Comptes Rendus
Thermoelectric mesoscopic phenomena / Phénomènes thermoélectriques mésoscopiques
Thermoelectric transport and Peltier cooling of cold atomic gases
[Transport themoélectrique et refroidissement Peltier dans des gaz d'atomes froids]
Comptes Rendus. Physique, Volume 17 (2016) no. 10, pp. 1161-1174.

Cette courte revue présente le domaine émergent de la physique mésoscopique avec les atomes froids, et met l'accent sur le transport thermique et « thermoélectrique », c'est-à-dire le transport couplé de particules et d'entropie. Nous comparons notamment des prédictions théoriques à des observations expérimentales d'effets thermoélectriques au sein de ces systèmes. Nous montrons aussi comment la combinaison de propriétés de transport bien adaptées et du refroidissement évaporatif conduit à l'équivalent d'un effet Peltier pour atomes froids, pouvant fournir une nouvelle méthode de refroidissement présentant un rendement et une puissance améliorés en comparaison du refroidissement évaporatif usuellement utilisé dans les gaz d'atomes froids. Ceci pourrait conduire à une nouvelle génération d'expériences permettant de sonder les effets de corrélations fortes dans les gaz d'atomes fermioniques ultra-froids aux basses températures.

This brief review presents the emerging field of mesoscopic physics with cold atoms, with an emphasis on thermal and ‘thermoelectric’ transport, i.e. coupled transport of particles and entropy. We review in particular the comparison between theoretically predicted and experimentally observed thermoelectric effects in such systems. We also show how combining well-designed transport properties and evaporative cooling leads to an equivalent of the Peltier effect with cold atoms, which can be used as a new cooling procedure with improved cooling power and efficiency compared to the evaporative cooling currently used in atomic gases. This could lead to a new generation of experiments probing strong correlation effects of ultracold fermionic atoms at low temperatures.

Publié le :
DOI : 10.1016/j.crhy.2016.08.013
Keywords: Cold atoms, Transport, Thermoelectricity, Mesoscopic physics
Mot clés : Atomes froids, Transport, Thermoélectricité, Physique mésoscopique
Charles Grenier 1 ; Corinna Kollath 2 ; Antoine Georges 3, 4, 5

1 Laboratoire de physique, ENS de Lyon, Université de Lyon, CNRS, 46, allée d'Italie, 69364 Lyon, France
2 HISKP, University of Bonn, Nussallee 14–16, 53115 Bonn, Germany
3 Collège de France, 11, place Marcelin-Berthelot, 75005 Paris, France
4 Centre de physique théorique, École polytechnique, CNRS, Université Paris-Saclay, 91128 Palaiseau, France
5 DQMP, Université de Genève, CH-1211 Genève, Switzerland
@article{CRPHYS_2016__17_10_1161_0,
     author = {Charles Grenier and Corinna Kollath and Antoine Georges},
     title = {Thermoelectric transport and {Peltier} cooling of cold atomic gases},
     journal = {Comptes Rendus. Physique},
     pages = {1161--1174},
     publisher = {Elsevier},
     volume = {17},
     number = {10},
     year = {2016},
     doi = {10.1016/j.crhy.2016.08.013},
     language = {en},
}
TY  - JOUR
AU  - Charles Grenier
AU  - Corinna Kollath
AU  - Antoine Georges
TI  - Thermoelectric transport and Peltier cooling of cold atomic gases
JO  - Comptes Rendus. Physique
PY  - 2016
SP  - 1161
EP  - 1174
VL  - 17
IS  - 10
PB  - Elsevier
DO  - 10.1016/j.crhy.2016.08.013
LA  - en
ID  - CRPHYS_2016__17_10_1161_0
ER  - 
%0 Journal Article
%A Charles Grenier
%A Corinna Kollath
%A Antoine Georges
%T Thermoelectric transport and Peltier cooling of cold atomic gases
%J Comptes Rendus. Physique
%D 2016
%P 1161-1174
%V 17
%N 10
%I Elsevier
%R 10.1016/j.crhy.2016.08.013
%G en
%F CRPHYS_2016__17_10_1161_0
Charles Grenier; Corinna Kollath; Antoine Georges. Thermoelectric transport and Peltier cooling of cold atomic gases. Comptes Rendus. Physique, Volume 17 (2016) no. 10, pp. 1161-1174. doi : 10.1016/j.crhy.2016.08.013. https://comptes-rendus.academie-sciences.fr/physique/articles/10.1016/j.crhy.2016.08.013/

[1] R.P. Feynman Simulating physics with computers, Int. J. Theor. Phys., Volume 21 (1982) no. 6, pp. 467-488

[2] I. Bloch; J. Dalibard; W. Zwerger Many-body physics with ultracold gases, Rev. Mod. Phys., Volume 80 (2008), pp. 885-964 | DOI

[3] I. Bloch; J. Dalibard; S. Nascimbene Quantum simulations with ultracold quantum gases, Nat. Phys., Volume 8 (2012) no. 4, pp. 267-276

[4] M. Lewenstein; A. Sanpera; V. Ahufinger Ultracold Atoms in Optical Lattices: Simulating Quantum Many-Body Systems, OUP, Oxford, 2012 http://books.google.es/books?id=Wpl91RDxV5IC

[5] J. Catani; G. Lamporesi; D. Naik; M. Gring; M. Inguscio; F. Minardi; A. Kantian; T. Giamarchi Quantum dynamics of impurities in a one-dimensional Bose gas, Phys. Rev. A, Volume 85 (2012) | DOI

[6] S. Palzer; C. Zipkes; C. Sias; M. Köhl Quantum transport through a Tonks–Girardeau gas, Phys. Rev. Lett., Volume 103 (2009) | DOI

[7] J.H. Thywissen; R.M. Westervelt; M. Prentiss Quantum point contacts for neutral atoms, Phys. Rev. Lett., Volume 83 (1999), pp. 3762-3765 | DOI

[8] H. Ott; E. de Mirandes; F. Ferlaino; G. Roati; G. Modugno; M. Inguscio Collisionally induced transport in periodic potentials, Phys. Rev. Lett., Volume 92 (2004) | DOI

[9] J. Billy; V. Josse; Z. Zuo; A. Bernard; B. Hambrecht; P. Lugan; D. Clément; L. Sanchez-Palencia; P. Bouyer; A. Aspect Direct observation of Anderson localization of matter waves in a controlled disorder, Nature, Volume 453 (2008) no. 7197, pp. 891-894

[10] G. Roati; C. D'Errico; L. Fallani; M. Fattori; C. Fort; M. Zaccanti; G. Modugno; M. Modugno; M. Inguscio Anderson localization of a non-interacting Bose–Einstein condensate, Nature, Volume 453 (2008) no. 7197, pp. 895-898

[11] S.S. Kondov; W.R. McGehee; J.J. Zirbel; B. DeMarco Three-dimensional Anderson localization of ultracold matter, Science, Volume 334 (2011) no. 6052, pp. 66-68 http://www.sciencemag.org/content/334/6052/66.abstract | DOI

[12] K.K. Das; S. Aubin Quantum pumping with ultracold atoms on microchips: fermions versus bosons, Phys. Rev. Lett., Volume 103 (2009) | DOI

[13] M. Schreiber; S.S. Hodgman; P. Bordia; H.P. Lüschen; M.H. Fischer; R. Vosk; E. Altman; U. Schneider; I. Bloch Observation of many-body localization of interacting fermions in a quasirandom optical lattice, Science, Volume 349 (2015) no. 6250, pp. 842-845

[14] A. Ramanathan; K.C. Wright; S.R. Muniz; M. Zelan; W.T. Hill; C.J. Lobb; K. Helmerson; W.D. Phillips; G.K. Campbell Superflow in a toroidal Bose–Einstein condensate: an atom circuit with a tunable weak link, Phys. Rev. Lett., Volume 106 (2011)

[15] S. Eckel; J.G. Lee; F. Jendrzejewski; N. Murray; C.W. Clark; C.J. Lobb; W.D. Phillips; M. Edwards; G.K. Campbell Hysteresis in a quantized superfluid ‘atomtronic’ circuit, Nature, Volume 506 (2014) no. 7487, pp. 200-203

[16] B.T. Seaman; M. Krämer; D.Z. Anderson; M.J. Holland Atomtronics: ultracold-atom analogs of electronic devices, Phys. Rev. A, Volume 75 (2007) | DOI

[17] Focus on atomtronics and quantum technologies, New J. Phys. (2016) http://iopscience.iop.org/1367-2630/focus/Focus%20on%20Atomtronics-enabled%20Quantum%20Technologies

[18] J.-P. Brantut; J. Meineke; D. Stadler; S. Krinner; T. Esslinger Conduction of ultracold fermions through a mesoscopic channel, Science, Volume 337 (2012) no. 6098, pp. 1069-1071 http://www.sciencemag.org/content/337/6098/1069.abstract | DOI

[19] S. Krinner; D. Stadler; D. Husmann; J.-P. Brantut; T. Esslinger Observation of quantized conductance in neutral matter, Nature, Volume 517 (2015) no. 7532, pp. 64-67

[20] M. Bruderer; W. Belzig Mesoscopic transport of fermions through an engineered optical lattice connecting two reservoirs, Phys. Rev. A, Volume 85 (2012) | DOI

[21] T. Sekera; C. Bruder; W. Belzig Thermoelectricity in a junction between interacting cold atomic Fermi gases, Phys. Rev. A, Volume 94 (2016)

[22] D. Stadler; S. Krinner; J. Meineke; J.-P. Brantut; T. Esslinger Observing the drop of resistance in the flow of a superfluid Fermi gas, Nature, Volume 491 (2012) no. 7426, pp. 736-739

[23] D. Husmann; S. Uchino; S. Krinner; M. Lebrat; T. Giamarchi; T. Esslinger; J.-P. Brantut Connecting strongly correlated superfluids by a quantum point contact, Science, Volume 350 (2015) no. 6267, pp. 1498-1501

[24] S. Krinner; D. Stadler; J. Meineke; J.-P. Brantut; T. Esslinger Superfluidity with disorder in a thin film of quantum gas, Phys. Rev. Lett., Volume 110 (2013) | DOI

[25] S. Krinner; D. Stadler; J. Meineke; J.-P. Brantut; T. Esslinger Observation of a fragmented, strongly interacting Fermi gas, Phys. Rev. Lett., Volume 115 (2015) | DOI

[26] S. Krinner; M. Lebrat; D. Husmann; C. Grenier; J.-P. Brantut; T. Esslinger Mapping out spin and particle conductances in a quantum point contact, Proc. Natl. Acad. Sci. USA (2016), p. 201601812

[27] J.-P. Brantut; C. Grenier; J. Meineke; D. Stadler; S. Krinner; C. Kollath; T. Esslinger; A. Georges A thermoelectric heat engine with ultracold atoms, Science, Volume 342 (2013) no. 6159, pp. 713-715 http://www.sciencemag.org/content/342/6159/713.abstract | DOI

[28] C. Grenier; C. Kollath; A. Georges Probing thermoelectric transport with cold atoms, 2012 | arXiv

[29] E.L. Hazlett; L.-C. Ha; C. Chin Anomalous thermoelectric transport in two-dimensional Bose gas | arXiv

[30] A. Rançon; C. Chin; K. Levin Bosonic thermoelectric transport and breakdown of universality, New J. Phys., Volume 16 (2014) no. 11 http://stacks.iop.org/1367-2630/16/i=11/a=113072

[31] D. MacDonald Thermoelectricity: An Introduction to the Principles, Dover Books on Physics, Dover Publications, 2006

[32] S. Datta Electronic Transport in Mesoscopic Systems, Cambridge Studies in Semiconductor Physics and Microelectronic Engineering, Cambridge University Press, Cambridge, UK, 1997 http://books.google.fr/books?id=28BC-ofEhvUC

[33] Y. Imry Introduction to Mesoscopic Physics, Mesoscopic Physics and Nanotechnology, Oxford University Press, Oxford, UK, 2008

[34] H.J. Goldsmid Introduction to Thermoelectricity, Springer Series in Materials Science, Springer, Dordrecht, the Netherlands, 2009

[35] L. Onsager Reciprocal relations in irreversible processes. I, Phys. Rev., Volume 37 (1931), pp. 405-426 | DOI

[36] L. Onsager Reciprocal relations in irreversible processes. II, Phys. Rev., Volume 38 (1931), pp. 2265-2279 | DOI

[37] N. Ashcroft; N. Mermin Solid State Physics, Saunders College, Philadelphia, PA, USA, 1976

[38] A. Staring; L. Molenkamp; B. Alphenaar; H. Van Houten; O. Buyk; M. Mabesoone; C. Beenakker; C. Foxon Coulomb-blockade oscillations in the thermopower of a quantum dot, Europhys. Lett., Volume 22 (1993) no. 1, p. 57

[39] L. Hicks; M. Dresselhaus Effect of quantum-well structures on the thermoelectric figure of merit, Phys. Rev. B, Volume 47 (1993) no. 19, p. 12727

[40] L. Hicks; M. Dresselhaus Thermoelectric figure of merit of a one-dimensional conductor, Phys. Rev. B, Volume 47 (1993) no. 24, p. 16631

[41] H.B. Callen Thermodynamics, John Wiley & Sons, Inc., New York, 1960

[42] F. Curzon; B. Ahlborn Efficiency of a Carnot engine at maximum power output, Am. J. Phys., Volume 43 (1975) no. 1, pp. 22-24

[43] W. Ketterle; N. van Druten Evaporative cooling of trapped atoms, Adv. At. Mol. Opt. Phys., Volume 37 (1996), p. 181

[44] C.J. Pethick; H. Smith Bose–Einstein Condensation in Dilute Gases, Cambridge University Press, Cambridge, UK, 2008 http://www.amazon.com/exec/obidos/redirect?tag=citeulike07-20&path=ASIN/052184651X

[45] D.C. McKay; B. DeMarco Cooling in strongly correlated optical lattices: prospects and challenges, Rep. Prog. Phys., Volume 74 (2011) no. 5 http://stacks.iop.org/0034-4885/74/i=5/a=054401

[46] N. Cooper Rapidly rotating atomic gases, Adv. Phys., Volume 57 (2008) no. 6, pp. 539-616 | DOI

[47] R. Jördens; L. Tarruell; D. Greif; T. Uehlinger; N. Strohmaier; H. Moritz; T. Esslinger; L. De Leo; C. Kollath; A. Georges; V. Scarola; L. Pollet; E. Burovski; E. Kozik; M. Troyer Quantitative determination of temperature in the approach to magnetic order of ultracold fermions in an optical lattice, Phys. Rev. Lett., Volume 104 (2010) | DOI

[48] C. Grenier; A. Georges; C. Kollath Peltier cooling of fermionic quantum gases, Phys. Rev. Lett., Volume 113 (2014) | DOI

[49] D.J. Papoular; G. Ferrari; L.P. Pitaevskii; S. Stringari Increasing quantum degeneracy by heating a superfluid, Phys. Rev. Lett., Volume 109 (2012) | DOI

[50] D.J. Papoular; L.P. Pitaevskii; S. Stringari Fast thermalization and Helmholtz oscillations of an ultracold Bose gas, Phys. Rev. Lett., Volume 113 (2014) | DOI

[51] L.A. Sidorenkov; M.K. Tey; R. Grimm; Y.-H. Hou; L. Pitaevskii; S. Stringari Second sound and the superfluid fraction in a Fermi gas with resonant interactions, Nature, Volume 498 (2013) no. 7452, pp. 78-81

[52] H. Kim; D.A. Huse Heat and spin transport in a cold atomic Fermi gas, Phys. Rev. A, Volume 86 (2012) no. 5 | DOI

[53] C.H. Wong; H.T.C. Stoof; R.A. Duine Spin-Seebeck effect in a strongly interacting Fermi gas, Phys. Rev. A, Volume 85 (2012) | DOI

[54] T. Karpiuk; B. Grémaud; C. Miniatura; M. Gajda Superfluid fountain effect in a Bose–Einstein condensate, Phys. Rev. A, Volume 86 (2012) | DOI

[55] O.J. Luiten; M.W. Reynolds; J.T.M. Walraven Kinetic theory of the evaporative cooling of a trapped gas, Phys. Rev. A, Volume 53 (1996), pp. 381-389 | DOI

[56] K. Davis; M.-O. Mewes; W. Ketterle An analytical model for evaporative cooling of atoms, Appl. Phys. B, Volume 60 (1995) no. 2–3, pp. 155-159 | DOI

[57] H. Metcalf; P. van der Straten Laser Cooling and Trapping, Graduate Texts in Contemporary Physics, Springer, New York, 1999 http://books.google.ch/books?id=i-40VaXqrj0C

[58] G.D. Mahan; J.O. Sofo The best thermoelectric, Proc. Natl. Acad. Sci. USA, Volume 93 (1996) no. 15, pp. 7436-7439 http://www.pnas.org/content/93/15/7436.abstract

[59] R.S. Whitney Most efficient quantum thermoelectric at finite power output, Phys. Rev. Lett., Volume 112 (2014) | DOI

[60] B. Zimmermann; T. Müller; J. Meineke; T. Esslinger; H. Moritz High-resolution imaging of ultracold fermions in microscopically tailored optical potentials, New J. Phys., Volume 13 (2011) no. 4 http://stacks.iop.org/1367-2630/13/i=4/a=043007

[61] K. Behnia; D. Jaccard; J. Flouquet On the thermoelectricity of correlated electrons in the zero-temperature limit, J. Phys. Condens. Matter, Volume 16 (2004) no. 28, p. 5187

[62] X. Zhang; C.-L. Hung; S.-K. Tung; N. Gemelke; C. Chin Exploring quantum criticality based on ultracold atoms in optical lattices, New J. Phys., Volume 13 (2011) no. 4

[63] T. Micklitz; A. Levchenko; A. Rosch Nonlinear conductance of long quantum wires at a conductance plateau transition: where does the voltage drop?, Phys. Rev. Lett., Volume 109 (2012)

[64] P.M. Chaikin; G. Beni Thermopower in the correlated hopping regime, Phys. Rev. B, Volume 13 (1976), pp. 647-651 | DOI

[65] G. Jotzu; M. Messer; R. Desbuquois; M. Lebrat; T. Uehlinger; D. Greif; T. Esslinger Experimental realization of the topological Haldane model with ultracold fermions, Nature, Volume 515 (2014) no. 7526, pp. 237-240

Cité par Sources :

Commentaires - Politique


Ces articles pourraient vous intéresser

Nonlinear phenomena in quantum thermoelectrics and heat

David Sánchez; Rosa López

C. R. Phys (2016)


The thermoelectric working fluid: Thermodynamics and transport

Giuliano Benenti; Henni Ouerdane; Christophe Goupil

C. R. Phys (2016)