Comptes Rendus
Thermoelectric mesoscopic phenomena / Phénomènes thermoélectriques mésoscopiques
The thermoelectric working fluid: Thermodynamics and transport
Comptes Rendus. Physique, Volume 17 (2016) no. 10, pp. 1072-1083.

Thermoelectric devices are heat engines, which operate as generators or refrigerators using the conduction electrons as a working fluid. The thermoelectric heat-to-work conversion efficiency has always been typically quite low, but much effort continues to be devoted to the design of new materials boasting improved transport properties that would make them of the electron crystal–phonon glass type of systems. On the other hand, there are comparatively few studies where a proper thermodynamic treatment of the electronic working fluid is proposed. The present article aims at contributing to bridge this gap by addressing both the thermodynamic and transport properties of the thermoelectric working fluid covering a variety of models, including interacting systems.

Les dispositifs thermoélectriques sont des machines thermiques pouvant opérer en mode générateur ou réfrigérateur en utilisant les électrons de conduction comme fluide de travail. Le rendement de conversion chaleur–travail a toujours été typiquement bas, mais la conception de nouveaux matériaux thermoélectriques fait l'objet d'efforts conséquents en vue d'obtenir des systèmes de type cristal électronique–verre de phonons. Par comparaison, il y a cependant un déficit de traitement approfondi des propriétés thermodynamiques du fluide de travail thermoélectrique. Le présent article vise à contribuer à combler cet écart en examinant les propriétés thermodynamiques et de transport du fluide de travail thermoélectrique dans le cadre de différents modèles, incluant les systèmes en interaction.

Published online:
DOI: 10.1016/j.crhy.2016.08.004
Keywords: Thermoelectricity, Phase transitions, Interacting systems
Mot clés : Thermoélectricité, Transitions de phase, Systèmes en interaction

Giuliano Benenti 1, 2; Henni Ouerdane 3, 4, 5; Christophe Goupil 3

1 Center for Nonlinear and Complex Systems, Dipartimento di Scienza e Alta Tecnologia, Università degli Studi dell'Insubria, via Valleggio 11, 22100 Como, Italy
2 Istituto Nazionale di Fisica Nucleare, Sezione di Milano, via Celoria 16, 20133 Milano, Italy
3 Laboratoire interdisciplinaire des énergies de demain (LIED), UMR 8236, Universitié Paris-Diderot, CNRS, 5, rue Thomas-Mann, 75013 Paris, France
4 Russian Quantum Center, 100 Novaya Street, Skolkovo, Moscow region 143025, Russian Federation
5 UFR LVE, Université de Caen Normandie, Esplanade de la Paix, 14032 Caen, France
@article{CRPHYS_2016__17_10_1072_0,
     author = {Giuliano Benenti and Henni Ouerdane and Christophe Goupil},
     title = {The thermoelectric working fluid: {Thermodynamics} and transport},
     journal = {Comptes Rendus. Physique},
     pages = {1072--1083},
     publisher = {Elsevier},
     volume = {17},
     number = {10},
     year = {2016},
     doi = {10.1016/j.crhy.2016.08.004},
     language = {en},
}
TY  - JOUR
AU  - Giuliano Benenti
AU  - Henni Ouerdane
AU  - Christophe Goupil
TI  - The thermoelectric working fluid: Thermodynamics and transport
JO  - Comptes Rendus. Physique
PY  - 2016
SP  - 1072
EP  - 1083
VL  - 17
IS  - 10
PB  - Elsevier
DO  - 10.1016/j.crhy.2016.08.004
LA  - en
ID  - CRPHYS_2016__17_10_1072_0
ER  - 
%0 Journal Article
%A Giuliano Benenti
%A Henni Ouerdane
%A Christophe Goupil
%T The thermoelectric working fluid: Thermodynamics and transport
%J Comptes Rendus. Physique
%D 2016
%P 1072-1083
%V 17
%N 10
%I Elsevier
%R 10.1016/j.crhy.2016.08.004
%G en
%F CRPHYS_2016__17_10_1072_0
Giuliano Benenti; Henni Ouerdane; Christophe Goupil. The thermoelectric working fluid: Thermodynamics and transport. Comptes Rendus. Physique, Volume 17 (2016) no. 10, pp. 1072-1083. doi : 10.1016/j.crhy.2016.08.004. https://comptes-rendus.academie-sciences.fr/physique/articles/10.1016/j.crhy.2016.08.004/

[1] N. Pottier Non-equilibrium Statistical Physics, Oxford University Press, 2010

[2] L. Onsager Reciprocal relations in irreversible processes. I, Phys. Rev., Volume 37 (1931), p. 405

[3] H.B. Callen The application of Onsager's reciprocal relations to thermoelectric, thermomagnetic, and galvanomagnetic effects, Phys. Rev., Volume 73 (1948), p. 1349

[4] O. Kedem; S.R. Caplan Degree of coupling and its relation to efficiency of energy conversion, Trans. Faraday Soc., Volume 61 (1965), p. 1897

[5] W. Thomson On the restoration of mechanical energy from an unequally heated space, Philos. Mag., Volume 5 (1853), p. 102

[6] S.R. de Groot Thermodynamics of Irreversible Processes, Interscience, New York, 1958

[7] A.F. Ioffe Semiconductor Thermoelements, and Thermoelectric Cooling, Infosearch Limited, London, 1957

[8] H.J. Goldsmid Introduction to Thermoelectricity, Springer-Verlag, Berlin, 2010

[9] C.B. Vining An inconvenient truth about thermoelectrics, Nat. Mater., Volume 8 (2009), p. 83

[10] N.W. Aschcroft; N.D. Mermin Solid State Physics, Saunders College Publishing, Philadelphia, 1976

[11] G.J. Snyder; E.S. Toberer Complex thermoelectric materials, Nat. Mater., Volume 7 (2008), p. 105

[12] A. Shakouri Recent developments in semiconductor thermoelectric physics and materials, Annu. Rev. Mater. Res., Volume 41 (2011), p. 399

[13] A.I. Hochbaum; R. Chen; R. Diaz Delgado; W. Liang; E.C. Garnett; M. Najarian; A. Majumdar; P. Yang Enhanced thermoelectric performance of rough silicon nanowires, Nature, Volume 451 (2008), p. 163

[14] C. Blanc; A. Rajabpour; S. Volz; T. Fournier; O. Bourgeois Phonon heat conduction in corrugated silicon nanowires below the Casimir limit, Appl. Phys. Lett., Volume 103 (2013)

[15] G.A. Slack CRC Handbook of Thermoelectrics (D.M. Rowe, ed.), CRC Press, Boca Raton, 1995

[16] Y. Apertet; H. Ouerdane; C. Goupil; Ph. Lecoeur Internal convection in thermoelectric generator models, J. Phys. Conf. Ser., Volume 95 (2012)

[17] C. Goupil; W. Seifert; K. Zabrocki; E. Müller; G.J. Snyder Thermodynamics of thermoelectric phenomena and applications, Entropy, Volume 13 (2011), p. 1481

[18] H.B. Callen Thermodynamics and an Introduction to Thermostatics, John Wiley & Sons, New York, 1985

[19] S.R. de Groot; P. Mazur Non-equilibrium Thermodynamics, Dover, New York, 1984

[20] G.D. Mahan; J.O. Sofo The best thermoelectric, Proc. Natl. Acad. Sci. USA, Volume 93 (1996), p. 7436

[21] G. Benenti, G. Casati, K. Saito, R. Whitney, Fundamental aspects of steady-state conversion of heat to work at the nanoscale, preprint.

[22] G.D. Mahan Mott's formula for the thermopower and the Wiedemann–Franz law, Phys. Rev. B, Volume 21 (1980), p. 4223

[23] A. Abbout; H. Ouerdane; C. Goupil Mesoscopic thermoelectric transport near zero transmission energies, Phys. Rev. B, Volume 87 (2013)

[24] S. Datta Electronic Transport in Mesoscopic Systems, Cambridge University Press, Cambridge, UK, 1995

[25] Y. Imry Introduction to Mesoscopic Physics, Oxford University Press, 1997

[26] M.G. Vavilov; A.D. Stone Failure of the Wiedemann–Franz law in mesoscopic conductors, Phys. Rev. B, Volume 72 (2005)

[27] Z. Bian; M. Zebarjadi; R. Singh; Y. Ezzahri; A. Shakouri; G. Zeng; J.-H. Bahk; J.E. Bowers; J.M.O. Zide; A.C. Gossard Cross-plane Seebeck coefficient and Lorenz number in superlattices, Phys. Rev. B, Volume 76 (2007)

[28] J.P. Bergfield; M.A. Solis; C.A. Stafford Giant thermoelectric effect from transmission supernodes, ACS Nano, Volume 4 (2010), p. 5314

[29] J.P. Bergfield; Ph. Jacquod; C.A. Stafford Coherent destruction of Coulomb blockade peaks in molecular junctions, Phys. Rev. B, Volume 82 (2010)

[30] V. Balachandran; R. Bosisio; G. Benenti Validity of the Wiedemann–Franz law in small molecular wires, Phys. Rev. B, Volume 86 (2012)

[31] R. López; D. Sánchez Nonlinear heat transport in mesoscopic conductors: rectification, Peltier effect, and Wiedemann–Franz law, Phys. Rev. B, Volume 88 (2013)

[32] Y. Imry; A. Amir The localization transition at finite temperatures: electric and thermal transport (E. Abrahams, ed.), 50 Years of Anderson Localization, World Scientific, Singapore, 2010

[33] C.B. Vining The thermoelectric process, Mater. Res. Soc. Symp., Volume 478 (1997), p. 3

[34] H. Ouerdane; A.A. Varlamov; A.V. Kavokin; C. Goupil; C.B. Vining Enhanced thermoelectric coupling near electronic phase transition: the role of fluctuation Cooper pairs, Phys. Rev. B, Volume 91 (2015)

[35] S.J. Blundell; K.M. Blundell Thermal Physics, Oxford University Press, Oxford, UK, 2009

[36] A. Larkin; A. Varlamov Theory of Fluctuations in Superconductors, Oxford University Press, Oxford, UK, 2009

[37] I. Terasaki; Y. Sasago; K. Uchinokura Large thermoelectric power in NaCo2O4 single crystals, Phys. Rev. B, Volume 56 (1997)

[38] Y. Wang; N.S. Rogado; R.J. Cava; N.P. Ong Spin entropy as the likely source of enhanced thermopower in NaxCo2O4, Nature, Volume 423 (2003), p. 425

[39] M.R. Peterson; S. Mukerjee; B.S. Shastry; J.O. Haerter Dynamical thermal response functions for strongly correlated one-dimensional systems: Hubbard and spinless fermion tV model, Phys. Rev. B, Volume 76 (2007)

[40] S. Hong; P. Ghaemi; J.E. Moore; P.W. Phillips Tuning thermoelectric power factor by crystal-field and spin-orbit couplings in Kondo-lattice materials, Phys. Rev. B, Volume 88 (2013)

[41] A. Georges; G. Kotliar; W. Krauth; M.J. Rozenberg Dynamical mean-field theory of strongly correlated fermion systems and the limit of infinite dimensions, Rev. Mod. Phys., Volume 68 (1996), p. 13

[42] X. Deng; J. Mravlje; R. Žitko; M. Ferrero; G. Kotliar; A. Georges How bad metals turn good: spectroscopic signatures of resilient quasiparticles, Phys. Rev. Lett., Volume 110 (2013)

[43] A.J. Millis; P.A. Lee Large-orbital-degeneracy expansion for the lattice Anderson model, Phys. Rev. B, Volume 35 (1987), p. 3394

[44] R. Frésard; H. Ouerdane; T. Kopp Slave bosons in radial gauge: a bridge between path integral and Hamiltonian language, Nucl. Phys. B, Volume 785 (2007), p. 286

[45] G. Benenti; G. Casati; J. Wang Conservation laws and thermodynamic efficiencies, Phys. Rev. Lett., Volume 110 (2013)

[46] G. Benenti; G. Casati; C. Mejía-Monasterio Thermoelectric efficiency in momentum-conserving systems, New J. Phys., Volume 16 (2014)

[47] S. Chen; J. Wang; G. Casati; G. Benenti Thermoelectricity of interacting particles: a numerical approach, Phys. Rev. E, Volume 92 (2015)

[48] R. Kubo; M. Toda; N. Hashitsume Statistical Physics II: Nonequilibrium Statistical Mechanics, Springer-Verlag, 1985

[49] G.D. Mahan Many-Particle Physics, Plenum Press, New York, 1990

[50] X. Zotos; F. Naef; P. Prelovšek Transport and conservation laws, Phys. Rev. B, Volume 55 (1997), p. 11029

[51] X. Zotos; P. Prelovšek Transport in one dimensional quantum systems (D. Baeriswyl; L. Degiorgi, eds.), Strong Interactions in Low Dimensions, Kluwer Academic Publishers, Dordrecht, 2004

[52] M. Garst; A. Rosch Transport in a classical model of a one-dimensional Mott insulator: influence of conservation laws, Europhys. Lett., Volume 55 (2001), p. 66

[53] F. Heidrich-Meisner; A. Honecker; W. Brenig Thermal transport of the XXZ chain in a magnetic field, Phys. Rev. B, Volume 71 (2005)

[54] E. Ilievski; T. Prosen Thermodyamic bounds on Drude weights in terms of almost-conserved quantities, Commun. Math. Phys., Volume 318 (2013), p. 809

[55] M. Suzuki Ergodicity, constants of motion, and bounds for susceptibilities, Physica, Volume 51 (1971), p. 277

[56] P. Mazur Non-ergodicity of phase functions in certain systems, Physica, Volume 43 (1969), p. 533

[57] K. Saito; G. Benenti; G. Casati A microscopic mechanism for increasing thermoelectric efficiency, Chem. Phys., Volume 375 (2010), p. 508

[58] A. Malevanets; R. Kapral Mesoscopic model for solvent dynamics, J. Chem. Phys., Volume 110 (1999), p. 8605

[59] S. Lepri; R. Livi; A. Politi Thermal conduction in classical low-dimensional lattices, Phys. Rep., Volume 377 (2003), p. 1

[60] A. Dhar Heat transport in low-dimensional systems, Adv. Phys., Volume 57 (2008), p. 457

[61] T. Micklitz; J. Rech; K.A. Matveev Transport properties of partially equilibrated quantum wires, Phys. Rev. B, Volume 81 (2010)

[62] Y. Apertet; H. Ouerdane; O. Glavatskaya; C. Goupil; Ph. Lecoeur Optimal working conditions for thermoelectric generators with realistic thermal coupling, Europhys. Lett., Volume 97 (2012), p. 28001

[63] Y. Apertet; H. Ouerdane; C. Goupil; Ph. Lecoeur Influence of thermal environment on optimal working conditions of thermoelectric generators, J. Appl. Phys., Volume 116 (2014)

[64] B. Andresen Current trends in finite-time thermodynamics, Angew. Chem., Int. Ed., Volume 50 (2011), p. 2690

[65] H. Ouerdane; Y. Apertet; C. Goupil; Ph. Lecoeur Continuity and boundary conditions in thermodynamics: from Carnot's efficiency to efficiencies at maximum power, Eur. Phys. J. Spec. Top., Volume 224 (2015), p. 839

[66] J.M. Gordon Generalized power versus efficiency characteristics of heat engines: the thermoelectric generator as an instructive illustration, Am. J. Phys., Volume 59 (1991), p. 551

[67] Y. Apertet; H. Ouerdane; C. Goupil; Ph. Lecoeur Efficiency at maximum power of thermally coupled heat engines, Phys. Rev. E, Volume 85 (2012)

[68] Y. Apertet; H. Ouerdane; C. Goupil; Ph. Lecoeur From local force-flux relationships to internal dissipations and their impact on heat engine performance: the illustrative case of a thermoelectric generator, Phys. Rev. E, Volume 88 (2013)

[69] Y. Apertet; H. Ouerdane; C. Goupil Ph Lecoeur revisiting Feynman's ratchet with thermoelectric transport theory, Phys. Rev. E, Volume 90 (2014)

[70] D.A. Bandurin; I. Torre; R. Krishna Kumar; M. Ben Shalom; A. Tomadin; A. Principi; G.H. Auton; E. Khestanova; K.S. Novoselov; I.V. Grigorieva; L.A. Ponomarenko; A.K. Geim; M. Polini Negative local resistance caused by viscous electron backflow in graphene, Science, Volume 315 (2016), p. 10

Cited by Sources:

Comments - Policy