Comptes Rendus
Quantum-interference-enhanced thermoelectricity in single molecules and molecular films
[Effets thermoélectriques amplifiés par interférences quantiques dans les molécules et les films moléculaires]
Comptes Rendus. Physique, Mesoscopic thermoelectric phenomena / Phénomènes thermoélectriques mésoscopiques, Volume 17 (2016) no. 10, pp. 1084-1095.

Nous procédons à un bref survol des mesures et prédictions récentes concernant les propriétés thermoélectriques de molécules individuelles ou de nanorubans poreux, puis nous discutons quelques-uns des principes sous-jacents aux stratégies visant à augmenter leurs performances thermoélectriques. On relèvera parmi ces dernières (a) l'utilisation de pentes élevées du coefficient de transmission électronique T(E), (b) la création de structures avec des pics de transmission et (c) l'exploitation de ces derniers. Pour atteindre de hautes performances, nous suggérons que cette dernière approche puisse être la plus fructueuse, puisqu'elle est moins susceptible de présenter des élargissements inhomogénes. Afin d'extrapoler les propriétés thermoélectriques d'une ou de quelques molécules à des films moléculaires monocouche, nous discutons aussi la pertinence de l'utilisation d'une moyenne du coefficient Seebeck pondérée par la conductance.

We provide a brief overview of recent measurements and predictions of thermoelectric properties of single-molecules and porous nanoribbons and discuss some principles underpinning strategies for enhancing their thermoelectric performance. The latter include (a) taking advantage of steep slopes in the electron transmission coefficient T(E), (b) creating structures with delta-function-like transmission coefficients and (c) utilising step-like features in T(E). To achieve high performance, we suggest that the latter may be the most fruitful, since it is less susceptible to inhomogeneous broadening. For the purpose of extrapolating thermoelectric properties of single or few molecules to monolayer molecular films, we also discuss the relevance of the conductance-weighted average Seebeck coefficient.

Publié le :
DOI : 10.1016/j.crhy.2016.08.003
Keywords: Molecular electronics, Thermoelectricity, Quantum interference, Seebeck coefficient
Mots-clés : L'électronique moléculaire, Thermoélectricité, Interférence quantique, Coefficient Seebeck

Colin J. Lambert 1 ; Hatef Sadeghi 1 ; Qusiy H. Al-Galiby 1, 2

1 Department of Physics, Lancaster University, Lancaster LA1 4YB, UK
2 Department of Physics, Education of College, Al Qadisiyah University, Iraq
@article{CRPHYS_2016__17_10_1084_0,
     author = {Colin J. Lambert and Hatef Sadeghi and Qusiy H. Al-Galiby},
     title = {Quantum-interference-enhanced thermoelectricity in single molecules and molecular films},
     journal = {Comptes Rendus. Physique},
     pages = {1084--1095},
     publisher = {Elsevier},
     volume = {17},
     number = {10},
     year = {2016},
     doi = {10.1016/j.crhy.2016.08.003},
     language = {en},
}
TY  - JOUR
AU  - Colin J. Lambert
AU  - Hatef Sadeghi
AU  - Qusiy H. Al-Galiby
TI  - Quantum-interference-enhanced thermoelectricity in single molecules and molecular films
JO  - Comptes Rendus. Physique
PY  - 2016
SP  - 1084
EP  - 1095
VL  - 17
IS  - 10
PB  - Elsevier
DO  - 10.1016/j.crhy.2016.08.003
LA  - en
ID  - CRPHYS_2016__17_10_1084_0
ER  - 
%0 Journal Article
%A Colin J. Lambert
%A Hatef Sadeghi
%A Qusiy H. Al-Galiby
%T Quantum-interference-enhanced thermoelectricity in single molecules and molecular films
%J Comptes Rendus. Physique
%D 2016
%P 1084-1095
%V 17
%N 10
%I Elsevier
%R 10.1016/j.crhy.2016.08.003
%G en
%F CRPHYS_2016__17_10_1084_0
Colin J. Lambert; Hatef Sadeghi; Qusiy H. Al-Galiby. Quantum-interference-enhanced thermoelectricity in single molecules and molecular films. Comptes Rendus. Physique, Mesoscopic thermoelectric phenomena / Phénomènes thermoélectriques mésoscopiques, Volume 17 (2016) no. 10, pp. 1084-1095. doi : 10.1016/j.crhy.2016.08.003. https://comptes-rendus.academie-sciences.fr/physique/articles/10.1016/j.crhy.2016.08.003/

[1] H. Sadeghi; S. Sangtarash; C.J. Lambert Oligoyne molecular junctions for efficient room temperature thermoelectric power generation, Nano Lett., Volume 15 (2015) no. 11, pp. 7467-7472

[2] G.J. Ashwell; B. Urasinska; C. Wang; M.R. Bryce; I. Grace; C.J. Lambert Single-molecule electrical studies on a 7 nm long molecular wire, Chem. Commun., Volume 45 (2006), pp. 4706-4708

[3] H. Akkerman; P. Blom; D. De Leeuw; B. De Boer Towards molecular electronics with large-area molecular junctions, Nature, Volume 441 (2006) no. 7089, pp. 69-72

[4] T. Li; J. Hauptmann; Z. Wei Solution processed ultrathin chemically derived graphene films as soft top contacts for solid state molecular electronic junctions, Adv. Mater., Volume 24 (2012) no. 10, pp. 1333-1339

[5] G. Wang; Y. Kim; M. Choe; T.-W. Kim; T. Lee A new approach for molecular electronic junctions with a multilayer graphene electrode, Adv. Mater., Volume 23 (2011) no. 6, pp. 755-760

[6] A. Neuhausen; A. Hosseini; J.A. Sulpizio; C.E.D. Chidsey; D. Goldhaber-Gordon Molecular junctions of self-assembled monolayers with conducting polymer contacts, ACS Nano, Volume 6 (2012) no. 11, pp. 9920-9931

[7] M. Magoga; C. Joachim Conductance of molecular wires connected or bonded in parallel, Phys. Rev. B, Volume 59 (1999) no. 24, pp. 16011-16021

[8] C.M. Finch; V.M. García-Suárez; C.J. Lambert Giant thermopower and figure of merit in single-molecule devices, Phys. Rev. B, Condens. Matter Mater. Phys., Volume 79 (2009) (2–5)

[9] J.P. Bergfield; C.A. Stafford Thermoelectric signatures of coherent transport in single-molecule heterojunctions, Nano Lett., Volume 9 (2009) no. 8, pp. 3072-3076

[10] M. Bürkle; L. Zotti; J. Viljas; D. Vonlanthen; A. Mishchenko; T. Wandlowski; M. Mayor; G. Schön; F. Pauly Ab initio study of the thermopower of biphenyl-based single-molecule junctions, Phys. Rev. B, Volume 86 (2012) no. 11

[11] O. Entin-Wohlman; Y. Imry; A. Aharony Three-terminal thermoelectric transport through a molecular junction, Phys. Rev. B, Volume 82 (2010) no. 11

[12] S. Sangtarash; C. Huang; H. Sadeghi; G. Sorohhov; J. Hauser; T. Wandlowski; W. Hong; S. Decurtins; S.-X. Liu; C.J. Lambert Searching the hearts of graphene-like molecules for simplicity, sensitivity, and logic, J. Am. Chem. Soc., Volume 137 (2015) no. 35, pp. 11425-11431

[13] Y. Geng; S. Sangtarash; C. Huang; H. Sadeghi; Y. Fu; W. Hong; T. Wandlowski; S. Decurtins; C.J. Lambert; S.-X. Liu Magic ratios for connectivity-driven electrical conductance of graphene-like molecules, J. Am. Chem. Soc., Volume 137 (2015) no. 13, pp. 4469-4476

[14] H. Sadeghi; J.A. Mol; C.S. Lau; G.A.D. Briggs; J. Warner; C.J. Lambert Conductance enlargement in picoscale electroburnt graphene nanojunctions, Proc. Natl. Acad. Sci. USA, Volume 112 (2015) no. 9, pp. 2658-2663

[15] H. Vazquez; R. Skouta; S. Schneebeli; M. Kamenetska; R. Breslow; L. Venkataraman; M.S. Hybertsen Probing the conductance superposition law in single-molecule circuits with parallel paths, Nat. Nanotechnol., Volume 7 (2012) no. 10, pp. 663-667

[16] S. Ballmann; R. Härtle; P.B. Coto; M. Elbing; M. Mayor; M.R. Bryce; M. Thoss; H.B. Weber Experimental evidence for quantum interference and vibrationally induced decoherence in single-molecule junctions, Phys. Rev. Lett., Volume 109 (2012) no. 5 (1–5)

[17] S.V. Aradhya; J.S. Meisner; M. Krikorian; S. Ahn; R. Parameswaran; M.L. Steigerwald; C. Nuckolls; L. Venkataraman Dissecting contact mechanics from quantum interference in single-molecule junctions of stilbene derivatives, Nano Lett., Volume 12 (2012) no. 3, pp. 1643-1647

[18] V. Kaliginedi; P. Moreno-García; H. Valkenier; W. Hong; V.M. García-Suárez; P. Buiter; J.L.H. Otten; J.C. Hummelen; C.J. Lambert; T. Wandlowski Correlations between molecular structure and single-junction conductance: a case study with oligo(phenylene–ethynylene)-type wires, J. Am. Chem. Soc., Volume 134 (2012) no. 11, pp. 5262-5275

[19] S.V. Aradhya; L. Venkataraman Single-molecule junctions beyond electronic transport, Nat. Nanotechnol., Volume 8 (2013) no. 6, pp. 399-410

[20] C.R. Arroyo; S. Tarkuc; R. Frisenda; J.S. Seldenthuis; C.H.M. Woerde; R. Eelkema; F.C. Grozema; H.S.J. van der Zant Signatures of quantum interference effects on charge transport through a single benzene ring, Angew. Chem., Int. Ed. Engl., Volume 52 (2013) no. 11, pp. 3152-3155

[21] C.M. Guédon; H. Valkenier; T. Markussen; K.S. Thygesen; J.C. Hummelen; S.J. van der Molen Observation of quantum interference in molecular charge transport, Nat. Nanotechnol., Volume 7 (2012) no. 5, pp. 305-309

[22] F. Prins; A. Barreiro; J.W. Ruitenberg; J.S. Seldenthuis; N. Aliaga-Alcalde; L.M.K. Vandersypen; H.S.J. van der Zant Room-temperature gating of molecular junctions using few-layer graphene nanogap electrodes, Nano Lett., Volume 11 (2011) no. 11, pp. 4607-4611

[23] K. Baheti; J.A. Malen; P. Doak; P. Reddy; S.Y. Jang; T.D. Tilley; A. Majumdar; R.A. Segalman Probing the chemistry of molecular heterojunctions using thermoelectricity, Nano Lett., Volume 8 (2008) no. 2, pp. 715-719

[24] S.K. Yee; J.A. Malen; A. Majumdar; R.A. Segalman Thermoelectricity in fullerene–metal heterojunctions, Nano Lett., Volume 11 (2011) no. 10, pp. 4089-4094

[25] S.K. Lee; T. Ohto; R. Yamada; H. Tada Thermopower of benzenedithiol and C60 molecular junctions with Ni and Au electrodes, Nano Lett., Volume 14 (2014) no. 9, pp. 5276-5280

[26] J. Malen; P. Doak; K. Baheti Identifying the length dependence of orbital alignment and contact coupling in molecular heterojunctions, Nano Lett., Volume 9 (2009) no. 3, pp. 1164-1169

[27] A. Tan; J. Balachandran; S. Sadat; V. Gavini; B.D. Dunietz; S.-Y. Jang; P. Reddy Effect of length and contact chemistry on the electronic structure and thermoelectric properties of molecular junctions, J. Am. Chem. Soc., Volume 133 (2011) no. 23, pp. 8838-8841

[28] J. Balachandran; P. Reddy End-group-induced charge transfer in molecular junctions: effect on electronic-structure and thermopower, J. Phys. Chem. Lett., Volume 3 (2012) no. 15, pp. 1962-1967

[29] J.R. Widawsky; W. Chen; H. Vázquez; T. Kim; R. Breslow; M.S. Hybertsen; L. Venkataraman Length-dependent thermopower of highly conducting Au–C bonded single molecule junctions, Nano Lett., Volume 13 (2013) no. 6, pp. 2889-2894

[30] W.B. Chang; C. Mai; M. Kotiuga; J.B. Neaton; G.C. Bazan; R.A. Segalman Controlling the thermoelectric properties of thiophene-derived single-molecule junctions, Chem. Mater., Volume 26 (2014) no. 24, pp. 7229-7235

[31] C. Evangeli; K. Gillemot; E. Leary; M.T. González; G. Rubio-Bollinger; C.J. Lambert; N. Agraït Engineering the thermopower of C60 molecular junctions, Nano Lett., Volume 13 (2013) no. 5, pp. 2141-2145

[32] Y. Kim; W. Jeong; K. Kim; W. Lee; P. Reddy Electrostatic control of thermoelectricity in molecular junctions, Nat. Nanotechnol., Volume 9 (2014) no. 11, pp. 881-885

[33] V.M. García-Suárez; C.J. Lambert; D. Zs Manrique; T. Wandlowski Redox control of thermopower and figure of merit in phase-coherent molecular wires, Nanotechnology, Volume 25 (2014), p. 205402

[34] L. Rincón-García; A.K. Ismael; C. Evangeli; I. Grace; G. Rubio-Bollinger; K. Porfyrakis; N. Agraït; C.J. Lambert Molecular design and control of fullerene-based bi-thermoelectric materials, Nat. Mater., Volume 15 (2016) no. 3, pp. 289-293

[35] A. Ismael; I. Grace; C. Lambert Increasing the thermopower of crown-ether-bridged anthraquinones, Nanoscale, Volume 7 (2015) no. 41, pp. 17338-17342

[36] A. Shakouri Thermoelectric power factor for electrically conductive polymers, ICT'99 (1999), pp. 402-406 (Cat. No. 99TH8407) (c)

[37] Q. Al-Galiby; H. Sadeghi; L. Algharagholy Tuning the thermoelectric properties of metallo-porphyrins, Nanoscale, Volume 8 (2016) no. 4, pp. 2428-2433

[38] P. Reddy; S.-Y. Jang; R.A. Segalman; A. Majumdar Thermoelectricity in molecular junctions, Science, Volume 315 (2007) no. 5818, pp. 1568-1571

[39] J.A. Malen; S.K. Yee; A. Majumdar; R.A. Segalman Fundamentals of energy transport, energy conversion, and thermal properties in organic–inorganic heterojunctions, Chem. Phys. Lett., Volume 491 (2010) no. 4–6, pp. 109-122

[40] J.A. Malen; P. Doak; K. Baheti; T.D. Tilley; A. Majumdar; R.A. Segalman The nature of transport variations in molecular heterojunction electronics, Nano Lett., Volume 9 (2009) no. 10, pp. 3406-3412

[41] J.R. Widawsky; P. Darancet; J.B. Neaton; L. Venkataraman Simultaneous determination of conductance and thermopower of single molecule junctions, Nano Lett., Volume 12 (2012) no. 1, pp. 354-358

[42] D. Chung CsBi4Te6: a high-performance thermoelectric material for low-temperature applications, Science, Volume 287 (2000) no. 5455, pp. 1024-1027

[43] L.-D. Zhao; V.P. Dravid; M.G. Kanatzidis The panoscopic approach to high performance thermoelectrics, Energy Environ. Sci., Volume 7 (2014) no. 1, pp. 251-268

[44] Q. Zhang; Y. Sun; W. Xu; D. Zhu Organic thermoelectric materials: emerging green energy materials converting heat to electricity directly and efficiently, Adv. Mater., Volume 26 (2014) no. 40, pp. 6829-6851

[45] S. Majumdar; J.A. Sierra-Suarez; S.N. Schiffres; W.-L. Ong; C.F. Higgs; A.J.H. McGaughey; J.A. Malen Vibrational mismatch of metal leads controls thermal conductance of self-assembled monolayer junctions, Nano Lett., Volume 15 (2015) no. 5, pp. 2985-2991

[46] H. Shi; C. Liu; J. Xu; H. Song Electrochemical fabrication and thermoelectric performance of the PEDOT: PSS electrode based bilayered organic nanofilms, Int. J. Electrochem. Sci., Volume 9 (2014), pp. 7629-7643

[47] M. Sumino; K. Harada; M. Ikeda; S. Tanaka; K. Miyazaki; C. Adachi Thermoelectric properties of n-type C60 thin films and their application in organic thermovoltaic devices, Appl. Phys. Lett., Volume 99 (2011) no. 9

[48] G. Fagas; A.G. Kozorezov; C.J. Lambert; J.K. Wigmore; A. Peacock; A. Poelaert; R. den Hartog Lattice dynamics of a disordered solid–solid interface, Phys. Rev. B, Volume 60 (1999) no. 9, pp. 6459-6464

[49] A. Kambili; G. Fagas; V.I. Fal'ko; C.J. Lambert Phonon-mediated thermal conductance of mesoscopic wires with rough edges, Phys. Rev. B, Volume 60 (1999) no. 23, pp. 15593-15596

[50] R.Y. Wang; R.A. Segalman; A. Majumdar Room temperature thermal conductance of alkanedithiol self-assembled monolayers, Appl. Phys. Lett., Volume 89 (2006) no. 17, p. 173113

[51] G. Kiršanskas; Q. Li; K. Flensberg; G.C. Solomon; M. Leijnse Designing π-stacked molecular structures to control heat transport through molecular junctions, Appl. Phys. Lett., Volume 105 (2014) no. 23, p. 233102

[52] T. Meier; F. Menges; P. Nirmalraj; H. Hölscher; H. Riel; B. Gotsmann Length-dependent thermal transport along molecular chains, Phys. Rev. Lett., Volume 113 (2014) no. 6

[53] V. García-Suárez; A. Rocha; S. Bailey Single-channel conductance of H2 molecules attached to platinum or palladium electrodes, Phys. Rev. B, Volume 72 (2005)

[54] V. García-Suárez Optimized basis sets for the collinear and non-collinear phases of iron, J. Phys. Condens. Matter, Volume 16 (2004) no. 30, p. 5453

[55] E. Burzurí Characterization of nanometer-spaced few-layer graphene electrodes, Graphene, Volume 01 (2012) no. 02, pp. 26-29

[56] A. Barreiro; F. Börrnert; M.H. Rümmeli; B. Büchner; L.M.K. Vandersypen Graphene at high bias: cracking, layer by layer sublimation, and fusing, Nano Lett., Volume 12 (2012) no. 4, pp. 1873-1878

[57] Y. Lu; C.A. Merchant; M. Drndić; A.T.C. Johnson In situ electronic characterization of graphene nanoconstrictions fabricated in a transmission electron microscope, Nano Lett., Volume 11 (2011) no. 12, pp. 5184-5188

[58] H. Sadeghi; S. Sangtarash; C. Lambert Hexagonal-boron nitride substrates for electroburnt graphene nanojunctions, Physica E, Low-Dimens. Syst. Nanostruct., Volume 82 (2016), pp. 12-15 | DOI

[59] H. Sadeghi; S. Sangtarash; C.J. Lambert Electron and heat transport in porphyrin-based single-molecule transistors with electro-burnt graphene electrodes, Beilstein J. Nanotechnol., Volume 2015 (2015) no. 6, pp. 1413-1420

[60] C.J. Lambert; D.L. Weaire Theory of the arrangement of cells in a network, Metallography, Volume 14 (1981) no. 4, pp. 307-318

[61] S. Bailey; D. Visontai; C.J. Lambert; M.R. Bryce; H. Frampton; D. Chappell A study of planar anchor groups for graphene-based single-molecule electronics, J. Chem. Phys., Volume 140 (2014) no. 5

[62] C.G. Péterfalvi; C.J. Lambert Suppression of single-molecule conductance fluctuations using extended anchor groups on graphene and carbon-nanotube electrodes, Phys. Rev. B, Volume 86 (2012) no. 8

[63] C.J. Lambert Basic concepts of quantum interference and electron transport in single-molecule electronics, Chem. Soc. Rev., Volume 44 (2015) no. 4, pp. 875-888

[64] H. Sadeghi; S. Sangtarash; C.J. Lambert Enhanced thermoelectric efficiency of porous silicene nanoribbons, Sci. Rep., Volume 5 (2015), p. 9514

[65] H. Sadeghi; S. Sangtarash; C.J. Lambert Enhancing the thermoelectric figure of merit in engineered graphene nanoribbons, Beilstein J. Nanotechnol., Volume 6 (2015) no. 1, pp. 1176-1182

  • Qusiy H. Al-Galiby; Laith A. Algharagholy; Hatef Sadeghi; Víctor M. García-Suárez Highly efficient thermoelectric converters based on metalloporphyrin nanotubes, Journal of Materials Chemistry A, Volume 13 (2025) no. 13, p. 9323 | DOI:10.1039/d4ta08282f
  • Haixin Zhang; Yunxuan Zhu; Ping Duan; Mehrdad Shiri; Sai Chandra Yelishala; Shaocheng Shen; Ziqi Song; Chuancheng Jia; Xuefeng Guo; Longji Cui; Kun Wang Energy conversion and transport in molecular-scale junctions, Applied Physics Reviews, Volume 11 (2024) no. 4 | DOI:10.1063/5.0225756
  • Alessandra Canetta; Serhii Volosheniuk; Sayooj Satheesh; José Pedro Alvarinhas Batista; Aloïs Castellano; Riccardo Conte; Daniel George Chica; Kenji Watanabe; Takashi Taniguchi; Xavier Roy; Herre S. J. van der Zant; Marko Burghard; Matthieu Jean Verstraete; Pascal Gehring Impact of Spin-Entropy on the Thermoelectric Properties of a 2D Magnet, Nano Letters, Volume 24 (2024) no. 22, p. 6513 | DOI:10.1021/acs.nanolett.4c00809
  • Yuga Kodama; Nobuhiko Taniguchi Quantum coherent control of linear and nonlinear thermoelectricity in graphene nanostructure heat engines, Physical Review B, Volume 109 (2024) no. 4 | DOI:10.1103/physrevb.109.045412
  • Ping'an Li; Yoram Selzer Disordered Ballistic Bismuth Nano‐waveguides for Highly Efficient Thermoelectric Energy Conversion, Small (2024) | DOI:10.1002/smll.202402485
  • Zi‐Zhen Chen; Shun‐Da Wu; Jin‐Liang Lin; Li‐Chuan Chen; Jing‐Jing Cao; Xiangfeng Shao; Colin J. Lambert; Hao‐Li Zhang Modulating Quantum Interference Between Destructive and Constructive States in Double N‐Substituted Single Molecule Junctions, Advanced Electronic Materials, Volume 9 (2023) no. 2 | DOI:10.1002/aelm.202201024
  • Tamar Frank; Shachar Shmueli; Mor Cohen Jungerman; Pini Shekhter; Yoram Selzer Large Seebeck Values in Metal–Molecule–Semimetal Junctions Attained by a Gateless Level-Alignment Method, Nano Letters, Volume 23 (2023) no. 22, p. 10473 | DOI:10.1021/acs.nanolett.3c03188
  • Jayasmita Behera; Salil Bedkihal; Bijay Kumar Agarwalla; Malay Bandyopadhyay Quantum coherent control of nonlinear thermoelectric transport in a triple-dot Aharonov-Bohm heat engine, Physical Review B, Volume 108 (2023) no. 16 | DOI:10.1103/physrevb.108.165419
  • Joseph M. Hamill; Ali Ismael; Alaa Al-Jobory; Troy L. R. Bennett; Maryam Alshahrani; Xintai Wang; Maxwell Akers-Douglas; Luke A. Wilkinson; Benjamin J. Robinson; Nicholas J. Long; Colin Lambert; Tim Albrecht Quantum Interference and Contact Effects in the Thermoelectric Performance of Anthracene-Based Molecules, The Journal of Physical Chemistry C, Volume 127 (2023) no. 15, p. 7484 | DOI:10.1021/acs.jpcc.3c00069
  • Rui-Hao Li; Jun-Yang Liu; Wen-Jing Hong Regulation strategies based on quantum interference in electrical transport of single-molecule devices, Acta Physica Sinica, Volume 71 (2022) no. 6, p. 067303 | DOI:10.7498/aps.71.20211819
  • Eugenia Pyurbeeva; Jan A. Mol; Pascal Gehring Electronic measurements of entropy in meso- and nanoscale systems, Chemical Physics Reviews, Volume 3 (2022) no. 4 | DOI:10.1063/5.0101784
  • Hang Chen; Yaorong Chen; Hewei Zhang; Wenqiang Cao; Chao Fang; Yicheng Zhou; Zongyuan Xiao; Jia Shi; Wenbo Chen; Junyang Liu; Wenjing Hong Quantum interference enhanced thermopower in single-molecule thiophene junctions, Chinese Chemical Letters, Volume 33 (2022) no. 1, p. 523 | DOI:10.1016/j.cclet.2021.06.052
  • Xintai Wang; Sara Sangtarash; Angelo Lamantia; Hervé Dekkiche; Leonardo Forcieri; Oleg V Kolosov; Samuel P Jarvis; Martin R Bryce; Colin J Lambert; Hatef Sadeghi; Benjamin J Robinson Thermoelectric properties of organic thin films enhanced by π–π stacking, Journal of Physics: Energy, Volume 4 (2022) no. 2, p. 024002 | DOI:10.1088/2515-7655/ac55a3
  • Ali K. Ismael; Laura Rincón-García; Charalambos Evangeli; Panagiotis Dallas; Turki Alotaibi; Alaa A. Al-Jobory; Gabino Rubio-Bollinger; Kyriakos Porfyrakis; Nicolás Agraït; Colin J. Lambert Exploring seebeck-coefficient fluctuations in endohedral-fullerene, single-molecule junctions, Nanoscale Horizons, Volume 7 (2022) no. 6, p. 616 | DOI:10.1039/d1nh00527h
  • Giuseppe Bevilacqua; Alessandro Cresti; Giuseppe Grosso; Guido Menichetti; Giuseppe Pastori Parravicini Regimes and quantum bounds of nanoscale thermoelectrics with peaked transmission function, Physica E: Low-dimensional Systems and Nanostructures, Volume 138 (2022), p. 115105 | DOI:10.1016/j.physe.2021.115105
  • Zeng-Zhao Li; Juan Atalaya; K. Birgitta Whaley Topological quantum interference in a pumped Su-Schrieffer-Heeger lattice, Physical Review A, Volume 105 (2022) no. 5 | DOI:10.1103/physreva.105.052418
  • Géraldine Haack; Francesco Giazotto Nonlinear regime for enhanced performance of an Aharonov–Bohm heat engine, AVS Quantum Science, Volume 3 (2021) no. 4 | DOI:10.1116/5.0064936
  • Masnun Naher; David C. Milan; Oday A. Al-Owaedi; Inco J. Planje; Sören Bock; Juan Hurtado-Gallego; Pablo Bastante; Zahra Murtada Abd Dawood; Laura Rincón-García; Gabino Rubio-Bollinger; Simon J. Higgins; Nicolás Agraït; Colin J. Lambert; Richard J. Nichols; Paul J. Low Molecular Structure–(Thermo)electric Property Relationships in Single-Molecule Junctions and Comparisons with Single- and Multiple-Parameter Models, Journal of the American Chemical Society, Volume 143 (2021) no. 10, p. 3817 | DOI:10.1021/jacs.0c11605
  • Abhishek Aggarwal; Veerabhadrarao Kaliginedi; Prabal K. Maiti Quantum Circuit Rules for Molecular Electronic Systems: Where Are We Headed Based on the Current Understanding of Quantum Interference, Thermoelectric, and Molecular Spintronics Phenomena?, Nano Letters, Volume 21 (2021) no. 20, p. 8532 | DOI:10.1021/acs.nanolett.1c02390
  • Pascal Gehring; Jakub K. Sowa; Chunwei Hsu; Joeri de Bruijckere; Martijn van der Star; Jennifer J. Le Roy; Lapo Bogani; Erik M. Gauger; Herre S. J. van der Zant Complete mapping of the thermoelectric properties of a single molecule, Nature Nanotechnology, Volume 16 (2021) no. 4, p. 426 | DOI:10.1038/s41565-021-00859-7
  • Joseph M. Hamill; Christopher Weaver; Tim Albrecht Multivariate Approach to Single-Molecule Thermopower and Electrical Conductance Measurements, The Journal of Physical Chemistry C, Volume 125 (2021) no. 47, p. 26256 | DOI:10.1021/acs.jpcc.1c08608
  • Iain M. Grace; Gunnar Olsen; Juan Hurtado-Gallego; Laura Rincón-García; Gabino Rubio-Bollinger; Martin R. Bryce; Nicolás Agraït; Colin J. Lambert Connectivity dependent thermopower of bridged biphenyl molecules in single-molecule junctions, Nanoscale, Volume 12 (2020) no. 27, p. 14682 | DOI:10.1039/d0nr04001k
  • Hang Chen; Sara Sangtarash; Guopeng Li; Markus Gantenbein; Wenqiang Cao; Afaf Alqorashi; Junyang Liu; Chunquan Zhang; Yulong Zhang; Lijue Chen; Yaorong Chen; Gunnar Olsen; Hatef Sadeghi; Martin R. Bryce; Colin J. Lambert; Wenjing Hong Exploring the thermoelectric properties of oligo(phenylene-ethynylene) derivatives, Nanoscale, Volume 12 (2020) no. 28, p. 15150 | DOI:10.1039/d0nr03303k
  • Ali Ismael; Alaa Al-Jobory; Xintai Wang; Abdullah Alshehab; Ahmad Almutlg; Majed Alshammari; Iain Grace; Troy L. R. Benett; Luke A. Wilkinson; Benjamin J. Robinson; Nicholas J. Long; Colin Lambert Molecular-scale thermoelectricity: as simple as ‘ABC’, Nanoscale Advances, Volume 2 (2020) no. 11, p. 5329 | DOI:10.1039/d0na00772b
  • Ali K. Ismael; Colin J. Lambert Molecular-scale thermoelectricity: a worst-case scenario, Nanoscale Horizons, Volume 5 (2020) no. 7, p. 1073 | DOI:10.1039/d0nh00164c
  • Nobuhiko Taniguchi Quantum control of nonlinear thermoelectricity at the nanoscale, Physical Review B, Volume 101 (2020) no. 11 | DOI:10.1103/physrevb.101.115404
  • Yueqi Li; Marius Buerkle; Guangfeng Li; Ali Rostamian; Hui Wang; Zixiao Wang; David R. Bowler; Tsuyoshi Miyazaki; Limin Xiang; Yoshihiro Asai; Gang Zhou; Nongjian Tao Gate controlling of quantum interference and direct observation of anti-resonances in single molecule charge transport, Nature Materials, Volume 18 (2019) no. 4, p. 357 | DOI:10.1038/s41563-018-0280-5
  • Pascal Gehring; Jos M. Thijssen; Herre S. J. van der Zant Single-molecule quantum-transport phenomena in break junctions, Nature Reviews Physics, Volume 1 (2019) no. 6, p. 381 | DOI:10.1038/s42254-019-0055-1
  • Zeng-Zhao Li; Martin Leijnse Quantum interference in transport through almost symmetric double quantum dots, Physical Review B, Volume 99 (2019) no. 12 | DOI:10.1103/physrevb.99.125406
  • David C. Milan; Andrea Vezzoli; Inco J. Planje; Paul J. Low Metal bis(acetylide) complex molecular wires: concepts and design strategies, Dalton Transactions, Volume 47 (2018) no. 40, p. 14125 | DOI:10.1039/c8dt02103a
  • G Menichetti; G Grosso; G Pastori Parravicini Analytic treatment of the thermoelectric properties for two coupled quantum dots threaded by magnetic fields, Journal of Physics Communications, Volume 2 (2018) no. 5, p. 055026 | DOI:10.1088/2399-6528/aac423
  • Qingqing Wu; Hatef Sadeghi; Colin J. Lambert MoS2 nano flakes with self-adaptive contacts for efficient thermoelectric energy harvesting, Nanoscale, Volume 10 (2018) no. 16, p. 7575 | DOI:10.1039/c8nr01635f
  • Bing Li; Marjan Famili; Evangelina Pensa; Iain Grace; Nicholas J. Long; Colin Lambert; Tim Albrecht; Lesley F. Cohen Cross-plane conductance through a graphene/molecular monolayer/Au sandwich, Nanoscale, Volume 10 (2018) no. 42, p. 19791 | DOI:10.1039/c8nr06763e
  • Hari Kumar Yadalam; Upendra Harbola Current in nanojunctions: Effects of reservoir coupling, Physica E: Low-dimensional Systems and Nanostructures, Volume 101 (2018), p. 224 | DOI:10.1016/j.physe.2018.04.002
  • Sara Sangtarash; Hatef Sadeghi; Colin J. Lambert Connectivity-driven bi-thermoelectricity in heteroatom-substituted molecular junctions, Physical Chemistry Chemical Physics, Volume 20 (2018) no. 14, p. 9630 | DOI:10.1039/c8cp00381e
  • Sören Bock; Oday A. Al‐Owaedi; Samantha G. Eaves; David C. Milan; Mario Lemmer; Brian W. Skelton; Henrry M. Osorio; Richard J. Nichols; Simon J. Higgins; Pilar Cea; Nicholas J. Long; Tim Albrecht; Santiago Martín; Colin J. Lambert; Paul J. Low Single‐Molecule Conductance Studies of Organometallic Complexes Bearing 3‐Thienyl Contacting Groups, Chemistry – A European Journal, Volume 23 (2017) no. 9, p. 2133 | DOI:10.1002/chem.201604565
  • Mohammed Noori; Hatef Sadeghi; Colin J. Lambert High-performance thermoelectricity in edge-over-edge zinc-porphyrin molecular wires, Nanoscale, Volume 9 (2017) no. 16, p. 5299 | DOI:10.1039/c6nr09598d
  • Longji Cui; Ruijiao Miao; Chang Jiang; Edgar Meyhofer; Pramod Reddy Perspective: Thermal and thermoelectric transport in molecular junctions, The Journal of Chemical Physics, Volume 146 (2017) no. 9 | DOI:10.1063/1.4976982

Cité par 38 documents. Sources : Crossref

Commentaires - Politique