[Transport themoélectrique et refroidissement Peltier dans des gaz d'atomes froids]
Cette courte revue présente le domaine émergent de la physique mésoscopique avec les atomes froids, et met l'accent sur le transport thermique et « thermoélectrique », c'est-à-dire le transport couplé de particules et d'entropie. Nous comparons notamment des prédictions théoriques à des observations expérimentales d'effets thermoélectriques au sein de ces systèmes. Nous montrons aussi comment la combinaison de propriétés de transport bien adaptées et du refroidissement évaporatif conduit à l'équivalent d'un effet Peltier pour atomes froids, pouvant fournir une nouvelle méthode de refroidissement présentant un rendement et une puissance améliorés en comparaison du refroidissement évaporatif usuellement utilisé dans les gaz d'atomes froids. Ceci pourrait conduire à une nouvelle génération d'expériences permettant de sonder les effets de corrélations fortes dans les gaz d'atomes fermioniques ultra-froids aux basses températures.
This brief review presents the emerging field of mesoscopic physics with cold atoms, with an emphasis on thermal and ‘thermoelectric’ transport, i.e. coupled transport of particles and entropy. We review in particular the comparison between theoretically predicted and experimentally observed thermoelectric effects in such systems. We also show how combining well-designed transport properties and evaporative cooling leads to an equivalent of the Peltier effect with cold atoms, which can be used as a new cooling procedure with improved cooling power and efficiency compared to the evaporative cooling currently used in atomic gases. This could lead to a new generation of experiments probing strong correlation effects of ultracold fermionic atoms at low temperatures.
Mot clés : Atomes froids, Transport, Thermoélectricité, Physique mésoscopique
Charles Grenier 1 ; Corinna Kollath 2 ; Antoine Georges 3, 4, 5
@article{CRPHYS_2016__17_10_1161_0, author = {Charles Grenier and Corinna Kollath and Antoine Georges}, title = {Thermoelectric transport and {Peltier} cooling of cold atomic gases}, journal = {Comptes Rendus. Physique}, pages = {1161--1174}, publisher = {Elsevier}, volume = {17}, number = {10}, year = {2016}, doi = {10.1016/j.crhy.2016.08.013}, language = {en}, }
TY - JOUR AU - Charles Grenier AU - Corinna Kollath AU - Antoine Georges TI - Thermoelectric transport and Peltier cooling of cold atomic gases JO - Comptes Rendus. Physique PY - 2016 SP - 1161 EP - 1174 VL - 17 IS - 10 PB - Elsevier DO - 10.1016/j.crhy.2016.08.013 LA - en ID - CRPHYS_2016__17_10_1161_0 ER -
Charles Grenier; Corinna Kollath; Antoine Georges. Thermoelectric transport and Peltier cooling of cold atomic gases. Comptes Rendus. Physique, Volume 17 (2016) no. 10, pp. 1161-1174. doi : 10.1016/j.crhy.2016.08.013. https://comptes-rendus.academie-sciences.fr/physique/articles/10.1016/j.crhy.2016.08.013/
[1] Simulating physics with computers, Int. J. Theor. Phys., Volume 21 (1982) no. 6, pp. 467-488
[2] Many-body physics with ultracold gases, Rev. Mod. Phys., Volume 80 (2008), pp. 885-964 | DOI
[3] Quantum simulations with ultracold quantum gases, Nat. Phys., Volume 8 (2012) no. 4, pp. 267-276
[4] Ultracold Atoms in Optical Lattices: Simulating Quantum Many-Body Systems, OUP, Oxford, 2012 http://books.google.es/books?id=Wpl91RDxV5IC
[5] Quantum dynamics of impurities in a one-dimensional Bose gas, Phys. Rev. A, Volume 85 (2012) | DOI
[6] Quantum transport through a Tonks–Girardeau gas, Phys. Rev. Lett., Volume 103 (2009) | DOI
[7] Quantum point contacts for neutral atoms, Phys. Rev. Lett., Volume 83 (1999), pp. 3762-3765 | DOI
[8] Collisionally induced transport in periodic potentials, Phys. Rev. Lett., Volume 92 (2004) | DOI
[9] Direct observation of Anderson localization of matter waves in a controlled disorder, Nature, Volume 453 (2008) no. 7197, pp. 891-894
[10] Anderson localization of a non-interacting Bose–Einstein condensate, Nature, Volume 453 (2008) no. 7197, pp. 895-898
[11] Three-dimensional Anderson localization of ultracold matter, Science, Volume 334 (2011) no. 6052, pp. 66-68 http://www.sciencemag.org/content/334/6052/66.abstract | DOI
[12] Quantum pumping with ultracold atoms on microchips: fermions versus bosons, Phys. Rev. Lett., Volume 103 (2009) | DOI
[13] Observation of many-body localization of interacting fermions in a quasirandom optical lattice, Science, Volume 349 (2015) no. 6250, pp. 842-845
[14] Superflow in a toroidal Bose–Einstein condensate: an atom circuit with a tunable weak link, Phys. Rev. Lett., Volume 106 (2011)
[15] Hysteresis in a quantized superfluid ‘atomtronic’ circuit, Nature, Volume 506 (2014) no. 7487, pp. 200-203
[16] Atomtronics: ultracold-atom analogs of electronic devices, Phys. Rev. A, Volume 75 (2007) | DOI
[17] Focus on atomtronics and quantum technologies, New J. Phys. (2016) http://iopscience.iop.org/1367-2630/focus/Focus%20on%20Atomtronics-enabled%20Quantum%20Technologies
[18] Conduction of ultracold fermions through a mesoscopic channel, Science, Volume 337 (2012) no. 6098, pp. 1069-1071 http://www.sciencemag.org/content/337/6098/1069.abstract | DOI
[19] Observation of quantized conductance in neutral matter, Nature, Volume 517 (2015) no. 7532, pp. 64-67
[20] Mesoscopic transport of fermions through an engineered optical lattice connecting two reservoirs, Phys. Rev. A, Volume 85 (2012) | DOI
[21] Thermoelectricity in a junction between interacting cold atomic Fermi gases, Phys. Rev. A, Volume 94 (2016)
[22] Observing the drop of resistance in the flow of a superfluid Fermi gas, Nature, Volume 491 (2012) no. 7426, pp. 736-739
[23] Connecting strongly correlated superfluids by a quantum point contact, Science, Volume 350 (2015) no. 6267, pp. 1498-1501
[24] Superfluidity with disorder in a thin film of quantum gas, Phys. Rev. Lett., Volume 110 (2013) | DOI
[25] Observation of a fragmented, strongly interacting Fermi gas, Phys. Rev. Lett., Volume 115 (2015) | DOI
[26] Mapping out spin and particle conductances in a quantum point contact, Proc. Natl. Acad. Sci. USA (2016), p. 201601812
[27] A thermoelectric heat engine with ultracold atoms, Science, Volume 342 (2013) no. 6159, pp. 713-715 http://www.sciencemag.org/content/342/6159/713.abstract | DOI
[28] Probing thermoelectric transport with cold atoms, 2012 | arXiv
[29] Anomalous thermoelectric transport in two-dimensional Bose gas | arXiv
[30] Bosonic thermoelectric transport and breakdown of universality, New J. Phys., Volume 16 (2014) no. 11 http://stacks.iop.org/1367-2630/16/i=11/a=113072
[31] Thermoelectricity: An Introduction to the Principles, Dover Books on Physics, Dover Publications, 2006
[32] Electronic Transport in Mesoscopic Systems, Cambridge Studies in Semiconductor Physics and Microelectronic Engineering, Cambridge University Press, Cambridge, UK, 1997 http://books.google.fr/books?id=28BC-ofEhvUC
[33] Introduction to Mesoscopic Physics, Mesoscopic Physics and Nanotechnology, Oxford University Press, Oxford, UK, 2008
[34] Introduction to Thermoelectricity, Springer Series in Materials Science, Springer, Dordrecht, the Netherlands, 2009
[35] Reciprocal relations in irreversible processes. I, Phys. Rev., Volume 37 (1931), pp. 405-426 | DOI
[36] Reciprocal relations in irreversible processes. II, Phys. Rev., Volume 38 (1931), pp. 2265-2279 | DOI
[37] Solid State Physics, Saunders College, Philadelphia, PA, USA, 1976
[38] Coulomb-blockade oscillations in the thermopower of a quantum dot, Europhys. Lett., Volume 22 (1993) no. 1, p. 57
[39] Effect of quantum-well structures on the thermoelectric figure of merit, Phys. Rev. B, Volume 47 (1993) no. 19, p. 12727
[40] Thermoelectric figure of merit of a one-dimensional conductor, Phys. Rev. B, Volume 47 (1993) no. 24, p. 16631
[41] Thermodynamics, John Wiley & Sons, Inc., New York, 1960
[42] Efficiency of a Carnot engine at maximum power output, Am. J. Phys., Volume 43 (1975) no. 1, pp. 22-24
[43] Evaporative cooling of trapped atoms, Adv. At. Mol. Opt. Phys., Volume 37 (1996), p. 181
[44] Bose–Einstein Condensation in Dilute Gases, Cambridge University Press, Cambridge, UK, 2008 http://www.amazon.com/exec/obidos/redirect?tag=citeulike07-20&path=ASIN/052184651X
[45] Cooling in strongly correlated optical lattices: prospects and challenges, Rep. Prog. Phys., Volume 74 (2011) no. 5 http://stacks.iop.org/0034-4885/74/i=5/a=054401
[46] Rapidly rotating atomic gases, Adv. Phys., Volume 57 (2008) no. 6, pp. 539-616 | DOI
[47] Quantitative determination of temperature in the approach to magnetic order of ultracold fermions in an optical lattice, Phys. Rev. Lett., Volume 104 (2010) | DOI
[48] Peltier cooling of fermionic quantum gases, Phys. Rev. Lett., Volume 113 (2014) | DOI
[49] Increasing quantum degeneracy by heating a superfluid, Phys. Rev. Lett., Volume 109 (2012) | DOI
[50] Fast thermalization and Helmholtz oscillations of an ultracold Bose gas, Phys. Rev. Lett., Volume 113 (2014) | DOI
[51] Second sound and the superfluid fraction in a Fermi gas with resonant interactions, Nature, Volume 498 (2013) no. 7452, pp. 78-81
[52] Heat and spin transport in a cold atomic Fermi gas, Phys. Rev. A, Volume 86 (2012) no. 5 | DOI
[53] Spin-Seebeck effect in a strongly interacting Fermi gas, Phys. Rev. A, Volume 85 (2012) | DOI
[54] Superfluid fountain effect in a Bose–Einstein condensate, Phys. Rev. A, Volume 86 (2012) | DOI
[55] Kinetic theory of the evaporative cooling of a trapped gas, Phys. Rev. A, Volume 53 (1996), pp. 381-389 | DOI
[56] An analytical model for evaporative cooling of atoms, Appl. Phys. B, Volume 60 (1995) no. 2–3, pp. 155-159 | DOI
[57] Laser Cooling and Trapping, Graduate Texts in Contemporary Physics, Springer, New York, 1999 http://books.google.ch/books?id=i-40VaXqrj0C
[58] The best thermoelectric, Proc. Natl. Acad. Sci. USA, Volume 93 (1996) no. 15, pp. 7436-7439 http://www.pnas.org/content/93/15/7436.abstract
[59] Most efficient quantum thermoelectric at finite power output, Phys. Rev. Lett., Volume 112 (2014) | DOI
[60] High-resolution imaging of ultracold fermions in microscopically tailored optical potentials, New J. Phys., Volume 13 (2011) no. 4 http://stacks.iop.org/1367-2630/13/i=4/a=043007
[61] On the thermoelectricity of correlated electrons in the zero-temperature limit, J. Phys. Condens. Matter, Volume 16 (2004) no. 28, p. 5187
[62] Exploring quantum criticality based on ultracold atoms in optical lattices, New J. Phys., Volume 13 (2011) no. 4
[63] Nonlinear conductance of long quantum wires at a conductance plateau transition: where does the voltage drop?, Phys. Rev. Lett., Volume 109 (2012)
[64] Thermopower in the correlated hopping regime, Phys. Rev. B, Volume 13 (1976), pp. 647-651 | DOI
[65] Experimental realization of the topological Haldane model with ultracold fermions, Nature, Volume 515 (2014) no. 7526, pp. 237-240
Cité par Sources :
Commentaires - Politique