Comptes Rendus
Turbo-FSK, a physical layer for low-power wide-area networks: Analysis and optimization
[Turbo-FSK, une couche physique pour les réseaux longue portée basse consommation : optimisation et comparaison]
Comptes Rendus. Physique, Volume 18 (2017) no. 2, pp. 178-188.

L'Internet des objets devient une réalité, et depuis plusieurs années le besoin d'un nouveau réseau à longue portée et basse consommation est apparu. Le but de ce réseau est de connecter un grand nombre de nœuds à faible coût, tout en optimisant le bilan de liaison. La couche physique doit alors être définie comme très efficace énergétiquement. La combinaison de la modulation orthogonale de fréquence à M états avec un codage canal dans un processus conjoint, et non successif, à l'émission se révèle très efficace lorsqu'un récepteur itératif est utilisé. Cet article étudie cette technique Turbo-FSK avec l'outil d'analyse itérative EXIT (EXtrinsic Information Transfer, en anglais). La métrique est adaptée au cas de la M-FSK, et l'influence de la taille du paquet est étudiée. On montre alors que la technique reste performante, même lorsque que la taille de paquet est réduite. La comparaison avec des techniques actuelles est réalisée, montrant le potentiel de la technologie proposée.

As the Internet-of-Things is becoming a reality, the need for a new Low-Power Wide-Area (LPWA) network emerged in the last few years. Numerous low-cost devices will be connected, and this requires an optimization of the link budget: the physical layer needs to be designed highly energy efficient. The combination of M-ary orthogonal Frequency-Shift-Keying (M-FSK) modulation and coding in the same process has been shown to be a promising candidate when associated with an iterative receiver (turbo principle). In this work, we study this new digital transmission scheme, called Turbo-FSK. An EXtrinsic Information Transfer (EXIT) chart analysis is realized. The influence of the packet length is investigated, and the scheme is shown to stay energy efficiency even with short packet sizes. Comparison with LPWA current technologies is performed, showing the potential of this technology.

Publié le :
DOI : 10.1016/j.crhy.2016.11.005
Mots clés : Turbo FSK, Low rate, Internet-of-Things (IoT), Low-Power Wide-Area (LPWA)
Yoann Roth 1, 2 ; Jean-Baptiste Doré 1 ; Laurent Ros 2 ; Vincent Berg 1

1 CEA, LETI, MINATEC Campus, 38054 Grenoble, France
2 Univ. Grenoble Alpes, GIPSA-Lab, 38000 Grenoble, France
@article{CRPHYS_2017__18_2_178_0,
     author = {Yoann Roth and Jean-Baptiste Dor\'e and Laurent Ros and Vincent Berg},
     title = {Turbo-FSK, a physical layer for low-power wide-area networks: {Analysis} and optimization},
     journal = {Comptes Rendus. Physique},
     pages = {178--188},
     publisher = {Elsevier},
     volume = {18},
     number = {2},
     year = {2017},
     doi = {10.1016/j.crhy.2016.11.005},
     language = {en},
}
TY  - JOUR
AU  - Yoann Roth
AU  - Jean-Baptiste Doré
AU  - Laurent Ros
AU  - Vincent Berg
TI  - Turbo-FSK, a physical layer for low-power wide-area networks: Analysis and optimization
JO  - Comptes Rendus. Physique
PY  - 2017
SP  - 178
EP  - 188
VL  - 18
IS  - 2
PB  - Elsevier
DO  - 10.1016/j.crhy.2016.11.005
LA  - en
ID  - CRPHYS_2017__18_2_178_0
ER  - 
%0 Journal Article
%A Yoann Roth
%A Jean-Baptiste Doré
%A Laurent Ros
%A Vincent Berg
%T Turbo-FSK, a physical layer for low-power wide-area networks: Analysis and optimization
%J Comptes Rendus. Physique
%D 2017
%P 178-188
%V 18
%N 2
%I Elsevier
%R 10.1016/j.crhy.2016.11.005
%G en
%F CRPHYS_2017__18_2_178_0
Yoann Roth; Jean-Baptiste Doré; Laurent Ros; Vincent Berg. Turbo-FSK, a physical layer for low-power wide-area networks: Analysis and optimization. Comptes Rendus. Physique, Volume 18 (2017) no. 2, pp. 178-188. doi : 10.1016/j.crhy.2016.11.005. https://comptes-rendus.academie-sciences.fr/physique/articles/10.1016/j.crhy.2016.11.005/

[1] Verizon State of the Market: Internet of Things 2016, April 2016 http://www.verizonenterprise.com/verizon-insights/state-of-market-internet-of-things/2016/

[2] LTE-M – Optimizing LTE for the Internet of Things, Nokia White Papers, 2015.

[3] T. Rebbeck; M. Mackenzie; N. Afonso Low-Powered Wireless Solutions Have the Potential to Increase the M2M Market by Over 3 Billion Connections, Analysys Mason, September 2014 (Report)

[4] SigFox website http://www.sigfox.com/ (accessed 2 November, 2016)

[5] C. Shannon A mathematical theory of communication, Bell Syst. Tech. J., Volume 27 (1948) no. 3, pp. 379-423 | DOI

[6] J. Proakis Digital Communications, Communications and Signal Processing, McGraw-Hill, 1995

[7] LoRa Alliance https://www.lora-alliance.org/ (accessed: November 2, 2016)

[8] O. Seller; N. Sornin Low power long range transmitter, 2014 (US Patent 20140219329 A1)

[9] D.J. Costello; G.D. Forney Channel coding: the road to channel capacity, Proc. IEEE, Volume 95 (2007) no. 6, pp. 1150-1177 | DOI

[10] C. Berrou; A. Glavieux; P. Thitimajshima Near Shannon limit error-correcting coding and decoding: turbo-codes. 1, (ICC), Geneva, Switzerland, Volume vol. 2 (1993), pp. 1064-1070 | DOI

[11] L. Ping; W. Leung; K.Y. Wu Low-rate turbo-Hadamard codes, IEEE Trans. Inf. Theory, Volume 49 (2003) no. 12, pp. 3213-3224 | DOI

[12] Y. Roth; J.-B. Doré; L. Ros; V. Berg Turbo-FSK: a new uplink scheme for low power wide area networks, Proc. 16th IEEE International Workshop on Signal Processing Advances in Wireless Communications (SPAWC), 2015, pp. 81-85 | DOI

[13] K. Kikuchi; M. Osaki Highly-sensitive coherent optical detection of M-ary frequency-shift keying signal, Opt. Express, Volume 19 (2011) no. 26, p. B32-B39

[14] SX1272 from Semtech, datasheet http://www.semtech.com/wireless-rf/rf-transceivers/sx1272/ (accessed: 2 November, 2016)

[15] Y.-J. Wu; L. Ping On the limiting performance of turbo-Hadamard codes, IEEE Commun. Lett., Volume 8 (2004) no. 7, pp. 449-451 | DOI

[16] S. ten Brink Convergence behavior of iteratively decoded parallel concatenated codes, IEEE Trans. Commun., Volume 49 (2001) no. 10, pp. 1727-1737 | DOI

[17] S. ten Brink Convergence of multidimensional iterative decoding schemes, Conference Record of the Thirty-Fifth Asilomar Conference on Signals, Systems and Computers, vol. 1, 2001, pp. 270-274 | DOI

[18] LTE Evolved Universal Terrestrial Radio Access (E-UTRA): Multiplexing and Channel Coding, 3GPP TS 36.212, V12.6.0, Release 12, 2015, pp. 12–15.

[19] Introduction of Rel-13 feature of NB-IoT in 36.212, in: 3GPP TSG RAN WG1 Meeting #85 R1-166045, Nanjing, China.

[20] L. Bahl; J. Cocke; F. Jelinek; J. Raviv Optimal decoding of linear codes for minimizing symbol error rate (corresp.), IEEE Trans. Inf. Theory, Volume 20 (1974) no. 2, pp. 284-287 | DOI

[21] J. Hagenauer; E. Offer; L. Papke Iterative decoding of binary block and convolutional codes, IEEE Trans. Inf. Theory, Volume 42 (1996) no. 2, pp. 429-445 | DOI

[22] 802.15.4k: Low-Rate Wireless Personal Area Networks (LR-WPANs) Amendment 5: Physical Layer Specifications for Low Energy, Critical Infrastructure Monitoring Networks, IEEE Standard for Local and Metropolitan Area Networks, 2013, pp. 1–149.

[23] M.C. Valenti; J. Sun The UMTS turbo code and an efficient decoder implementation suitable for software-defined radios, Int. J. Wirel. Inf. Netw., Volume 8 (2001) no. 4, pp. 203-215 | DOI

[24] J. Estavoyer; Y. Roth; J.-B. Doré; V. Berg Implementation and analysis of a turbo-FSK transceiver for a new low power wide area physical layer, Poznan, Poland (2016)

Cité par Sources :

Commentaires - Politique


Ces articles pourraient vous intéresser

Signal formats and error correction in optical transmission

Omar Ait Sab; Hans Bissessur

C. R. Phys (2003)


Analysis of the faster-than-Nyquist optimal linear multicarrier system

Alexandre Marquet; Cyrille Siclet; Damien Roque

C. R. Phys (2017)