Thermoelectric devices are heat engines, which operate as generators or refrigerators using the conduction electrons as a working fluid. The thermoelectric heat-to-work conversion efficiency has always been typically quite low, but much effort continues to be devoted to the design of new materials boasting improved transport properties that would make them of the electron crystal–phonon glass type of systems. On the other hand, there are comparatively few studies where a proper thermodynamic treatment of the electronic working fluid is proposed. The present article aims at contributing to bridge this gap by addressing both the thermodynamic and transport properties of the thermoelectric working fluid covering a variety of models, including interacting systems.
Les dispositifs thermoélectriques sont des machines thermiques pouvant opérer en mode générateur ou réfrigérateur en utilisant les électrons de conduction comme fluide de travail. Le rendement de conversion chaleur–travail a toujours été typiquement bas, mais la conception de nouveaux matériaux thermoélectriques fait l'objet d'efforts conséquents en vue d'obtenir des systèmes de type cristal électronique–verre de phonons. Par comparaison, il y a cependant un déficit de traitement approfondi des propriétés thermodynamiques du fluide de travail thermoélectrique. Le présent article vise à contribuer à combler cet écart en examinant les propriétés thermodynamiques et de transport du fluide de travail thermoélectrique dans le cadre de différents modèles, incluant les systèmes en interaction.
Mot clés : Thermoélectricité, Transitions de phase, Systèmes en interaction
Giuliano Benenti 1, 2; Henni Ouerdane 3, 4, 5; Christophe Goupil 3
@article{CRPHYS_2016__17_10_1072_0, author = {Giuliano Benenti and Henni Ouerdane and Christophe Goupil}, title = {The thermoelectric working fluid: {Thermodynamics} and transport}, journal = {Comptes Rendus. Physique}, pages = {1072--1083}, publisher = {Elsevier}, volume = {17}, number = {10}, year = {2016}, doi = {10.1016/j.crhy.2016.08.004}, language = {en}, }
TY - JOUR AU - Giuliano Benenti AU - Henni Ouerdane AU - Christophe Goupil TI - The thermoelectric working fluid: Thermodynamics and transport JO - Comptes Rendus. Physique PY - 2016 SP - 1072 EP - 1083 VL - 17 IS - 10 PB - Elsevier DO - 10.1016/j.crhy.2016.08.004 LA - en ID - CRPHYS_2016__17_10_1072_0 ER -
Giuliano Benenti; Henni Ouerdane; Christophe Goupil. The thermoelectric working fluid: Thermodynamics and transport. Comptes Rendus. Physique, Volume 17 (2016) no. 10, pp. 1072-1083. doi : 10.1016/j.crhy.2016.08.004. https://comptes-rendus.academie-sciences.fr/physique/articles/10.1016/j.crhy.2016.08.004/
[1] Non-equilibrium Statistical Physics, Oxford University Press, 2010
[2] Reciprocal relations in irreversible processes. I, Phys. Rev., Volume 37 (1931), p. 405
[3] The application of Onsager's reciprocal relations to thermoelectric, thermomagnetic, and galvanomagnetic effects, Phys. Rev., Volume 73 (1948), p. 1349
[4] Degree of coupling and its relation to efficiency of energy conversion, Trans. Faraday Soc., Volume 61 (1965), p. 1897
[5] On the restoration of mechanical energy from an unequally heated space, Philos. Mag., Volume 5 (1853), p. 102
[6] Thermodynamics of Irreversible Processes, Interscience, New York, 1958
[7] Semiconductor Thermoelements, and Thermoelectric Cooling, Infosearch Limited, London, 1957
[8] Introduction to Thermoelectricity, Springer-Verlag, Berlin, 2010
[9] An inconvenient truth about thermoelectrics, Nat. Mater., Volume 8 (2009), p. 83
[10] Solid State Physics, Saunders College Publishing, Philadelphia, 1976
[11] Complex thermoelectric materials, Nat. Mater., Volume 7 (2008), p. 105
[12] Recent developments in semiconductor thermoelectric physics and materials, Annu. Rev. Mater. Res., Volume 41 (2011), p. 399
[13] Enhanced thermoelectric performance of rough silicon nanowires, Nature, Volume 451 (2008), p. 163
[14] Phonon heat conduction in corrugated silicon nanowires below the Casimir limit, Appl. Phys. Lett., Volume 103 (2013)
[15] CRC Handbook of Thermoelectrics (D.M. Rowe, ed.), CRC Press, Boca Raton, 1995
[16] Internal convection in thermoelectric generator models, J. Phys. Conf. Ser., Volume 95 (2012)
[17] Thermodynamics of thermoelectric phenomena and applications, Entropy, Volume 13 (2011), p. 1481
[18] Thermodynamics and an Introduction to Thermostatics, John Wiley & Sons, New York, 1985
[19] Non-equilibrium Thermodynamics, Dover, New York, 1984
[20] The best thermoelectric, Proc. Natl. Acad. Sci. USA, Volume 93 (1996), p. 7436
[21] G. Benenti, G. Casati, K. Saito, R. Whitney, Fundamental aspects of steady-state conversion of heat to work at the nanoscale, preprint.
[22] Mott's formula for the thermopower and the Wiedemann–Franz law, Phys. Rev. B, Volume 21 (1980), p. 4223
[23] Mesoscopic thermoelectric transport near zero transmission energies, Phys. Rev. B, Volume 87 (2013)
[24] Electronic Transport in Mesoscopic Systems, Cambridge University Press, Cambridge, UK, 1995
[25] Introduction to Mesoscopic Physics, Oxford University Press, 1997
[26] Failure of the Wiedemann–Franz law in mesoscopic conductors, Phys. Rev. B, Volume 72 (2005)
[27] Cross-plane Seebeck coefficient and Lorenz number in superlattices, Phys. Rev. B, Volume 76 (2007)
[28] Giant thermoelectric effect from transmission supernodes, ACS Nano, Volume 4 (2010), p. 5314
[29] Coherent destruction of Coulomb blockade peaks in molecular junctions, Phys. Rev. B, Volume 82 (2010)
[30] Validity of the Wiedemann–Franz law in small molecular wires, Phys. Rev. B, Volume 86 (2012)
[31] Nonlinear heat transport in mesoscopic conductors: rectification, Peltier effect, and Wiedemann–Franz law, Phys. Rev. B, Volume 88 (2013)
[32] The localization transition at finite temperatures: electric and thermal transport (E. Abrahams, ed.), 50 Years of Anderson Localization, World Scientific, Singapore, 2010
[33] The thermoelectric process, Mater. Res. Soc. Symp., Volume 478 (1997), p. 3
[34] Enhanced thermoelectric coupling near electronic phase transition: the role of fluctuation Cooper pairs, Phys. Rev. B, Volume 91 (2015)
[35] Thermal Physics, Oxford University Press, Oxford, UK, 2009
[36] Theory of Fluctuations in Superconductors, Oxford University Press, Oxford, UK, 2009
[37] Large thermoelectric power in NaCo2O4 single crystals, Phys. Rev. B, Volume 56 (1997)
[38] Spin entropy as the likely source of enhanced thermopower in NaxCo2O4, Nature, Volume 423 (2003), p. 425
[39] Dynamical thermal response functions for strongly correlated one-dimensional systems: Hubbard and spinless fermion model, Phys. Rev. B, Volume 76 (2007)
[40] Tuning thermoelectric power factor by crystal-field and spin-orbit couplings in Kondo-lattice materials, Phys. Rev. B, Volume 88 (2013)
[41] Dynamical mean-field theory of strongly correlated fermion systems and the limit of infinite dimensions, Rev. Mod. Phys., Volume 68 (1996), p. 13
[42] How bad metals turn good: spectroscopic signatures of resilient quasiparticles, Phys. Rev. Lett., Volume 110 (2013)
[43] Large-orbital-degeneracy expansion for the lattice Anderson model, Phys. Rev. B, Volume 35 (1987), p. 3394
[44] Slave bosons in radial gauge: a bridge between path integral and Hamiltonian language, Nucl. Phys. B, Volume 785 (2007), p. 286
[45] Conservation laws and thermodynamic efficiencies, Phys. Rev. Lett., Volume 110 (2013)
[46] Thermoelectric efficiency in momentum-conserving systems, New J. Phys., Volume 16 (2014)
[47] Thermoelectricity of interacting particles: a numerical approach, Phys. Rev. E, Volume 92 (2015)
[48] Statistical Physics II: Nonequilibrium Statistical Mechanics, Springer-Verlag, 1985
[49] Many-Particle Physics, Plenum Press, New York, 1990
[50] Transport and conservation laws, Phys. Rev. B, Volume 55 (1997), p. 11029
[51] Transport in one dimensional quantum systems (D. Baeriswyl; L. Degiorgi, eds.), Strong Interactions in Low Dimensions, Kluwer Academic Publishers, Dordrecht, 2004
[52] Transport in a classical model of a one-dimensional Mott insulator: influence of conservation laws, Europhys. Lett., Volume 55 (2001), p. 66
[53] Thermal transport of the XXZ chain in a magnetic field, Phys. Rev. B, Volume 71 (2005)
[54] Thermodyamic bounds on Drude weights in terms of almost-conserved quantities, Commun. Math. Phys., Volume 318 (2013), p. 809
[55] Ergodicity, constants of motion, and bounds for susceptibilities, Physica, Volume 51 (1971), p. 277
[56] Non-ergodicity of phase functions in certain systems, Physica, Volume 43 (1969), p. 533
[57] A microscopic mechanism for increasing thermoelectric efficiency, Chem. Phys., Volume 375 (2010), p. 508
[58] Mesoscopic model for solvent dynamics, J. Chem. Phys., Volume 110 (1999), p. 8605
[59] Thermal conduction in classical low-dimensional lattices, Phys. Rep., Volume 377 (2003), p. 1
[60] Heat transport in low-dimensional systems, Adv. Phys., Volume 57 (2008), p. 457
[61] Transport properties of partially equilibrated quantum wires, Phys. Rev. B, Volume 81 (2010)
[62] Optimal working conditions for thermoelectric generators with realistic thermal coupling, Europhys. Lett., Volume 97 (2012), p. 28001
[63] Influence of thermal environment on optimal working conditions of thermoelectric generators, J. Appl. Phys., Volume 116 (2014)
[64] Current trends in finite-time thermodynamics, Angew. Chem., Int. Ed., Volume 50 (2011), p. 2690
[65] Continuity and boundary conditions in thermodynamics: from Carnot's efficiency to efficiencies at maximum power, Eur. Phys. J. Spec. Top., Volume 224 (2015), p. 839
[66] Generalized power versus efficiency characteristics of heat engines: the thermoelectric generator as an instructive illustration, Am. J. Phys., Volume 59 (1991), p. 551
[67] Efficiency at maximum power of thermally coupled heat engines, Phys. Rev. E, Volume 85 (2012)
[68] From local force-flux relationships to internal dissipations and their impact on heat engine performance: the illustrative case of a thermoelectric generator, Phys. Rev. E, Volume 88 (2013)
[69] Lecoeur revisiting Feynman's ratchet with thermoelectric transport theory, Phys. Rev. E, Volume 90 (2014)
[70] Negative local resistance caused by viscous electron backflow in graphene, Science, Volume 315 (2016), p. 10
Cited by Sources:
Comments - Policy