[Effets thermoélectriques amplifiés par interférences quantiques dans les molécules et les films moléculaires]
Nous procédons à un bref survol des mesures et prédictions récentes concernant les propriétés thermoélectriques de molécules individuelles ou de nanorubans poreux, puis nous discutons quelques-uns des principes sous-jacents aux stratégies visant à augmenter leurs performances thermoélectriques. On relèvera parmi ces dernières (a) l'utilisation de pentes élevées du coefficient de transmission électronique , (b) la création de structures avec des pics de transmission et (c) l'exploitation de ces derniers. Pour atteindre de hautes performances, nous suggérons que cette dernière approche puisse être la plus fructueuse, puisqu'elle est moins susceptible de présenter des élargissements inhomogénes. Afin d'extrapoler les propriétés thermoélectriques d'une ou de quelques molécules à des films moléculaires monocouche, nous discutons aussi la pertinence de l'utilisation d'une moyenne du coefficient Seebeck pondérée par la conductance.
We provide a brief overview of recent measurements and predictions of thermoelectric properties of single-molecules and porous nanoribbons and discuss some principles underpinning strategies for enhancing their thermoelectric performance. The latter include (a) taking advantage of steep slopes in the electron transmission coefficient , (b) creating structures with delta-function-like transmission coefficients and (c) utilising step-like features in . To achieve high performance, we suggest that the latter may be the most fruitful, since it is less susceptible to inhomogeneous broadening. For the purpose of extrapolating thermoelectric properties of single or few molecules to monolayer molecular films, we also discuss the relevance of the conductance-weighted average Seebeck coefficient.
Mot clés : L'électronique moléculaire, Thermoélectricité, Interférence quantique, Coefficient Seebeck
Colin J. Lambert 1 ; Hatef Sadeghi 1 ; Qusiy H. Al-Galiby 1, 2
@article{CRPHYS_2016__17_10_1084_0, author = {Colin J. Lambert and Hatef Sadeghi and Qusiy H. Al-Galiby}, title = {Quantum-interference-enhanced thermoelectricity in single molecules and molecular films}, journal = {Comptes Rendus. Physique}, pages = {1084--1095}, publisher = {Elsevier}, volume = {17}, number = {10}, year = {2016}, doi = {10.1016/j.crhy.2016.08.003}, language = {en}, }
TY - JOUR AU - Colin J. Lambert AU - Hatef Sadeghi AU - Qusiy H. Al-Galiby TI - Quantum-interference-enhanced thermoelectricity in single molecules and molecular films JO - Comptes Rendus. Physique PY - 2016 SP - 1084 EP - 1095 VL - 17 IS - 10 PB - Elsevier DO - 10.1016/j.crhy.2016.08.003 LA - en ID - CRPHYS_2016__17_10_1084_0 ER -
%0 Journal Article %A Colin J. Lambert %A Hatef Sadeghi %A Qusiy H. Al-Galiby %T Quantum-interference-enhanced thermoelectricity in single molecules and molecular films %J Comptes Rendus. Physique %D 2016 %P 1084-1095 %V 17 %N 10 %I Elsevier %R 10.1016/j.crhy.2016.08.003 %G en %F CRPHYS_2016__17_10_1084_0
Colin J. Lambert; Hatef Sadeghi; Qusiy H. Al-Galiby. Quantum-interference-enhanced thermoelectricity in single molecules and molecular films. Comptes Rendus. Physique, Volume 17 (2016) no. 10, pp. 1084-1095. doi : 10.1016/j.crhy.2016.08.003. https://comptes-rendus.academie-sciences.fr/physique/articles/10.1016/j.crhy.2016.08.003/
[1] Oligoyne molecular junctions for efficient room temperature thermoelectric power generation, Nano Lett., Volume 15 (2015) no. 11, pp. 7467-7472
[2] Single-molecule electrical studies on a 7 nm long molecular wire, Chem. Commun., Volume 45 (2006), pp. 4706-4708
[3] Towards molecular electronics with large-area molecular junctions, Nature, Volume 441 (2006) no. 7089, pp. 69-72
[4] Solution processed ultrathin chemically derived graphene films as soft top contacts for solid state molecular electronic junctions, Adv. Mater., Volume 24 (2012) no. 10, pp. 1333-1339
[5] A new approach for molecular electronic junctions with a multilayer graphene electrode, Adv. Mater., Volume 23 (2011) no. 6, pp. 755-760
[6] Molecular junctions of self-assembled monolayers with conducting polymer contacts, ACS Nano, Volume 6 (2012) no. 11, pp. 9920-9931
[7] Conductance of molecular wires connected or bonded in parallel, Phys. Rev. B, Volume 59 (1999) no. 24, pp. 16011-16021
[8] Giant thermopower and figure of merit in single-molecule devices, Phys. Rev. B, Condens. Matter Mater. Phys., Volume 79 (2009) (2–5)
[9] Thermoelectric signatures of coherent transport in single-molecule heterojunctions, Nano Lett., Volume 9 (2009) no. 8, pp. 3072-3076
[10] Ab initio study of the thermopower of biphenyl-based single-molecule junctions, Phys. Rev. B, Volume 86 (2012) no. 11
[11] Three-terminal thermoelectric transport through a molecular junction, Phys. Rev. B, Volume 82 (2010) no. 11
[12] Searching the hearts of graphene-like molecules for simplicity, sensitivity, and logic, J. Am. Chem. Soc., Volume 137 (2015) no. 35, pp. 11425-11431
[13] Magic ratios for connectivity-driven electrical conductance of graphene-like molecules, J. Am. Chem. Soc., Volume 137 (2015) no. 13, pp. 4469-4476
[14] Conductance enlargement in picoscale electroburnt graphene nanojunctions, Proc. Natl. Acad. Sci. USA, Volume 112 (2015) no. 9, pp. 2658-2663
[15] Probing the conductance superposition law in single-molecule circuits with parallel paths, Nat. Nanotechnol., Volume 7 (2012) no. 10, pp. 663-667
[16] Experimental evidence for quantum interference and vibrationally induced decoherence in single-molecule junctions, Phys. Rev. Lett., Volume 109 (2012) no. 5 (1–5)
[17] Dissecting contact mechanics from quantum interference in single-molecule junctions of stilbene derivatives, Nano Lett., Volume 12 (2012) no. 3, pp. 1643-1647
[18] Correlations between molecular structure and single-junction conductance: a case study with oligo(phenylene–ethynylene)-type wires, J. Am. Chem. Soc., Volume 134 (2012) no. 11, pp. 5262-5275
[19] Single-molecule junctions beyond electronic transport, Nat. Nanotechnol., Volume 8 (2013) no. 6, pp. 399-410
[20] Signatures of quantum interference effects on charge transport through a single benzene ring, Angew. Chem., Int. Ed. Engl., Volume 52 (2013) no. 11, pp. 3152-3155
[21] Observation of quantum interference in molecular charge transport, Nat. Nanotechnol., Volume 7 (2012) no. 5, pp. 305-309
[22] Room-temperature gating of molecular junctions using few-layer graphene nanogap electrodes, Nano Lett., Volume 11 (2011) no. 11, pp. 4607-4611
[23] Probing the chemistry of molecular heterojunctions using thermoelectricity, Nano Lett., Volume 8 (2008) no. 2, pp. 715-719
[24] Thermoelectricity in fullerene–metal heterojunctions, Nano Lett., Volume 11 (2011) no. 10, pp. 4089-4094
[25] Thermopower of benzenedithiol and C60 molecular junctions with Ni and Au electrodes, Nano Lett., Volume 14 (2014) no. 9, pp. 5276-5280
[26] Identifying the length dependence of orbital alignment and contact coupling in molecular heterojunctions, Nano Lett., Volume 9 (2009) no. 3, pp. 1164-1169
[27] Effect of length and contact chemistry on the electronic structure and thermoelectric properties of molecular junctions, J. Am. Chem. Soc., Volume 133 (2011) no. 23, pp. 8838-8841
[28] End-group-induced charge transfer in molecular junctions: effect on electronic-structure and thermopower, J. Phys. Chem. Lett., Volume 3 (2012) no. 15, pp. 1962-1967
[29] Length-dependent thermopower of highly conducting Au–C bonded single molecule junctions, Nano Lett., Volume 13 (2013) no. 6, pp. 2889-2894
[30] Controlling the thermoelectric properties of thiophene-derived single-molecule junctions, Chem. Mater., Volume 26 (2014) no. 24, pp. 7229-7235
[31] Engineering the thermopower of C60 molecular junctions, Nano Lett., Volume 13 (2013) no. 5, pp. 2141-2145
[32] Electrostatic control of thermoelectricity in molecular junctions, Nat. Nanotechnol., Volume 9 (2014) no. 11, pp. 881-885
[33] Redox control of thermopower and figure of merit in phase-coherent molecular wires, Nanotechnology, Volume 25 (2014), p. 205402
[34] Molecular design and control of fullerene-based bi-thermoelectric materials, Nat. Mater., Volume 15 (2016) no. 3, pp. 289-293
[35] Increasing the thermopower of crown-ether-bridged anthraquinones, Nanoscale, Volume 7 (2015) no. 41, pp. 17338-17342
[36] Thermoelectric power factor for electrically conductive polymers, ICT'99 (1999), pp. 402-406 (Cat. No. 99TH8407) (c)
[37] Tuning the thermoelectric properties of metallo-porphyrins, Nanoscale, Volume 8 (2016) no. 4, pp. 2428-2433
[38] Thermoelectricity in molecular junctions, Science, Volume 315 (2007) no. 5818, pp. 1568-1571
[39] Fundamentals of energy transport, energy conversion, and thermal properties in organic–inorganic heterojunctions, Chem. Phys. Lett., Volume 491 (2010) no. 4–6, pp. 109-122
[40] The nature of transport variations in molecular heterojunction electronics, Nano Lett., Volume 9 (2009) no. 10, pp. 3406-3412
[41] Simultaneous determination of conductance and thermopower of single molecule junctions, Nano Lett., Volume 12 (2012) no. 1, pp. 354-358
[42] CsBi4Te6: a high-performance thermoelectric material for low-temperature applications, Science, Volume 287 (2000) no. 5455, pp. 1024-1027
[43] The panoscopic approach to high performance thermoelectrics, Energy Environ. Sci., Volume 7 (2014) no. 1, pp. 251-268
[44] Organic thermoelectric materials: emerging green energy materials converting heat to electricity directly and efficiently, Adv. Mater., Volume 26 (2014) no. 40, pp. 6829-6851
[45] Vibrational mismatch of metal leads controls thermal conductance of self-assembled monolayer junctions, Nano Lett., Volume 15 (2015) no. 5, pp. 2985-2991
[46] Electrochemical fabrication and thermoelectric performance of the PEDOT: PSS electrode based bilayered organic nanofilms, Int. J. Electrochem. Sci., Volume 9 (2014), pp. 7629-7643
[47] Thermoelectric properties of n-type C60 thin films and their application in organic thermovoltaic devices, Appl. Phys. Lett., Volume 99 (2011) no. 9
[48] Lattice dynamics of a disordered solid–solid interface, Phys. Rev. B, Volume 60 (1999) no. 9, pp. 6459-6464
[49] Phonon-mediated thermal conductance of mesoscopic wires with rough edges, Phys. Rev. B, Volume 60 (1999) no. 23, pp. 15593-15596
[50] Room temperature thermal conductance of alkanedithiol self-assembled monolayers, Appl. Phys. Lett., Volume 89 (2006) no. 17, p. 173113
[51] Designing π-stacked molecular structures to control heat transport through molecular junctions, Appl. Phys. Lett., Volume 105 (2014) no. 23, p. 233102
[52] Length-dependent thermal transport along molecular chains, Phys. Rev. Lett., Volume 113 (2014) no. 6
[53] Single-channel conductance of molecules attached to platinum or palladium electrodes, Phys. Rev. B, Volume 72 (2005)
[54] Optimized basis sets for the collinear and non-collinear phases of iron, J. Phys. Condens. Matter, Volume 16 (2004) no. 30, p. 5453
[55] Characterization of nanometer-spaced few-layer graphene electrodes, Graphene, Volume 01 (2012) no. 02, pp. 26-29
[56] Graphene at high bias: cracking, layer by layer sublimation, and fusing, Nano Lett., Volume 12 (2012) no. 4, pp. 1873-1878
[57] In situ electronic characterization of graphene nanoconstrictions fabricated in a transmission electron microscope, Nano Lett., Volume 11 (2011) no. 12, pp. 5184-5188
[58] Hexagonal-boron nitride substrates for electroburnt graphene nanojunctions, Physica E, Low-Dimens. Syst. Nanostruct., Volume 82 (2016), pp. 12-15 | DOI
[59] Electron and heat transport in porphyrin-based single-molecule transistors with electro-burnt graphene electrodes, Beilstein J. Nanotechnol., Volume 2015 (2015) no. 6, pp. 1413-1420
[60] Theory of the arrangement of cells in a network, Metallography, Volume 14 (1981) no. 4, pp. 307-318
[61] A study of planar anchor groups for graphene-based single-molecule electronics, J. Chem. Phys., Volume 140 (2014) no. 5
[62] Suppression of single-molecule conductance fluctuations using extended anchor groups on graphene and carbon-nanotube electrodes, Phys. Rev. B, Volume 86 (2012) no. 8
[63] Basic concepts of quantum interference and electron transport in single-molecule electronics, Chem. Soc. Rev., Volume 44 (2015) no. 4, pp. 875-888
[64] Enhanced thermoelectric efficiency of porous silicene nanoribbons, Sci. Rep., Volume 5 (2015), p. 9514
[65] Enhancing the thermoelectric figure of merit in engineered graphene nanoribbons, Beilstein J. Nanotechnol., Volume 6 (2015) no. 1, pp. 1176-1182
Cité par Sources :
Commentaires - Politique