Jean-Louis Pichard 1, 2 ; Robert S. Whitney 2
@article{CRPHYS_2016__17_10_1039_0, author = {Jean-Louis Pichard and Robert S. Whitney}, title = {Foreword}, journal = {Comptes Rendus. Physique}, pages = {1039--1046}, publisher = {Elsevier}, volume = {17}, number = {10}, year = {2016}, doi = {10.1016/j.crhy.2016.10.001}, language = {en}, }
Jean-Louis Pichard; Robert S. Whitney. Foreword. Comptes Rendus. Physique, Volume 17 (2016) no. 10, pp. 1039-1046. doi : 10.1016/j.crhy.2016.10.001. https://comptes-rendus.academie-sciences.fr/physique/articles/10.1016/j.crhy.2016.10.001/
[1] Heat generation and transport in nanometer-scale transistors, Proc. IEEE, Volume 94 (2006), p. 1587 | DOI
[2] Fundamental aspects of steady-state conversion of heat to work at the nanoscale (Preprint) | arXiv
[3] Semiconductor Thermoelements, and Thermoelectric Cooling, Infosearch Limited, 1957
[4] Introduction to Thermoelectricity, Springer-Verlag, 2010
[5] CRC Handbook of Thermoelectrics, CRC Press, Boca Raton, FL, USA, 1995
[6] Thermoelectric cooling and power generation, Science, Volume 285 (1999), p. 703 | DOI
[7] Nanoengineered materials for thermoelectric energy conversion (S. Volz, ed.), Thermal Nanosystems and Nanomaterials, Springer, Heidelberg, 2009 (Chap. 9) | DOI
[8] Recent developments in semiconductor thermoelectric physics and materials, Annu. Rev. Mater. Res., Volume 41 (2011), p. 399 | DOI
[9] Large thermoelectric power in NaCo2O4 single crystals, Phys. Rev. B, Volume 56 (1997) | DOI
[10] Huge Seebeck coefficients in non-aqueous electrolytes, J. Chem. Phys., Volume 134 (2011) | DOI
[11] http://www.college-de-france/site/antoine-georges
[12] New directions for low-dimensional thermoelectric materials, Adv. Mater., Volume 19 (2007), p. 1043 | DOI
[13] Complex thermoelectric materials, Nat. Mater., Volume 7 (2008), p. 105 | DOI
[14] New and old concepts in thermoelectric materials, Angew. Chem., Int. Ed., Volume 48 (2009), p. 8616 | DOI
[15] Nanostructured thermoelectrics: big efficiency gains from small features, Adv. Mater., Volume 22 (2010), p. 3970 | DOI
[16] http://www.college-de-france/site/bernard-derrida
[17] Harvesting dissipated energy with a mesoscopic Ratchet, Nat. Commun., Volume 6 (2015), p. 6738 | DOI
[18] Voltage fluctuation to current converter with Coulomb-coupled quantum dots, Phys. Rev. Lett., Volume 114 (2015) | DOI
[19] Nanowire-based thermoelectric Ratchet in the hopping regime, Phys. Rev. B, Volume 93 (2016) | DOI
[20] Peltier coefficient and thermal conductance of a quantum point contact, Phys. Rev. Lett., Volume 68 (1992), p. 3765 | DOI
[21] Phase dependent thermopower in Andreev interferometers, Phys. Rev. Lett., Volume 81 (1998), p. 437 | DOI
[22] Thermometer for the 2D electron gas using 1D thermopower, Phys. Rev. Lett., Volume 81 (1998), p. 3491 | DOI
[23] Definition and measurement of the electrical and thermal resistances, Phys. Rev. B, Volume 24 (1981), p. 1151(R) | DOI
[24] Multichannel Landauer formula for thermoelectric transport with application to thermopower near the mobility edge, Phys. Rev. B, Volume 33 (1986), p. 551 | DOI
[25] Nonlinear Peltier effect in semiconductors, Appl. Phys. Lett., Volume 91 (2007), p. 122104 | DOI
[26] Performance analysis of an interacting quantum dot thermoelectric setup, Phys. Rev. B, Volume 85 (2012) | DOI
[27] Scattering theory of nonlinear thermoelectricity in quantum coherent conductors, J. Phys. Condens. Matter, Volume 25 (2013) | DOI
[28] Nonlinear thermoelectricity in point-contacts at pinch-off: a catastrophe aids cooling, Phys. Rev. B, Volume 88 (2013) | DOI
[29] Conditions for requiring nonlinear thermoelectric transport theory in nanodevices, Phys. Rev. B, Volume 90 (2014) | DOI
[30] Mixed, charge and heat noises in thermoelectric nanosystems, J. Phys. Condens. Matter, Volume 27 (2015) | DOI
[31] The power of a critical heat engine, Nat. Commun., Volume 7 (2016), p. 11895 | DOI
[32] Gate-modulated thermopower in disordered nanowires: I. Low temperature coherent regime, New J. Phys., Volume 16 (2014) | DOI
[33] Gate-modulated thermopower in disordered nanowires: II. Variable-range hopping regime, New J. Phys., Volume 16 (2014) | DOI
[34] Using activated transport for energy harvesting and hot-spot cooling, Phys. Rev. Appl., Volume 3 (2015) | DOI
[35] Absorbing/emitting phonons with one dimensional MOSFETs, Physica E, Volume 74 (2015), p. 340 | DOI
[36] Electric field effect thermoelectric transport in individual silicon and germanium/silicon nanowires, J. Appl. Phys., Volume 119 (2016) | DOI
[37] Most efficient quantum thermoelectric at finite power output, Phys. Rev. Lett., Volume 112 (2014) | DOI
[38] Finding the quantum thermoelectric with maximal efficiency and minimal entropy production at given power output, Phys. Rev. B, Volume 91 (2015) | DOI
[39] Quantum coherent three-terminal thermoelectrics: maximum efficiency at given power output, Entropy, Volume 18 (2016), p. 208 | DOI
[40] Thermoelectricity without absorbing energy from the heat sources, Physica E, Volume 75 (2016), p. 257 | DOI
Cité par Sources :
Commentaires - Politique