[Limites énergétiques fondamentales des radiocommunications]
L'évaluation de la consommation d'énergie d'une radiocommunication nécessite l'analyse du cycle de vie des éléments utilisés. Cependant, cette analyse ne décrit pas précisément de limite énergétique. Les approches théoriques permettent d'évaluer ces limites qui sont connues dans plusieurs cas de transmission de l'information.
Cependant, les réponses ne sont pas toujours satisfaisantes, particulièrement dans le cas de canaux variants dans le temps. Après une rapide présentation des notions d'énergie limite d'une radiocommunication, et en commençant par une approche globale du problème, nous montrons que, contrairement aux résultats publiés, les limites énergétiques sont toujours différentes de zéro si les contraintes physiques sont correctement exprimées.
The evaluation of the energy consumption of a radiocommunication requires to analyse the life cycle of the elements used. However, this analysis does not specify the energetic limits. Theoretical approaches allow one to draw these limits, which are known in multiple cases of information transmission. However, the answers are not always satisfactory, in particular in the case of time-varying channels. After a brief presentation of the notion of energetic limits of a radiocommunication, and beginning with a global approach, we show that, contrary to the published results, the energetic limits always differ from zero if the physical constraints are correctly expressed.
Mot clés : Communication, Efficacité, Énergie, Modèle, Canal
Jean-Yves Baudais 1
@article{CRPHYS_2017__18_2_144_0, author = {Jean-Yves Baudais}, title = {Fundamental energetic limits of radio communication systems}, journal = {Comptes Rendus. Physique}, pages = {144--155}, publisher = {Elsevier}, volume = {18}, number = {2}, year = {2017}, doi = {10.1016/j.crhy.2016.11.009}, language = {en}, }
Jean-Yves Baudais. Fundamental energetic limits of radio communication systems. Comptes Rendus. Physique, Volume 18 (2017) no. 2, pp. 144-155. doi : 10.1016/j.crhy.2016.11.009. https://comptes-rendus.academie-sciences.fr/physique/articles/10.1016/j.crhy.2016.11.009/
[1] A survey on energy-efficient communications, Istanbul, Turkey, 2010 (2010), pp. 289-294
[2] ISO 14040, Environmental Management, Life Cycle Assessment, Principles and Framework, July 2006 (Technical Comity ISO/TC 207)
[3] Scaling energy per operation via an asynchronous pipeline, IEEE Trans. Very Large Scale Integr. Syst., Volume 21 (2013) no. 1, pp. 147-151
[4] Singularity hypotheses: an overview, Singularity Hypotheses: A Scientific and Philosophical Assessment, Springer-Verlag, Berlin, Heidelberg, 2012, pp. 1-12 (Ch. 1)
[5] Limits on fundamental limits to computation, Nature, Volume 512 (2014), pp. 147-154
[6] Capacity of fading channels with channel side information, IEEE Trans. Inf. Theory, Volume 43 (1997) no. 6, pp. 1986-1992
[7] Channel coding rate in the finite blocklength regime, IEEE Trans. Inf. Theory, Volume 56 (2010) no. 5, pp. 2307-2359
[8] Minimum energy to send k bits through the gaussian channel with and without feedback, IEEE Trans. Inf. Theory, Volume 57 (2011) no. 8, pp. 4880-4902
[9] Minimum energy to send k bits over multiple-antenna fading channels, 2016 (pp. 1–55) | arXiv
[10] Capacity of time-varying channels with causal channel side information, IEEE Trans. Inf. Theory, Volume 53 (2007) no. 3, pp. 881-899
[11] Energy-efficient communication via feedback, IEEE Trans. Wirel. Commun., Volume 12 (2013) no. 7, pp. 3338-3349
[12] Analysis of multiple-antenna wireless links at low SNR, IEEE Trans. Inf. Theory, Volume 50 (2004) no. 9, pp. 2123-2130
[13] Channel coherence in the low-SNR regime, IEEE Trans. Inf. Theory, Volume 53 (2007) no. 3, pp. 976-997
[14] Spectral efficiency in the wideband regime, IEEE Trans. Inf. Theory, Volume 48 (2002) no. 6, pp. 1319-1343
[15] Information-friction and its impact on minimum energy per communicated bit, IEEE International Symposium on Information Theory, 2013, pp. 2513-2517
[16] Computation, measurement, communication, and energy dissipation (S. Haykin, ed.), Selected Topics in Signal Processing, Adv. Ref. Ser., Prentice Hall, Englewood Cliffs, NJ, USA, 1987, pp. 18-47
[17] A mathematical theory of communication, Bell Syst. Tech. J., Volume 27 (1948), pp. 379-423 (623–656)
[18] Notes on Landauer's principle, reversible computation, and Maxwell's demon, Stud. Hist. Philos. Sci. Part B, Stud. Hist. Philos. Mod. Phys., Volume 34 (2003) no. 3, pp. 501-510
[19] Experimental verification of Landauer's principle linking information and thermodynamics, Nature, Volume 483 (2012), pp. 187-189
[20] Elements of Information Theory, Ser. Telecom., Wiley–Interscience, 1991
[21] On channel capacity per unit cost, IEEE Trans. Inf. Theory, Volume 36 (1990) no. 5, pp. 1019-1030
[22] Communication in the presence of noise, Proceedings of the I.R.E. (Institute of Radio Ingineers), vol. 37, 1949, pp. 10-21
[23] Energy efficient resource allocation for quantity of information delivery in parallel channels, Trans. Emerg. Telecommun. Technol., Volume 27 (2016) no. 7, pp. 910-922
[24] Superconductors and cryogenics for future communication systems, IEEE Trans. Microw. Theory Tech., Volume 48 (2000) no. 7, pp. 1227-1239
[25] Ultimate physical limits to computation, Nature, Volume 406 (2000), pp. 1047-1054
[26] Towards zero-power ICT, Nanotechnology, Volume 26 (2015), pp. 1-10
[27] Energy needed to send a bit, Proc. R. Soc. Lond. Ser. A, Volume 454 (1998) no. 1969, pp. 305-311
[28] Energy and spectrum trade-off for uncoded mqam in energy constrained system, Paris, France, 2015 (2015), pp. 793-795
[29] Fundamentals of Wireless Communication, Cambridge University Press, Cambridge, UK, 2005
[30] Estimate of channel capacity in Rayleigh fading environment, IEEE Trans. Veh. Technol., Volume 39 (1990) no. 3, pp. 187-189
[31] Minimum-value distribution of random electromagnetic fields for modeling deep fading in wireless communications, Ann. Télécommun., Volume 66 (2011) no. 7–8, pp. 465-473
[32] A note on derivation of the generating function for the right truncated Rayleigh distribution, Appl. Math. Lett., Volume 19 (2006) no. 8, pp. 789-794
[33] Fading channels: information-theoretic and communications aspects, IEEE Trans. Inf. Theory, Volume 44 (1998) no. 6, pp. 2619-2692
[34] An 18.7 Gb/s 60 GHz OOK demodulator in 65-nm CMOS for wireless network-on-chip, IEEE Trans. Circuits Syst. I, Regul. Pap., Volume 62 (2015) no. 3, pp. 799-806
[35] Trends in energy-efficient computing: a perspective from the green500, Arlington, VA, USA, 2013 (2013), pp. 1-8
[36] D. Zeller (coordinator), M. Olsson (technical manager), Energy aware radio and network technologies, FP7-ICT integrated project, European Union, 2010–2012.
[37] Framework for energy efficiency analysis of wireless networks, Chennai, India, 2011 (2011), pp. 1-5
[38] Cognitive radio for green communications and networking, Advanced International Conference on Telecommunications, June 2013
[39] Which environmental impacts for ICT? LCA case study on electronic mail, Berlin, Germany, 2012 (2012), pp. 1-5
Cité par Sources :
☆ Part of this article was presented in Journées scientifiques, URSI France, Rennes, France, March 2016.
Commentaires - Politique