[Effets thermoélectriques amplifiés par interférences quantiques dans les molécules et les films moléculaires]
Nous procédons à un bref survol des mesures et prédictions récentes concernant les propriétés thermoélectriques de molécules individuelles ou de nanorubans poreux, puis nous discutons quelques-uns des principes sous-jacents aux stratégies visant à augmenter leurs performances thermoélectriques. On relèvera parmi ces dernières (a) l'utilisation de pentes élevées du coefficient de transmission électronique
We provide a brief overview of recent measurements and predictions of thermoelectric properties of single-molecules and porous nanoribbons and discuss some principles underpinning strategies for enhancing their thermoelectric performance. The latter include (a) taking advantage of steep slopes in the electron transmission coefficient
Mots-clés : L'électronique moléculaire, Thermoélectricité, Interférence quantique, Coefficient Seebeck
Colin J. Lambert 1 ; Hatef Sadeghi 1 ; Qusiy H. Al-Galiby 1, 2
@article{CRPHYS_2016__17_10_1084_0, author = {Colin J. Lambert and Hatef Sadeghi and Qusiy H. Al-Galiby}, title = {Quantum-interference-enhanced thermoelectricity in single molecules and molecular films}, journal = {Comptes Rendus. Physique}, pages = {1084--1095}, publisher = {Elsevier}, volume = {17}, number = {10}, year = {2016}, doi = {10.1016/j.crhy.2016.08.003}, language = {en}, }
TY - JOUR AU - Colin J. Lambert AU - Hatef Sadeghi AU - Qusiy H. Al-Galiby TI - Quantum-interference-enhanced thermoelectricity in single molecules and molecular films JO - Comptes Rendus. Physique PY - 2016 SP - 1084 EP - 1095 VL - 17 IS - 10 PB - Elsevier DO - 10.1016/j.crhy.2016.08.003 LA - en ID - CRPHYS_2016__17_10_1084_0 ER -
%0 Journal Article %A Colin J. Lambert %A Hatef Sadeghi %A Qusiy H. Al-Galiby %T Quantum-interference-enhanced thermoelectricity in single molecules and molecular films %J Comptes Rendus. Physique %D 2016 %P 1084-1095 %V 17 %N 10 %I Elsevier %R 10.1016/j.crhy.2016.08.003 %G en %F CRPHYS_2016__17_10_1084_0
Colin J. Lambert; Hatef Sadeghi; Qusiy H. Al-Galiby. Quantum-interference-enhanced thermoelectricity in single molecules and molecular films. Comptes Rendus. Physique, Mesoscopic thermoelectric phenomena / Phénomènes thermoélectriques mésoscopiques, Volume 17 (2016) no. 10, pp. 1084-1095. doi : 10.1016/j.crhy.2016.08.003. https://comptes-rendus.academie-sciences.fr/physique/articles/10.1016/j.crhy.2016.08.003/
[1] Oligoyne molecular junctions for efficient room temperature thermoelectric power generation, Nano Lett., Volume 15 (2015) no. 11, pp. 7467-7472
[2] Single-molecule electrical studies on a 7 nm long molecular wire, Chem. Commun., Volume 45 (2006), pp. 4706-4708
[3] Towards molecular electronics with large-area molecular junctions, Nature, Volume 441 (2006) no. 7089, pp. 69-72
[4] Solution processed ultrathin chemically derived graphene films as soft top contacts for solid state molecular electronic junctions, Adv. Mater., Volume 24 (2012) no. 10, pp. 1333-1339
[5] A new approach for molecular electronic junctions with a multilayer graphene electrode, Adv. Mater., Volume 23 (2011) no. 6, pp. 755-760
[6] Molecular junctions of self-assembled monolayers with conducting polymer contacts, ACS Nano, Volume 6 (2012) no. 11, pp. 9920-9931
[7] Conductance of molecular wires connected or bonded in parallel, Phys. Rev. B, Volume 59 (1999) no. 24, pp. 16011-16021
[8] Giant thermopower and figure of merit in single-molecule devices, Phys. Rev. B, Condens. Matter Mater. Phys., Volume 79 (2009) (2–5)
[9] Thermoelectric signatures of coherent transport in single-molecule heterojunctions, Nano Lett., Volume 9 (2009) no. 8, pp. 3072-3076
[10] Ab initio study of the thermopower of biphenyl-based single-molecule junctions, Phys. Rev. B, Volume 86 (2012) no. 11
[11] Three-terminal thermoelectric transport through a molecular junction, Phys. Rev. B, Volume 82 (2010) no. 11
[12] Searching the hearts of graphene-like molecules for simplicity, sensitivity, and logic, J. Am. Chem. Soc., Volume 137 (2015) no. 35, pp. 11425-11431
[13] Magic ratios for connectivity-driven electrical conductance of graphene-like molecules, J. Am. Chem. Soc., Volume 137 (2015) no. 13, pp. 4469-4476
[14] Conductance enlargement in picoscale electroburnt graphene nanojunctions, Proc. Natl. Acad. Sci. USA, Volume 112 (2015) no. 9, pp. 2658-2663
[15] Probing the conductance superposition law in single-molecule circuits with parallel paths, Nat. Nanotechnol., Volume 7 (2012) no. 10, pp. 663-667
[16] Experimental evidence for quantum interference and vibrationally induced decoherence in single-molecule junctions, Phys. Rev. Lett., Volume 109 (2012) no. 5 (1–5)
[17] Dissecting contact mechanics from quantum interference in single-molecule junctions of stilbene derivatives, Nano Lett., Volume 12 (2012) no. 3, pp. 1643-1647
[18] Correlations between molecular structure and single-junction conductance: a case study with oligo(phenylene–ethynylene)-type wires, J. Am. Chem. Soc., Volume 134 (2012) no. 11, pp. 5262-5275
[19] Single-molecule junctions beyond electronic transport, Nat. Nanotechnol., Volume 8 (2013) no. 6, pp. 399-410
[20] Signatures of quantum interference effects on charge transport through a single benzene ring, Angew. Chem., Int. Ed. Engl., Volume 52 (2013) no. 11, pp. 3152-3155
[21] Observation of quantum interference in molecular charge transport, Nat. Nanotechnol., Volume 7 (2012) no. 5, pp. 305-309
[22] Room-temperature gating of molecular junctions using few-layer graphene nanogap electrodes, Nano Lett., Volume 11 (2011) no. 11, pp. 4607-4611
[23] Probing the chemistry of molecular heterojunctions using thermoelectricity, Nano Lett., Volume 8 (2008) no. 2, pp. 715-719
[24] Thermoelectricity in fullerene–metal heterojunctions, Nano Lett., Volume 11 (2011) no. 10, pp. 4089-4094
[25] Thermopower of benzenedithiol and C60 molecular junctions with Ni and Au electrodes, Nano Lett., Volume 14 (2014) no. 9, pp. 5276-5280
[26] Identifying the length dependence of orbital alignment and contact coupling in molecular heterojunctions, Nano Lett., Volume 9 (2009) no. 3, pp. 1164-1169
[27] Effect of length and contact chemistry on the electronic structure and thermoelectric properties of molecular junctions, J. Am. Chem. Soc., Volume 133 (2011) no. 23, pp. 8838-8841
[28] End-group-induced charge transfer in molecular junctions: effect on electronic-structure and thermopower, J. Phys. Chem. Lett., Volume 3 (2012) no. 15, pp. 1962-1967
[29] Length-dependent thermopower of highly conducting Au–C bonded single molecule junctions, Nano Lett., Volume 13 (2013) no. 6, pp. 2889-2894
[30] Controlling the thermoelectric properties of thiophene-derived single-molecule junctions, Chem. Mater., Volume 26 (2014) no. 24, pp. 7229-7235
[31] Engineering the thermopower of C60 molecular junctions, Nano Lett., Volume 13 (2013) no. 5, pp. 2141-2145
[32] Electrostatic control of thermoelectricity in molecular junctions, Nat. Nanotechnol., Volume 9 (2014) no. 11, pp. 881-885
[33] Redox control of thermopower and figure of merit in phase-coherent molecular wires, Nanotechnology, Volume 25 (2014), p. 205402
[34] Molecular design and control of fullerene-based bi-thermoelectric materials, Nat. Mater., Volume 15 (2016) no. 3, pp. 289-293
[35] Increasing the thermopower of crown-ether-bridged anthraquinones, Nanoscale, Volume 7 (2015) no. 41, pp. 17338-17342
[36] Thermoelectric power factor for electrically conductive polymers, ICT'99 (1999), pp. 402-406 (Cat. No. 99TH8407) (c)
[37] Tuning the thermoelectric properties of metallo-porphyrins, Nanoscale, Volume 8 (2016) no. 4, pp. 2428-2433
[38] Thermoelectricity in molecular junctions, Science, Volume 315 (2007) no. 5818, pp. 1568-1571
[39] Fundamentals of energy transport, energy conversion, and thermal properties in organic–inorganic heterojunctions, Chem. Phys. Lett., Volume 491 (2010) no. 4–6, pp. 109-122
[40] The nature of transport variations in molecular heterojunction electronics, Nano Lett., Volume 9 (2009) no. 10, pp. 3406-3412
[41] Simultaneous determination of conductance and thermopower of single molecule junctions, Nano Lett., Volume 12 (2012) no. 1, pp. 354-358
[42] CsBi4Te6: a high-performance thermoelectric material for low-temperature applications, Science, Volume 287 (2000) no. 5455, pp. 1024-1027
[43] The panoscopic approach to high performance thermoelectrics, Energy Environ. Sci., Volume 7 (2014) no. 1, pp. 251-268
[44] Organic thermoelectric materials: emerging green energy materials converting heat to electricity directly and efficiently, Adv. Mater., Volume 26 (2014) no. 40, pp. 6829-6851
[45] Vibrational mismatch of metal leads controls thermal conductance of self-assembled monolayer junctions, Nano Lett., Volume 15 (2015) no. 5, pp. 2985-2991
[46] Electrochemical fabrication and thermoelectric performance of the PEDOT: PSS electrode based bilayered organic nanofilms, Int. J. Electrochem. Sci., Volume 9 (2014), pp. 7629-7643
[47] Thermoelectric properties of n-type C60 thin films and their application in organic thermovoltaic devices, Appl. Phys. Lett., Volume 99 (2011) no. 9
[48] Lattice dynamics of a disordered solid–solid interface, Phys. Rev. B, Volume 60 (1999) no. 9, pp. 6459-6464
[49] Phonon-mediated thermal conductance of mesoscopic wires with rough edges, Phys. Rev. B, Volume 60 (1999) no. 23, pp. 15593-15596
[50] Room temperature thermal conductance of alkanedithiol self-assembled monolayers, Appl. Phys. Lett., Volume 89 (2006) no. 17, p. 173113
[51] Designing π-stacked molecular structures to control heat transport through molecular junctions, Appl. Phys. Lett., Volume 105 (2014) no. 23, p. 233102
[52] Length-dependent thermal transport along molecular chains, Phys. Rev. Lett., Volume 113 (2014) no. 6
[53] Single-channel conductance of
[54] Optimized basis sets for the collinear and non-collinear phases of iron, J. Phys. Condens. Matter, Volume 16 (2004) no. 30, p. 5453
[55] Characterization of nanometer-spaced few-layer graphene electrodes, Graphene, Volume 01 (2012) no. 02, pp. 26-29
[56] Graphene at high bias: cracking, layer by layer sublimation, and fusing, Nano Lett., Volume 12 (2012) no. 4, pp. 1873-1878
[57] In situ electronic characterization of graphene nanoconstrictions fabricated in a transmission electron microscope, Nano Lett., Volume 11 (2011) no. 12, pp. 5184-5188
[58] Hexagonal-boron nitride substrates for electroburnt graphene nanojunctions, Physica E, Low-Dimens. Syst. Nanostruct., Volume 82 (2016), pp. 12-15 | DOI
[59] Electron and heat transport in porphyrin-based single-molecule transistors with electro-burnt graphene electrodes, Beilstein J. Nanotechnol., Volume 2015 (2015) no. 6, pp. 1413-1420
[60] Theory of the arrangement of cells in a network, Metallography, Volume 14 (1981) no. 4, pp. 307-318
[61] A study of planar anchor groups for graphene-based single-molecule electronics, J. Chem. Phys., Volume 140 (2014) no. 5
[62] Suppression of single-molecule conductance fluctuations using extended anchor groups on graphene and carbon-nanotube electrodes, Phys. Rev. B, Volume 86 (2012) no. 8
[63] Basic concepts of quantum interference and electron transport in single-molecule electronics, Chem. Soc. Rev., Volume 44 (2015) no. 4, pp. 875-888
[64] Enhanced thermoelectric efficiency of porous silicene nanoribbons, Sci. Rep., Volume 5 (2015), p. 9514
[65] Enhancing the thermoelectric figure of merit in engineered graphene nanoribbons, Beilstein J. Nanotechnol., Volume 6 (2015) no. 1, pp. 1176-1182
- Highly efficient thermoelectric converters based on metalloporphyrin nanotubes, Journal of Materials Chemistry A, Volume 13 (2025) no. 13, p. 9323 | DOI:10.1039/d4ta08282f
- Energy conversion and transport in molecular-scale junctions, Applied Physics Reviews, Volume 11 (2024) no. 4 | DOI:10.1063/5.0225756
- Impact of Spin-Entropy on the Thermoelectric Properties of a 2D Magnet, Nano Letters, Volume 24 (2024) no. 22, p. 6513 | DOI:10.1021/acs.nanolett.4c00809
- Quantum coherent control of linear and nonlinear thermoelectricity in graphene nanostructure heat engines, Physical Review B, Volume 109 (2024) no. 4 | DOI:10.1103/physrevb.109.045412
- Disordered Ballistic Bismuth Nano‐waveguides for Highly Efficient Thermoelectric Energy Conversion, Small (2024) | DOI:10.1002/smll.202402485
- Modulating Quantum Interference Between Destructive and Constructive States in Double N‐Substituted Single Molecule Junctions, Advanced Electronic Materials, Volume 9 (2023) no. 2 | DOI:10.1002/aelm.202201024
- Large Seebeck Values in Metal–Molecule–Semimetal Junctions Attained by a Gateless Level-Alignment Method, Nano Letters, Volume 23 (2023) no. 22, p. 10473 | DOI:10.1021/acs.nanolett.3c03188
- Quantum coherent control of nonlinear thermoelectric transport in a triple-dot Aharonov-Bohm heat engine, Physical Review B, Volume 108 (2023) no. 16 | DOI:10.1103/physrevb.108.165419
- Quantum Interference and Contact Effects in the Thermoelectric Performance of Anthracene-Based Molecules, The Journal of Physical Chemistry C, Volume 127 (2023) no. 15, p. 7484 | DOI:10.1021/acs.jpcc.3c00069
- Regulation strategies based on quantum interference in electrical transport of single-molecule devices, Acta Physica Sinica, Volume 71 (2022) no. 6, p. 067303 | DOI:10.7498/aps.71.20211819
- Electronic measurements of entropy in meso- and nanoscale systems, Chemical Physics Reviews, Volume 3 (2022) no. 4 | DOI:10.1063/5.0101784
- Quantum interference enhanced thermopower in single-molecule thiophene junctions, Chinese Chemical Letters, Volume 33 (2022) no. 1, p. 523 | DOI:10.1016/j.cclet.2021.06.052
- Thermoelectric properties of organic thin films enhanced by π–π stacking, Journal of Physics: Energy, Volume 4 (2022) no. 2, p. 024002 | DOI:10.1088/2515-7655/ac55a3
- Exploring seebeck-coefficient fluctuations in endohedral-fullerene, single-molecule junctions, Nanoscale Horizons, Volume 7 (2022) no. 6, p. 616 | DOI:10.1039/d1nh00527h
- Regimes and quantum bounds of nanoscale thermoelectrics with peaked transmission function, Physica E: Low-dimensional Systems and Nanostructures, Volume 138 (2022), p. 115105 | DOI:10.1016/j.physe.2021.115105
- Topological quantum interference in a pumped Su-Schrieffer-Heeger lattice, Physical Review A, Volume 105 (2022) no. 5 | DOI:10.1103/physreva.105.052418
- Nonlinear regime for enhanced performance of an Aharonov–Bohm heat engine, AVS Quantum Science, Volume 3 (2021) no. 4 | DOI:10.1116/5.0064936
- Molecular Structure–(Thermo)electric Property Relationships in Single-Molecule Junctions and Comparisons with Single- and Multiple-Parameter Models, Journal of the American Chemical Society, Volume 143 (2021) no. 10, p. 3817 | DOI:10.1021/jacs.0c11605
- Quantum Circuit Rules for Molecular Electronic Systems: Where Are We Headed Based on the Current Understanding of Quantum Interference, Thermoelectric, and Molecular Spintronics Phenomena?, Nano Letters, Volume 21 (2021) no. 20, p. 8532 | DOI:10.1021/acs.nanolett.1c02390
- Complete mapping of the thermoelectric properties of a single molecule, Nature Nanotechnology, Volume 16 (2021) no. 4, p. 426 | DOI:10.1038/s41565-021-00859-7
- Multivariate Approach to Single-Molecule Thermopower and Electrical Conductance Measurements, The Journal of Physical Chemistry C, Volume 125 (2021) no. 47, p. 26256 | DOI:10.1021/acs.jpcc.1c08608
- Connectivity dependent thermopower of bridged biphenyl molecules in single-molecule junctions, Nanoscale, Volume 12 (2020) no. 27, p. 14682 | DOI:10.1039/d0nr04001k
- Exploring the thermoelectric properties of oligo(phenylene-ethynylene) derivatives, Nanoscale, Volume 12 (2020) no. 28, p. 15150 | DOI:10.1039/d0nr03303k
- Molecular-scale thermoelectricity: as simple as ‘ABC’, Nanoscale Advances, Volume 2 (2020) no. 11, p. 5329 | DOI:10.1039/d0na00772b
- Molecular-scale thermoelectricity: a worst-case scenario, Nanoscale Horizons, Volume 5 (2020) no. 7, p. 1073 | DOI:10.1039/d0nh00164c
- Quantum control of nonlinear thermoelectricity at the nanoscale, Physical Review B, Volume 101 (2020) no. 11 | DOI:10.1103/physrevb.101.115404
- Gate controlling of quantum interference and direct observation of anti-resonances in single molecule charge transport, Nature Materials, Volume 18 (2019) no. 4, p. 357 | DOI:10.1038/s41563-018-0280-5
- Single-molecule quantum-transport phenomena in break junctions, Nature Reviews Physics, Volume 1 (2019) no. 6, p. 381 | DOI:10.1038/s42254-019-0055-1
- Quantum interference in transport through almost symmetric double quantum dots, Physical Review B, Volume 99 (2019) no. 12 | DOI:10.1103/physrevb.99.125406
- Metal bis(acetylide) complex molecular wires: concepts and design strategies, Dalton Transactions, Volume 47 (2018) no. 40, p. 14125 | DOI:10.1039/c8dt02103a
- Analytic treatment of the thermoelectric properties for two coupled quantum dots threaded by magnetic fields, Journal of Physics Communications, Volume 2 (2018) no. 5, p. 055026 | DOI:10.1088/2399-6528/aac423
- MoS2 nano flakes with self-adaptive contacts for efficient thermoelectric energy harvesting, Nanoscale, Volume 10 (2018) no. 16, p. 7575 | DOI:10.1039/c8nr01635f
- Cross-plane conductance through a graphene/molecular monolayer/Au sandwich, Nanoscale, Volume 10 (2018) no. 42, p. 19791 | DOI:10.1039/c8nr06763e
- Current in nanojunctions: Effects of reservoir coupling, Physica E: Low-dimensional Systems and Nanostructures, Volume 101 (2018), p. 224 | DOI:10.1016/j.physe.2018.04.002
- Connectivity-driven bi-thermoelectricity in heteroatom-substituted molecular junctions, Physical Chemistry Chemical Physics, Volume 20 (2018) no. 14, p. 9630 | DOI:10.1039/c8cp00381e
- Single‐Molecule Conductance Studies of Organometallic Complexes Bearing 3‐Thienyl Contacting Groups, Chemistry – A European Journal, Volume 23 (2017) no. 9, p. 2133 | DOI:10.1002/chem.201604565
- High-performance thermoelectricity in edge-over-edge zinc-porphyrin molecular wires, Nanoscale, Volume 9 (2017) no. 16, p. 5299 | DOI:10.1039/c6nr09598d
- Perspective: Thermal and thermoelectric transport in molecular junctions, The Journal of Chemical Physics, Volume 146 (2017) no. 9 | DOI:10.1063/1.4976982
Cité par 38 documents. Sources : Crossref
Commentaires - Politique