Comptes Rendus
Fundamental energetic limits of radio communication systems
[Limites énergétiques fondamentales des radiocommunications]
Comptes Rendus. Physique, Volume 18 (2017) no. 2, pp. 144-155.

L'évaluation de la consommation d'énergie d'une radiocommunication nécessite l'analyse du cycle de vie des éléments utilisés. Cependant, cette analyse ne décrit pas précisément de limite énergétique. Les approches théoriques permettent d'évaluer ces limites qui sont connues dans plusieurs cas de transmission de l'information.

Cependant, les réponses ne sont pas toujours satisfaisantes, particulièrement dans le cas de canaux variants dans le temps. Après une rapide présentation des notions d'énergie limite d'une radiocommunication, et en commençant par une approche globale du problème, nous montrons que, contrairement aux résultats publiés, les limites énergétiques sont toujours différentes de zéro si les contraintes physiques sont correctement exprimées.

The evaluation of the energy consumption of a radiocommunication requires to analyse the life cycle of the elements used. However, this analysis does not specify the energetic limits. Theoretical approaches allow one to draw these limits, which are known in multiple cases of information transmission. However, the answers are not always satisfactory, in particular in the case of time-varying channels. After a brief presentation of the notion of energetic limits of a radiocommunication, and beginning with a global approach, we show that, contrary to the published results, the energetic limits always differ from zero if the physical constraints are correctly expressed.

Publié le :
DOI : 10.1016/j.crhy.2016.11.009
Keywords: Communication, Efficiency, Energy, Model, Channel
Mot clés : Communication, Efficacité, Énergie, Modèle, Canal

Jean-Yves Baudais 1

1 CNRS, IETR, 20, avenue des Buttes-de-Coësmes, CS 70839, 35708 Rennes cedex 7, France
@article{CRPHYS_2017__18_2_144_0,
     author = {Jean-Yves Baudais},
     title = {Fundamental energetic limits of radio communication systems},
     journal = {Comptes Rendus. Physique},
     pages = {144--155},
     publisher = {Elsevier},
     volume = {18},
     number = {2},
     year = {2017},
     doi = {10.1016/j.crhy.2016.11.009},
     language = {en},
}
TY  - JOUR
AU  - Jean-Yves Baudais
TI  - Fundamental energetic limits of radio communication systems
JO  - Comptes Rendus. Physique
PY  - 2017
SP  - 144
EP  - 155
VL  - 18
IS  - 2
PB  - Elsevier
DO  - 10.1016/j.crhy.2016.11.009
LA  - en
ID  - CRPHYS_2017__18_2_144_0
ER  - 
%0 Journal Article
%A Jean-Yves Baudais
%T Fundamental energetic limits of radio communication systems
%J Comptes Rendus. Physique
%D 2017
%P 144-155
%V 18
%N 2
%I Elsevier
%R 10.1016/j.crhy.2016.11.009
%G en
%F CRPHYS_2017__18_2_144_0
Jean-Yves Baudais. Fundamental energetic limits of radio communication systems. Comptes Rendus. Physique, Volume 18 (2017) no. 2, pp. 144-155. doi : 10.1016/j.crhy.2016.11.009. https://comptes-rendus.academie-sciences.fr/physique/articles/10.1016/j.crhy.2016.11.009/

[1] E. Belmega; S. Lasaulce; M. Debbah A survey on energy-efficient communications, Istanbul, Turkey, 2010 (2010), pp. 289-294

[2] ISO 14040, Environmental Management, Life Cycle Assessment, Principles and Framework, July 2006 (Technical Comity ISO/TC 207)

[3] B. Marr; B. Degnan; P. Hasler; D. Anderson Scaling energy per operation via an asynchronous pipeline, IEEE Trans. Very Large Scale Integr. Syst., Volume 21 (2013) no. 1, pp. 147-151

[4] A. Eden; J. Moor; J. Soraker; E. Steinhart Singularity hypotheses: an overview, Singularity Hypotheses: A Scientific and Philosophical Assessment, Springer-Verlag, Berlin, Heidelberg, 2012, pp. 1-12 (Ch. 1)

[5] I. Markov Limits on fundamental limits to computation, Nature, Volume 512 (2014), pp. 147-154

[6] A. Goldsmith; P. Varaiya Capacity of fading channels with channel side information, IEEE Trans. Inf. Theory, Volume 43 (1997) no. 6, pp. 1986-1992

[7] Y. Polyanskiy; H. Poor; S. Verdú Channel coding rate in the finite blocklength regime, IEEE Trans. Inf. Theory, Volume 56 (2010) no. 5, pp. 2307-2359

[8] Y. Polyanskiy; H. Poor; S. Verdú Minimum energy to send k bits through the gaussian channel with and without feedback, IEEE Trans. Inf. Theory, Volume 57 (2011) no. 8, pp. 4880-4902

[9] W. Yang; G. Durisi; Y. Polyanskiy Minimum energy to send k bits over multiple-antenna fading channels, 2016 (pp. 1–55) | arXiv

[10] A. Goldsmith; M. Médard Capacity of time-varying channels with causal channel side information, IEEE Trans. Inf. Theory, Volume 53 (2007) no. 3, pp. 881-899

[11] R. Mirghaderi; A. Goldsmith Energy-efficient communication via feedback, IEEE Trans. Wirel. Commun., Volume 12 (2013) no. 7, pp. 3338-3349

[12] C. Rao; B. Hassibi Analysis of multiple-antenna wireless links at low SNR, IEEE Trans. Inf. Theory, Volume 50 (2004) no. 9, pp. 2123-2130

[13] L. Zheng; D. Tse; M. Medard Channel coherence in the low-SNR regime, IEEE Trans. Inf. Theory, Volume 53 (2007) no. 3, pp. 976-997

[14] S. Verdú Spectral efficiency in the wideband regime, IEEE Trans. Inf. Theory, Volume 48 (2002) no. 6, pp. 1319-1343

[15] P. Grover Information-friction and its impact on minimum energy per communicated bit, IEEE International Symposium on Information Theory, 2013, pp. 2513-2517

[16] R. Landauer Computation, measurement, communication, and energy dissipation (S. Haykin, ed.), Selected Topics in Signal Processing, Adv. Ref. Ser., Prentice Hall, Englewood Cliffs, NJ, USA, 1987, pp. 18-47

[17] C. Shannon A mathematical theory of communication, Bell Syst. Tech. J., Volume 27 (1948), pp. 379-423 (623–656)

[18] C. Bennett Notes on Landauer's principle, reversible computation, and Maxwell's demon, Stud. Hist. Philos. Sci. Part B, Stud. Hist. Philos. Mod. Phys., Volume 34 (2003) no. 3, pp. 501-510

[19] A. Bérut; A. Arakelyan; A. Petrosyan; S. Ciliberto; R. Dillenschneider; E. Lut Experimental verification of Landauer's principle linking information and thermodynamics, Nature, Volume 483 (2012), pp. 187-189

[20] T. Cover; J. Thomas Elements of Information Theory, Ser. Telecom., Wiley–Interscience, 1991

[21] S. Verdú On channel capacity per unit cost, IEEE Trans. Inf. Theory, Volume 36 (1990) no. 5, pp. 1019-1030

[22] C. Shannon Communication in the presence of noise, Proceedings of the I.R.E. (Institute of Radio Ingineers), vol. 37, 1949, pp. 10-21

[23] J.-Y. Baudais; A. Tonello; A. Hamini Energy efficient resource allocation for quantity of information delivery in parallel channels, Trans. Emerg. Telecommun. Technol., Volume 27 (2016) no. 7, pp. 910-922

[24] M. Klauda; T. Kasser; B. Mayer; C. Neumann; F. Schnell; B. Aminov; A. Baumfalk; H. Chaloupka; S. Kolesov; H. Piel; N. Klein; S. Schornstein; M. Bareiss Superconductors and cryogenics for future communication systems, IEEE Trans. Microw. Theory Tech., Volume 48 (2000) no. 7, pp. 1227-1239

[25] S. Lloyd Ultimate physical limits to computation, Nature, Volume 406 (2000), pp. 1047-1054

[26] L. Gammaitoni; D. Chiuchiú; M. Madami; G. Carlotti Towards zero-power ICT, Nanotechnology, Volume 26 (2015), pp. 1-10

[27] R. Landauer Energy needed to send a bit, Proc. R. Soc. Lond. Ser. A, Volume 454 (1998) no. 1969, pp. 305-311

[28] R. Jaouadi; G. Andrieux; J.-Y. Baudais; J.-F. Diouris Energy and spectrum trade-off for uncoded mqam in energy constrained system, Paris, France, 2015 (2015), pp. 793-795

[29] D. Tse; P. Viswanath Fundamentals of Wireless Communication, Cambridge University Press, Cambridge, UK, 2005

[30] W. Lee Estimate of channel capacity in Rayleigh fading environment, IEEE Trans. Veh. Technol., Volume 39 (1990) no. 3, pp. 187-189

[31] G. Gradoni; L. Arnaut Minimum-value distribution of random electromagnetic fields for modeling deep fading in wireless communications, Ann. Télécommun., Volume 66 (2011) no. 7–8, pp. 465-473

[32] A. Rao A note on derivation of the generating function for the right truncated Rayleigh distribution, Appl. Math. Lett., Volume 19 (2006) no. 8, pp. 789-794

[33] E. Biglieri; J. Proakis; S. Shamai Fading channels: information-theoretic and communications aspects, IEEE Trans. Inf. Theory, Volume 44 (1998) no. 6, pp. 2619-2692

[34] X. Yu; H. Rashtian; S. Mirabbasi; P. Pande; D. Heo An 18.7 Gb/s 60 GHz OOK demodulator in 65-nm CMOS for wireless network-on-chip, IEEE Trans. Circuits Syst. I, Regul. Pap., Volume 62 (2015) no. 3, pp. 799-806

[35] B. Subramaniam; W. Saunders; T. Scogland; W. Feng Trends in energy-efficient computing: a perspective from the green500, Arlington, VA, USA, 2013 (2013), pp. 1-8

[36] D. Zeller (coordinator), M. Olsson (technical manager), Energy aware radio and network technologies, FP7-ICT integrated project, European Union, 2010–2012.

[37] G. Auer; V. Giannini; M. Olsson; M. Gonzalez; C. Desset Framework for energy efficiency analysis of wireless networks, Chennai, India, 2011 (2011), pp. 1-5

[38] J. Palicot; H. Zhang Cognitive radio for green communications and networking, Advanced International Conference on Telecommunications, June 2013

[39] L. Farrant; Y.L. Guern Which environmental impacts for ICT? LCA case study on electronic mail, Berlin, Germany, 2012 (2012), pp. 1-5

Cité par Sources :

Part of this article was presented in Journées scientifiques, URSI France, Rennes, France, March 2016.

Commentaires - Politique