Comptes Rendus
Prix Gustave-Ribaud de l'Académie des sciences 2016
Superconducting millimetre-wave cameras
[Caméras supraconductrices millimétriques pour l'astronomie]
Comptes Rendus. Physique, Volume 18 (2017) no. 5-6, pp. 323-330.

J'expose les récents développements concernant les détecteurs à inductance cinétique (KID) appliqués à l'imagerie-polarimétrie millimétrique et THz. Ces développements s'inscrivent dans une collaboration grenobloise. J'insiste en particulier sur la description de notre caméra NIKA2 (Néel IRAM KID Arrays 2), qui est aujourd'hui la plus grande caméra millimétrique disponible pour des observations ouvertes à l'ensemble des astronomes. NIKA2 est un instrument double bande capable de séparer la polarisation du rayonnement incident. Il est installé sur le radiotélescope de 30 mètres de l'Iram (Institut de radio astronomie millimétrique) au Pico Veleta (Espagne). Après avoir décrit le contexte physique et instrumental dans lequel se situent ces études, je présente quelques exemples d'observations effectuées par NIKA2, et son prédécesseur NIKA.

I present a review of the developments in kinetic inductance detectors (KID) for mm-wave and THz imaging-polarimetry in the framework of the Grenoble collaboration. The main application that we have targeted so far is large field-of-view astronomy. I focus in particular on our own experiment: NIKA2 (Néel IRAM KID Arrays). NIKA2 is today the largest millimetre camera available to the astronomical community for general purpose observations. It consists of a dual-band, dual-polarisation, multi-thousands pixels system installed at the IRAM 30-m telescope at Pico Veleta (Spain). I start with a general introduction covering the underlying physics and the KID working principle. Then I describe briefly the instrument and the detectors, to conclude with examples of pictures taken on the Sky by NIKA2 and its predecessor, NIKA. Thanks to these results, together with the relative simplicity and low cost of the KID fabrication, industrial applications requiring passive millimetre-THz imaging have now become possible.

Publié le :
DOI : 10.1016/j.crhy.2017.05.002
Keywords: Millimetre astronomy, Superconducting detectors, Kinetic inductance, Multiplexed electronics
Mot clés : Astronomie millimétrique, Détecteurs supraconducteurs, Inductance cinétique, Électronique multiplexée
Alessandro Monfardini 1

1 Institut Néel, CNRS and Université Grenoble Alpes, 25, rue des Martyrs, 38042 Grenoble cedex 9, France
@article{CRPHYS_2017__18_5-6_323_0,
     author = {Alessandro Monfardini},
     title = {Superconducting millimetre-wave cameras},
     journal = {Comptes Rendus. Physique},
     pages = {323--330},
     publisher = {Elsevier},
     volume = {18},
     number = {5-6},
     year = {2017},
     doi = {10.1016/j.crhy.2017.05.002},
     language = {en},
}
TY  - JOUR
AU  - Alessandro Monfardini
TI  - Superconducting millimetre-wave cameras
JO  - Comptes Rendus. Physique
PY  - 2017
SP  - 323
EP  - 330
VL  - 18
IS  - 5-6
PB  - Elsevier
DO  - 10.1016/j.crhy.2017.05.002
LA  - en
ID  - CRPHYS_2017__18_5-6_323_0
ER  - 
%0 Journal Article
%A Alessandro Monfardini
%T Superconducting millimetre-wave cameras
%J Comptes Rendus. Physique
%D 2017
%P 323-330
%V 18
%N 5-6
%I Elsevier
%R 10.1016/j.crhy.2017.05.002
%G en
%F CRPHYS_2017__18_5-6_323_0
Alessandro Monfardini. Superconducting millimetre-wave cameras. Comptes Rendus. Physique, Volume 18 (2017) no. 5-6, pp. 323-330. doi : 10.1016/j.crhy.2017.05.002. https://comptes-rendus.academie-sciences.fr/physique/articles/10.1016/j.crhy.2017.05.002/

[1] J. Zmuidinas Superconducting microresonators: physics and applications, Annu. Rev. Condens. Matter Phys., Volume 3 (2012), p. 15.1

[2] A.A. Penzias; R.W. Wilson A measurement of excess antenna temperature at 4080 mc/s, Astrophys. J., Volume 142 (1965) no. 1, pp. 419-421

[3] R.W. Wilson; K.B. Jefferts; A.A. Penzias Carbon monoxide in the Orion Nebula, Astrophys. J., Volume 161 (1970), p. L43-L44

[4] P. de Bernardis; P.A.R. Ade; J.J. Bock et al. A flat universe from high-resolution maps of the cosmic microwave background radiation, Nature, Volume 404 (2000) no. 6781, pp. 955-959

[5] S. Triqueneaux; L. Sentis; P. Camus; A. Benoît; G. Guyot Design and performance of the dilution cooler system for the Planck mission, Cryogenics, Volume 46 (2006) no. 4, pp. 288-297

[6] P.K. Day; H.G. LeDuc; B.A. Mazin; A. Vayonakis; J. Zmuidzinas A broadband superconducting detector suitable for use in large arrays, Nature, Volume 425 (2003) no. 6960, pp. 817-821

[7] S. Doyle; P. Mauskopf; J. Zhang; A. Monfardini; L. Swenson; J.J.A. Baselmans; S.J.C. Yates; M. Roesch A review of the lumped element kinetic inductance detector, Proc. SPIE, Volume 7741 (2010)

[8] M. Roesch; A. Benoît; A. Bideaud; N. Boudou; M. Calvo; A. Cruciani; S. Doyle; H.G. Leduc; A. Monfardini; L. Swenson; S. Leclercq; P. Mauskopf; K.F. Schuster Development of lumped element kinetic inductance detectors for NIKA, 2012 | arXiv

[9] L.J. Swenson; J. Minet; G.J. Grabovskij et al. A fast, ultra-sensitive and scalable detection platform based on superconducting resonators for fundamental condensed-matter and astronomical measurements, Low Temp. Detect., Volume 13 (2009) no. 1185, pp. 84-87

[10] O. Bourrion; A. Bideaud; A. Benoît; A. Cruciani; J.F. Macias-Perez; A. Monfardini; M. Roesch; L. Swenson; C. Vescovi Electronics and data acquisition demonstrator for a kinetic inductance camera, J. Instrum., Volume 6 (2011) no. 6, p. 6012

[11] O. Bourrion; C. Vescovi; J.-L. Bouly; A. Benoît; M. Calvo; L. Gallin-Martel; J.F. Macias-Perez; A. Monfardini NIKEL: electronics and data acquisition for kilopixels kinetic inductance camera, J. Instrum., Volume 7 (2012) no. 7, p. 7014

[12] M. Calvo; M. Roesch; F.X. Désert; A. Monfardini; A. Benoît et al. Improved mm-wave photometry for kinetic inductance detectors, Astron. Astrophys., Volume 551 (2013), p. L12

[13] A. Monfardini; L.J. Swenson; A. Bideaud; F.-X. Désert et al. Nika: a millimeter-wave kinetic inductance camera, Astron. Astrophys., Volume 521 (2010)

[14] A. Monfardini; A. Benoît; A. Bideaud; L. Swenson; A. Cruciani et al. A dual-band millimeter-wave kinetic inductance camera for the iram 30 m telescope, Astrophys. J. Suppl. Ser., Volume 194 (2011) no. 2, p. 24

[15] A. Catalano; M. Calvo; N. Ponthieu; NIKA Collaboration Performance and calibration of the NIKA camera at the IRAM 30 m telescope, Astron. Astrophys., Volume 569 (2014), p. A9

[16] M. Calvo; A. Benoît; A. Catalano; J. Goupy; A. Monfardini; N. Ponthieu; NIKA Collaboration The NIKA2 instrument, a dual-band kilopixel KID array for millimetric astronomy, J. Low Temp. Phys., Volume 184 (2016) no. 3–4, p. 816

[17] A. Catalano; NIKA Collaboration The NIKA2 commissioning campaign: performance and first results, 2016 | arXiv

[18] R. Adam et al. Mapping the kinetic Sunyaev–Zeldovich effect toward MACS J0717.5+3745 with NIKA, 2016 | arXiv

[19] S. Rowe et al. A passive terahertz video camera based on lumped element kinetic inductance detectors, Rev. Sci. Instrum., Volume 87 (2016) no. 3

Cité par Sources :

Commentaires - Politique


Ces articles pourraient vous intéresser

Kinetic inductance detectors for millimeter and submillimeter astronomy

Nicolas Boudou; Alain Benoit; Olivier Bourrion; ...

C. R. Phys (2012)