[Caméras supraconductrices millimétriques pour l'astronomie]
J'expose les récents développements concernant les détecteurs à inductance cinétique (KID) appliqués à l'imagerie-polarimétrie millimétrique et THz. Ces développements s'inscrivent dans une collaboration grenobloise. J'insiste en particulier sur la description de notre caméra NIKA2 (Néel IRAM KID Arrays 2), qui est aujourd'hui la plus grande caméra millimétrique disponible pour des observations ouvertes à l'ensemble des astronomes. NIKA2 est un instrument double bande capable de séparer la polarisation du rayonnement incident. Il est installé sur le radiotélescope de 30 mètres de l'Iram (Institut de radio astronomie millimétrique) au Pico Veleta (Espagne). Après avoir décrit le contexte physique et instrumental dans lequel se situent ces études, je présente quelques exemples d'observations effectuées par NIKA2, et son prédécesseur NIKA.
I present a review of the developments in kinetic inductance detectors (KID) for mm-wave and THz imaging-polarimetry in the framework of the Grenoble collaboration. The main application that we have targeted so far is large field-of-view astronomy. I focus in particular on our own experiment: NIKA2 (Néel IRAM KID Arrays). NIKA2 is today the largest millimetre camera available to the astronomical community for general purpose observations. It consists of a dual-band, dual-polarisation, multi-thousands pixels system installed at the IRAM 30-m telescope at Pico Veleta (Spain). I start with a general introduction covering the underlying physics and the KID working principle. Then I describe briefly the instrument and the detectors, to conclude with examples of pictures taken on the Sky by NIKA2 and its predecessor, NIKA. Thanks to these results, together with the relative simplicity and low cost of the KID fabrication, industrial applications requiring passive millimetre-THz imaging have now become possible.
Mot clés : Astronomie millimétrique, Détecteurs supraconducteurs, Inductance cinétique, Électronique multiplexée
Alessandro Monfardini 1
@article{CRPHYS_2017__18_5-6_323_0, author = {Alessandro Monfardini}, title = {Superconducting millimetre-wave cameras}, journal = {Comptes Rendus. Physique}, pages = {323--330}, publisher = {Elsevier}, volume = {18}, number = {5-6}, year = {2017}, doi = {10.1016/j.crhy.2017.05.002}, language = {en}, }
Alessandro Monfardini. Superconducting millimetre-wave cameras. Comptes Rendus. Physique, Volume 18 (2017) no. 5-6, pp. 323-330. doi : 10.1016/j.crhy.2017.05.002. https://comptes-rendus.academie-sciences.fr/physique/articles/10.1016/j.crhy.2017.05.002/
[1] Superconducting microresonators: physics and applications, Annu. Rev. Condens. Matter Phys., Volume 3 (2012), p. 15.1
[2] A measurement of excess antenna temperature at 4080 mc/s, Astrophys. J., Volume 142 (1965) no. 1, pp. 419-421
[3] Carbon monoxide in the Orion Nebula, Astrophys. J., Volume 161 (1970), p. L43-L44
[4] et al. A flat universe from high-resolution maps of the cosmic microwave background radiation, Nature, Volume 404 (2000) no. 6781, pp. 955-959
[5] Design and performance of the dilution cooler system for the Planck mission, Cryogenics, Volume 46 (2006) no. 4, pp. 288-297
[6] A broadband superconducting detector suitable for use in large arrays, Nature, Volume 425 (2003) no. 6960, pp. 817-821
[7] A review of the lumped element kinetic inductance detector, Proc. SPIE, Volume 7741 (2010)
[8] Development of lumped element kinetic inductance detectors for NIKA, 2012 | arXiv
[9] et al. A fast, ultra-sensitive and scalable detection platform based on superconducting resonators for fundamental condensed-matter and astronomical measurements, Low Temp. Detect., Volume 13 (2009) no. 1185, pp. 84-87
[10] Electronics and data acquisition demonstrator for a kinetic inductance camera, J. Instrum., Volume 6 (2011) no. 6, p. 6012
[11] NIKEL: electronics and data acquisition for kilopixels kinetic inductance camera, J. Instrum., Volume 7 (2012) no. 7, p. 7014
[12] et al. Improved mm-wave photometry for kinetic inductance detectors, Astron. Astrophys., Volume 551 (2013), p. L12
[13] et al. Nika: a millimeter-wave kinetic inductance camera, Astron. Astrophys., Volume 521 (2010)
[14] et al. A dual-band millimeter-wave kinetic inductance camera for the iram 30 m telescope, Astrophys. J. Suppl. Ser., Volume 194 (2011) no. 2, p. 24
[15] Performance and calibration of the NIKA camera at the IRAM 30 m telescope, Astron. Astrophys., Volume 569 (2014), p. A9
[16] The NIKA2 instrument, a dual-band kilopixel KID array for millimetric astronomy, J. Low Temp. Phys., Volume 184 (2016) no. 3–4, p. 816
[17] The NIKA2 commissioning campaign: performance and first results, 2016 | arXiv
[18] et al. Mapping the kinetic Sunyaev–Zeldovich effect toward MACS J0717.5+3745 with NIKA, 2016 | arXiv
[19] et al. A passive terahertz video camera based on lumped element kinetic inductance detectors, Rev. Sci. Instrum., Volume 87 (2016) no. 3
Cité par Sources :
Commentaires - Politique