Comptes Rendus
Foreword
Comptes Rendus. Physique, Volume 17 (2016) no. 10, pp. 1039-1046.
Publié le :
DOI : 10.1016/j.crhy.2016.10.001
Jean-Louis Pichard 1, 2 ; Robert S. Whitney 2

1 SPEC, CEA, CNRS, Université Paris-Saclay, CEA-Saclay, 91191 Gif-sur-Yvette, France
2 Laboratoire de physique et modélisation des milieux condensés (UMR 5493), Université Grenoble Alpes & CNRS, Maison des magistères, 25, avenue des Martyrs, BP 166, 38042 Grenoble, France
@article{CRPHYS_2016__17_10_1039_0,
     author = {Jean-Louis Pichard and Robert S. Whitney},
     title = {Foreword},
     journal = {Comptes Rendus. Physique},
     pages = {1039--1046},
     publisher = {Elsevier},
     volume = {17},
     number = {10},
     year = {2016},
     doi = {10.1016/j.crhy.2016.10.001},
     language = {en},
}
TY  - JOUR
AU  - Jean-Louis Pichard
AU  - Robert S. Whitney
TI  - Foreword
JO  - Comptes Rendus. Physique
PY  - 2016
SP  - 1039
EP  - 1046
VL  - 17
IS  - 10
PB  - Elsevier
DO  - 10.1016/j.crhy.2016.10.001
LA  - en
ID  - CRPHYS_2016__17_10_1039_0
ER  - 
%0 Journal Article
%A Jean-Louis Pichard
%A Robert S. Whitney
%T Foreword
%J Comptes Rendus. Physique
%D 2016
%P 1039-1046
%V 17
%N 10
%I Elsevier
%R 10.1016/j.crhy.2016.10.001
%G en
%F CRPHYS_2016__17_10_1039_0
Jean-Louis Pichard; Robert S. Whitney. Foreword. Comptes Rendus. Physique, Volume 17 (2016) no. 10, pp. 1039-1046. doi : 10.1016/j.crhy.2016.10.001. https://comptes-rendus.academie-sciences.fr/physique/articles/10.1016/j.crhy.2016.10.001/

[1] E. Pop; S. Sinha; K. Goodson Heat generation and transport in nanometer-scale transistors, Proc. IEEE, Volume 94 (2006), p. 1587 | DOI

[2] G. Benenti; G. Casati; K. Saito; R.S. Whitney Fundamental aspects of steady-state conversion of heat to work at the nanoscale (Preprint) | arXiv

[3] A.F. Ioffe Semiconductor Thermoelements, and Thermoelectric Cooling, Infosearch Limited, 1957

[4] H.J. Goldsmid Introduction to Thermoelectricity, Springer-Verlag, 2010

[5] D.M. Rowe CRC Handbook of Thermoelectrics, CRC Press, Boca Raton, FL, USA, 1995

[6] F.J. DiSalvo Thermoelectric cooling and power generation, Science, Volume 285 (1999), p. 703 | DOI

[7] A. Shakouri; M. Zebarjadi Nanoengineered materials for thermoelectric energy conversion (S. Volz, ed.), Thermal Nanosystems and Nanomaterials, Springer, Heidelberg, 2009 (Chap. 9) | DOI

[8] A. Shakouri Recent developments in semiconductor thermoelectric physics and materials, Annu. Rev. Mater. Res., Volume 41 (2011), p. 399 | DOI

[9] I. Terasaki; Y. Sasago; K. Uchinokura Large thermoelectric power in NaCo2O4 single crystals, Phys. Rev. B, Volume 56 (1997) | DOI

[10] M. Bonneti; S. Nakamae; M. Roger; P. Guenoun Huge Seebeck coefficients in non-aqueous electrolytes, J. Chem. Phys., Volume 134 (2011) | DOI

[11] http://www.college-de-france/site/antoine-georges

[12] M.S. Dresselhaus; G. Chen; M.Y. Tang; R.G. Yang; H. Lee; D.Z. Wang; Z.F. Ren; J.-P. Fleurial; P. Gogna New directions for low-dimensional thermoelectric materials, Adv. Mater., Volume 19 (2007), p. 1043 | DOI

[13] G.J. Snyder; E.S. Toberer Complex thermoelectric materials, Nat. Mater., Volume 7 (2008), p. 105 | DOI

[14] J.R. Sootsman; D.Y. Chung; M.G. Kanatzidis New and old concepts in thermoelectric materials, Angew. Chem., Int. Ed., Volume 48 (2009), p. 8616 | DOI

[15] C.J. Vineis; A. Shakouri; A. Majumdar; M.G. Kanatzidis Nanostructured thermoelectrics: big efficiency gains from small features, Adv. Mater., Volume 22 (2010), p. 3970 | DOI

[16] http://www.college-de-france/site/bernard-derrida

[17] B. Roche; P. Roulleau; T. Jullien; Y. Jompol; I. Farrer; D.A. Ritchie; D.C. Glattli Harvesting dissipated energy with a mesoscopic Ratchet, Nat. Commun., Volume 6 (2015), p. 6738 | DOI

[18] F. Hartmann; P. Pfeffer; S. Höfling; M. Kamp; L. Worschech Voltage fluctuation to current converter with Coulomb-coupled quantum dots, Phys. Rev. Lett., Volume 114 (2015) | DOI

[19] R. Bosisio; G. Fleury; J.-L. Pichard; C. Gorini Nanowire-based thermoelectric Ratchet in the hopping regime, Phys. Rev. B, Volume 93 (2016) | DOI

[20] L.W. Molenkamp; T. Gravier; H. van Houten; O.J.A. Buijk; M.A.A. Mabesoone; C.T. Foxon Peltier coefficient and thermal conductance of a quantum point contact, Phys. Rev. Lett., Volume 68 (1992), p. 3765 | DOI

[21] J. Eom; C.-J. Chien; V. Chandrasekhar Phase dependent thermopower in Andreev interferometers, Phys. Rev. Lett., Volume 81 (1998), p. 437 | DOI

[22] N.J. Appleyard; J.T. Nicholls; M.Y. Simmons; W.R. Tribe; M. Pepper Thermometer for the 2D electron gas using 1D thermopower, Phys. Rev. Lett., Volume 81 (1998), p. 3491 | DOI

[23] H.-L. Engquist; P.W. Anderson Definition and measurement of the electrical and thermal resistances, Phys. Rev. B, Volume 24 (1981), p. 1151(R) | DOI

[24] U. Sivan; Y. Imry Multichannel Landauer formula for thermoelectric transport with application to thermopower near the mobility edge, Phys. Rev. B, Volume 33 (1986), p. 551 | DOI

[25] M. Zebarjadi; K. Esfarjani; A. Shakouri Nonlinear Peltier effect in semiconductors, Appl. Phys. Lett., Volume 91 (2007), p. 122104 | DOI

[26] B. Muralidharan; M. Grifoni Performance analysis of an interacting quantum dot thermoelectric setup, Phys. Rev. B, Volume 85 (2012) | DOI

[27] J. Meair; P. Jacquod Scattering theory of nonlinear thermoelectricity in quantum coherent conductors, J. Phys. Condens. Matter, Volume 25 (2013) | DOI

[28] R.S. Whitney Nonlinear thermoelectricity in point-contacts at pinch-off: a catastrophe aids cooling, Phys. Rev. B, Volume 88 (2013) | DOI

[29] J. Azema; P. Lombardo; A.-M. Daré Conditions for requiring nonlinear thermoelectric transport theory in nanodevices, Phys. Rev. B, Volume 90 (2014) | DOI

[30] A. Crépieux; F. Michelini Mixed, charge and heat noises in thermoelectric nanosystems, J. Phys. Condens. Matter, Volume 27 (2015) | DOI

[31] M. Campisi; R. Fazio The power of a critical heat engine, Nat. Commun., Volume 7 (2016), p. 11895 | DOI

[32] R. Bosisio; G. Fleury; J.-L. Pichard Gate-modulated thermopower in disordered nanowires: I. Low temperature coherent regime, New J. Phys., Volume 16 (2014) | DOI

[33] R. Bosisio; C. Gorini; G. Fleury; J.-L. Pichard Gate-modulated thermopower in disordered nanowires: II. Variable-range hopping regime, New J. Phys., Volume 16 (2014) | DOI

[34] R. Bosisio; C. Gorini; G. Fleury; J.-L. Pichard Using activated transport for energy harvesting and hot-spot cooling, Phys. Rev. Appl., Volume 3 (2015) | DOI

[35] R. Bosisio; C. Gorini; G. Fleury; J.-L. Pichard Absorbing/emitting phonons with one dimensional MOSFETs, Physica E, Volume 74 (2015), p. 340 | DOI

[36] Y.U. Brovman; J.P. Small; Y. Hu; Y. Fang; C.M. Lieber; P. Kim Electric field effect thermoelectric transport in individual silicon and germanium/silicon nanowires, J. Appl. Phys., Volume 119 (2016) | DOI

[37] R.S. Whitney Most efficient quantum thermoelectric at finite power output, Phys. Rev. Lett., Volume 112 (2014) | DOI

[38] R.S. Whitney Finding the quantum thermoelectric with maximal efficiency and minimal entropy production at given power output, Phys. Rev. B, Volume 91 (2015) | DOI

[39] R.S. Whitney Quantum coherent three-terminal thermoelectrics: maximum efficiency at given power output, Entropy, Volume 18 (2016), p. 208 | DOI

[40] R.S. Whitney; R. Sánchez; F. Haupt; J. Splettstoesser Thermoelectricity without absorbing energy from the heat sources, Physica E, Volume 75 (2016), p. 257 | DOI

Cité par Sources :

Commentaires - Politique


Ces articles pourraient vous intéresser

Linear and nonlinear mesoscopic thermoelectric transport with coupling with heat baths

Jian-Hua Jiang; Yoseph Imry

C. R. Phys (2016)


Nonlinear phenomena in quantum thermoelectrics and heat

David Sánchez; Rosa López

C. R. Phys (2016)