82] Reaching optimal efficiencies using nanosized photoelectric devices, Phys. Rev. B, Volume 80 (2009)
[83] Theory of single-electron heat engines coupled to electromagnetic environments, Phys. Rev. B, Volume 86 (2012)
[84] Hybrid microwave-cavity heat engine, Phys. Rev. Lett., Volume 112 (2014)
[85] Electrical current from quantum vacuum fluctuations in nanoengines, Phys. Rev. B, Volume 92 (2015)
[86] Quantum heat engine based on photon-assisted Cooper pair tunnelling, Phys. Rev. B, Volume 93 (2016)
[87] Three-terminal thermoelectric transport under broken time-reversal symmetry, Phys. Rev. B, Volume 85 (2012)
[88] Strong bounds on Onsager coefficients and efficiency for three-terminal thermoelectric transport in a magnetic field, Phys. Rev. Lett., Volume 110 (2013)
[89] Powerful and efficient energy harvester with resonant-tunnelling quantum dots, Phys. Rev. B, Volume 87 (2013)
[90] Thermoelectric efficiency of three-terminal quantum thermal machines, New J. Phys., Volume 16 (2014)
[91] Thermoelectric energy harvesting with quantum dots, Nanotechnology, Volume 26 (2015)
[92] Thermoelectric transport of mesoscopic conductors coupled to voltage and thermal probes, Phys. Rev. B, Volume 84 (2011)
[93] Powerful and efficient energy harvester based on resonant-tunnelling quantum wells, New J. Phys., Volume 15 (2013)
[94] Three-terminal semiconductor junction thermoelectric devices: improving performance, New J. Phys., Volume 15 (2013)
[95] Nanowire-based thermoelectric ratchet in the hopping regime, Phys. Rev. B, Volume 93 (2016)
[96] Three-terminal heat engine and refrigerator based on superlattices, Physica E, Volume 74 (2016), p. 465
[97] Separation of heat and charge currents for boosted thermoelectric conversion, Phys. Rev. B, Volume 91 (2015)
[98] Quantum Nernst engines, Europhys. Lett., Volume 107 (2014), p. 47003
[99] Chiral thermoelectrics with quantum hall edge channels, Phys. Rev. Lett., Volume 114 (2015)
[100] Quantum heat engines based on electronic Mach–Zehnder interferometers, Phys. Rev. B, Volume 91 (2015)
[101] Effect of incoherent scattering on three-terminal quantum Hall thermoelectrics, Physica E, Volume 75 (2016), p. 86
[102] Thermoelectricity in molecular junctions, Science, Volume 315 (2007), p. 5818
[103] Voltage fluctuation to current converter with Coulomb-coupled quantum dots, Phys. Rev. Lett., Volume 114 (2015)
[104] Harvesting dissipated energy with a mesoscopic ratchet, Nat. Commun., Volume 6 (2015), p. 6738
[105] Logical stochastic resonance with a Coulomb-coupled quantum-dot rectifier, Rev. Phys. Appl., Volume 4 (2015)
[106] Single Charge Tunneling. Coulomb Blockade Phenomena in Nanostructures (H. Grabert; M.H. Devoret, eds.), Plenum Press, New York, 1992
[107] Detection of single-electron heat transfer statistics, Europhys. Lett., Volume 100 (2012), p. 47008
[108] Correlations of heat and charge currents in quantum dot thermoelectric engines, New J. Phys., Volume 15 (2013)
[109] et al. Electron transport through double quantum dots, Rev. Mod. Phys., Volume 75 (2002), pp. 1-22
[110] Theory of Coulomb-blockade oscillations in the conductance of a quantum dot, Phys. Rev. B, Volume 44 (1991), p. 1646
[111] Theory of the thermopower of a quantum dot, Phys. Rev. B, Volume 46 (1992), pp. 9667-9676
[112] Nonlinear thermoelectric response due to energy-dependent transport properties of a quantum dot, Physica E, Volume 82 (2015), pp. 34-38
[113] Thermodynamics, Dover Publications Inc., New York, 1956
Cited by Sources:
Comments - Policy