[Verres et vitrocéramiques de chalcogénures : des matériaux transparents dans l'infrarouge pour des applications duales]
Dans cet article sont décrites les activités de recherche qui ont permis l'obtention du prix Lamb, décerné par l'Académie des sciences dans le but de favoriser les études concernant la défense nationale de la France. Ces recherches concernent le développement de matériaux infrarouges pour la vision nocturne et la mise au point d'imageurs thermiques utiles pour des applications de défense, mais aussi civiles. La contribution est particulièrement innovante dans trois secteurs : l'élargissement du domaine spectral des verres de chalcogénures, les vitrocéramiques infrarouges à hautes propriétés thermomécaniques, ainsi que la conception d'une nouvelle voie de synthèse de ces matériaux par un procédé mécanique.
In this paper are described the different research activities that led to the awarding of the Lamb prize by the French Academy of Sciences in order to promote research work on the national defense of France. This research concerns the development of infrared materials for night vision and the development of thermal imagers useful for defense, but also for civilian applications. The contribution has been particularly innovative in different sectors: broadening of chalcogenide glasses window of transparency, IR glass-ceramics with high thermomechanical properties, and the design of a new way of synthesis of these materials by a mechanical process.
Mots-clés : Verre, Vitrocéramique, Chalcogénure, Infrarouge, Synthèse
Laurent Calvez 1
@article{CRPHYS_2017__18_5-6_314_0, author = {Laurent Calvez}, title = {Chalcogenide glasses and glass-ceramics: {Transparent} materials in the infrared for dual applications}, journal = {Comptes Rendus. Physique}, pages = {314--322}, publisher = {Elsevier}, volume = {18}, number = {5-6}, year = {2017}, doi = {10.1016/j.crhy.2017.05.003}, language = {en}, }
TY - JOUR AU - Laurent Calvez TI - Chalcogenide glasses and glass-ceramics: Transparent materials in the infrared for dual applications JO - Comptes Rendus. Physique PY - 2017 SP - 314 EP - 322 VL - 18 IS - 5-6 PB - Elsevier DO - 10.1016/j.crhy.2017.05.003 LA - en ID - CRPHYS_2017__18_5-6_314_0 ER -
Laurent Calvez. Chalcogenide glasses and glass-ceramics: Transparent materials in the infrared for dual applications. Comptes Rendus. Physique, 2016 Prizes of the French Academy of Sciences /Prix 2016 de l’Académie des sciences, Volume 18 (2017) no. 5-6, pp. 314-322. doi : 10.1016/j.crhy.2017.05.003. https://comptes-rendus.academie-sciences.fr/physique/articles/10.1016/j.crhy.2017.05.003/
[1] Chalcogenide Glasses: Preparation, Properties and Applications, J. Woodhead Publishing, 2013
[2] J. Non-Cryst. Solids, 161 (1993), p. 327
[3] Appl. Phys. A, Mater. Sci. Process., 89 (2007) no. 1, pp. 183-188
[4] Optoelectron. Adv. Mater., Rapid Commun., 3 (2009) no. 9, pp. 899-904
[5] Appl. Phys. A, 98 (2010) no. 1, pp. 97-101
[6] Adv. Mater., 19 (2007) no. 1, pp. 129-132
[7] J. Non-Cryst. Solids, 431 (2016), pp. 25-30
[8] Phys. Chem. Glasses: Eur. J. Glass Sci. Technol. B, 47 (2006) no. 2, pp. 142-145
[9] J. Non-Cryst. Solids, 354 (2008) no. 12–13, pp. 1123-1127
[10] J. Am. Ceram. Soc., 91 (2008) no. 11, pp. 3566-3570
[11] J. Solid State Chem., 184 (2011) no. 3, pp. 584-588
[12] Prog. Mater. Sci., 46 (2001), pp. 1-184
[13] Phys. Solid State B, 251 (2014) no. 7, pp. 1330-1333
[14] Opt. Express, 19 (2011) no. 23, pp. 23513-23522
[15] J. Optoelectron. Adv. Mater., 9 (2014) no. 5–6, pp. 436-441
- Mid-Infrared Photonic Sensors: Exploring Fundamentals, Advanced Materials, and Cutting-Edge Applications, Sensors, Volume 25 (2025) no. 4, p. 1102 | DOI:10.3390/s25041102
- , 2024 24th International Conference on Transparent Optical Networks (ICTON) (2024), p. 1 | DOI:10.1109/icton62926.2024.10647340
- , Advanced Photonics Congress 2024 (2024), p. SoTu3F.5 | DOI:10.1364/sof.2024.sotu3f.5
- Fabrication of High Purity S/Se Based Chalcogenide Bulk Glasses for Mid-Infrared Photonics Applications, Advances in Glass and Glass-Ceramics, Volume 46 (2024), p. 197 | DOI:10.1007/978-981-97-2969-2_13
- Infrared transparent CaO–Ta2O5–Al2O3 glass-ceramics with high microhardness: Crystallization behavior and microstructure development, Ceramics International, Volume 50 (2024) no. 7, p. 10465 | DOI:10.1016/j.ceramint.2023.12.359
- , Fiber Lasers and Glass Photonics: Materials through Applications IV (2024), p. 27 | DOI:10.1117/12.3017504
- Investigation of thermal and electrical properties of Sn and Al incorporated Se–Te chalcogenide glasses for phase change memory applications, Journal of Materials Science: Materials in Electronics, Volume 35 (2024) no. 36 | DOI:10.1007/s10854-024-14005-1
- Near-surface viscosity and complex crystal growth behavior in Se90Te10 thin films and bulk surface, Materials Chemistry and Physics, Volume 316 (2024), p. 129018 | DOI:10.1016/j.matchemphys.2024.129018
- Investigation on gallium doping Ge-As-S chalcogenide glass and glass ceramics, Optical Materials Express, Volume 14 (2024) no. 2, p. 387 | DOI:10.1364/ome.516637
- Unlocking the intermediate-phase evolution in perovskite crystallization with an operando infrared FEWS sensor, Optics Letters, Volume 49 (2024) no. 24, p. 7130 | DOI:10.1364/ol.546644
- Advanced Characterization Techniques and Theoretical Calculation, Sodium‐Ion Batteries (2024), p. 247 | DOI:10.1002/9783527841684.ch6
- Investigation of electrical conduction and optical properties of amorphous Se88Zn10Bi2 chalcogenide thin film, Chemical Physics Letters, Volume 814 (2023), p. 140321 | DOI:10.1016/j.cplett.2023.140321
- Crystallization of glass materials into transparent optical ceramics, International Materials Reviews, Volume 68 (2023) no. 6, p. 648 | DOI:10.1080/09506608.2022.2107372
- Effect of Ge concentration on optical properties of films synthesized by vacuum-thermal evaporation of glassy Ge–Se alloys, Journal of Non-Crystalline Solids, Volume 616 (2023), p. 122479 | DOI:10.1016/j.jnoncrysol.2023.122479
- Supercontinuum in integrated photonics: generation, applications, challenges, and perspectives, Nanophotonics, Volume 12 (2023) no. 7, p. 1199 | DOI:10.1515/nanoph-2022-0749
- UV-curable thiol-ene system for broadband infrared transparent objects, Nature Communications, Volume 14 (2023) no. 1 | DOI:10.1038/s41467-023-44273-0
- Optical properties of Ge-Ga-Ag-Te high refractive index chalcogenide glasses, Optical Materials Express, Volume 13 (2023) no. 5, p. 1320 | DOI:10.1364/ome.484948
- A critical review of infrared transparent oxide glasses, Optical Materials: X, Volume 20 (2023), p. 100258 | DOI:10.1016/j.omx.2023.100258
- The past, present and future of photonic glasses: A review in homage to the United Nations International Year of glass 2022, Progress in Materials Science, Volume 134 (2023), p. 101084 | DOI:10.1016/j.pmatsci.2023.101084
- Design of hexagonal chalcogenide photonic crystal fiber with ultra-flattened dispersion in mid-infrared wavelength spectrum, Beni-Suef University Journal of Basic and Applied Sciences, Volume 11 (2022) no. 1 | DOI:10.1186/s43088-022-00281-5
- High‐entropy alloy catalysts: From bulk to nano toward highly efficient carbon and nitrogen catalysis, Carbon Energy, Volume 4 (2022) no. 5, p. 731 | DOI:10.1002/cey2.228
- Modification of crystallization behavior, mechanical strength and optical property of Ge–S binary chalcogenide glass ceramics by trace CsCl incorporation, Ceramics International, Volume 48 (2022) no. 18, p. 25781 | DOI:10.1016/j.ceramint.2022.05.250
- Study on third-order optical nonlinear properties of transparent chalcogenide glass ceramics within Ge–S binary system, Ceramics International, Volume 48 (2022) no. 8, p. 11209 | DOI:10.1016/j.ceramint.2021.12.341
- Structure–property relationships in critically connected (GeTe4)100−x(As2Se3)x glasses, Dalton Transactions, Volume 51 (2022) no. 32, p. 12100 | DOI:10.1039/d2dt01969h
- Glass formation and optical properties of Sn modified GeS2-Ga2S3-CsCl chalcogenide glasses, Infrared Physics Technology, Volume 122 (2022), p. 104086 | DOI:10.1016/j.infrared.2022.104086
- Effect of adding CsI on properties of Ge20Sb10Se65Te5 glass, Infrared Physics Technology, Volume 126 (2022), p. 104370 | DOI:10.1016/j.infrared.2022.104370
- Cost-effective fabrication of As40Se60 glass lenses enabled by SPS-SPDT process, Infrared Physics Technology, Volume 127 (2022), p. 104398 | DOI:10.1016/j.infrared.2022.104398
- Viscoelastic behavior and fragility of Se-deficient chalcogenide liquids in As-P-Se system, Journal of Non-Crystalline Solids: X, Volume 16 (2022), p. 100128 | DOI:10.1016/j.nocx.2022.100128
- Glass formation, thermal stability and fragility minimum in Ge-Te-Se glasses, Materials Research Bulletin, Volume 152 (2022), p. 111833 | DOI:10.1016/j.materresbull.2022.111833
- Optical fibres for monitoring the evolving chemistry in commercial batteries, Nature Energy, Volume 7 (2022) no. 12, p. 1128 | DOI:10.1038/s41560-022-01153-z
- Unlocking cell chemistry evolution with operando fibre optic infrared spectroscopy in commercial Na(Li)-ion batteries, Nature Energy, Volume 7 (2022) no. 12, p. 1157 | DOI:10.1038/s41560-022-01141-3
- Spontaneous emission enhancement based on thin-film chalcogenide/fluoride one dimensional photonic crystal, Optical Materials, Volume 130 (2022), p. 112587 | DOI:10.1016/j.optmat.2022.112587
- Thermo-induced changes in the optical linearity and nonlinearity of Dy doped (GeSe2)80(Sb2Se3)20 thin films, Optical and Quantum Electronics, Volume 54 (2022) no. 4 | DOI:10.1007/s11082-022-03653-4
- Fiber optical parametric oscillator made of soft glass, Optics Letters, Volume 47 (2022) no. 14, p. 3451 | DOI:10.1364/ol.457711
- Complex Er-doped selenium-based chalcogenides in the far-infrared region: a structural bonding arrangement study, Physica Scripta, Volume 97 (2022) no. 8, p. 085707 | DOI:10.1088/1402-4896/ac8186
- Investigation on Chalcogenide Glass Additive Manufacturing for Shaping Mid-infrared Optical Components and Microstructured Optical Fibers, Crystals, Volume 11 (2021) no. 3, p. 228 | DOI:10.3390/cryst11030228
- Recent progress of semiconductor optoelectronic fibers, Frontiers of Optoelectronics, Volume 14 (2021) no. 4, p. 383 | DOI:10.1007/s12200-021-1226-0
- Characterization of optical waveguide in chalcogenide glass formed by helium ion implantation, Indian Journal of Physics, Volume 95 (2021) no. 6, p. 1239 | DOI:10.1007/s12648-020-01768-6
- Physical, linear and nonlinear optical properties of amorphous Se90-xTe10Mx (M = Zn, In, Pb, x = 0, 5) chalcogenide thin films by electron-beam deposition, Journal of Non-Crystalline Solids, Volume 557 (2021), p. 120646 | DOI:10.1016/j.jnoncrysol.2021.120646
- Peculiarities of Ga Ge100–Se glasses crystallization as potential materials for optical IR glass-ceramics, Journal of Non-Crystalline Solids, Volume 570 (2021), p. 121018 | DOI:10.1016/j.jnoncrysol.2021.121018
- Direct one-stage plasma-chemical synthesis of chalcogenide films doped with ytterbium, Journal of Physics: Conference Series, Volume 1967 (2021) no. 1, p. 012005 | DOI:10.1088/1742-6596/1967/1/012005
- Transparent IR glass ceramics: Requirements for the dispersed structure and for the methods of its control, Journal of the European Ceramic Society, Volume 41 (2021) no. 15, p. 7852 | DOI:10.1016/j.jeurceramsoc.2021.08.019
- High refractive index IR lenses based on chalcogenide glasses molded by spark plasma sintering, Optical Materials Express, Volume 11 (2021) no. 6, p. 1622 | DOI:10.1364/ome.427686
- Topological analysis and glass kinetics of Se-Te-Ag lone pair semiconductors, Physica Scripta, Volume 96 (2021) no. 12, p. 125710 | DOI:10.1088/1402-4896/ac2709
- Compositional Evolution of the Structure and Connectivity in Binary P–Se Glasses: Results from 2D Multinuclear NMR and Raman Spectroscopy, The Journal of Physical Chemistry B, Volume 125 (2021) no. 47, p. 13057 | DOI:10.1021/acs.jpcb.1c07601
- , 2020 22nd International Conference on Transparent Optical Networks (ICTON) (2020), p. 1 | DOI:10.1109/icton51198.2020.9203154
- Impact of Morphology and Microstructure on the Mechanical Properties of Ge-As-Pb-Se Glass Ceramics, Applied Sciences, Volume 10 (2020) no. 8, p. 2836 | DOI:10.3390/app10082836
- , Integrated Optics: Devices, Materials, and Technologies XXIV (2020), p. 43 | DOI:10.1117/12.2542555
- Linear and nonlinear optical properties change in Ag/GeS heterostructure thin films by thermal annealing and laser irradiation, Optical and Quantum Electronics, Volume 52 (2020) no. 3 | DOI:10.1007/s11082-020-2245-6
- Glass ceramics for frequency conversion, Solar Cells and Light Management (2020), p. 391 | DOI:10.1016/b978-0-08-102762-2.00011-2
- Surface modification of chalcogenide glass for diamond-like-carbon coating, Applied Surface Science, Volume 478 (2019), p. 802 | DOI:10.1016/j.apsusc.2019.02.043
- Relationship between composition, crystallization, and phase separation behavior of GeS2–Sb2S3–CsCl chalcogenide glasses, Infrared Physics Technology, Volume 102 (2019), p. 102978 | DOI:10.1016/j.infrared.2019.102978
- Crystallization behavior of (GeTe4)x(GaTe3)100-x glasses for far-infrared optics applications, Journal of Alloys and Compounds, Volume 770 (2019), p. 564 | DOI:10.1016/j.jallcom.2018.08.150
- Strong Opto-Structural Coupling in Low Dimensional GeSe3 Films, Nano Letters, Volume 19 (2019) no. 10, p. 7377 | DOI:10.1021/acs.nanolett.9b03039
- Simultaneous growth of Ga2S3 and GaS thin films using physical vapor deposition with GaS powder as a single precursor, Nanotechnology, Volume 30 (2019) no. 38, p. 384001 | DOI:10.1088/1361-6528/ab284c
- Effect of Er3+-doping on 65GeS2-25Ga2S3-10CsCl glass probed by annihilating positrons, Optical Materials, Volume 88 (2019), p. 625 | DOI:10.1016/j.optmat.2018.12.040
- Upconversion fluorescence assisted visualization of femtosecond laser filaments in Er-doped chalcohalide 65GeS2-25Ga2S3-10CsCl glass, Optics Laser Technology, Volume 119 (2019), p. 105621 | DOI:10.1016/j.optlastec.2019.105621
- Enhancement of third-order nonlinearity of thermally evaporated GeSbSe waveguides through annealing, Optics Express, Volume 27 (2019) no. 23, p. 33606 | DOI:10.1364/oe.27.033606
- Irradiation effect on the structural and electrical properties of the glassy Ag Ge As S composite material containing carbon nanotubes, Solid State Ionics, Volume 341 (2019), p. 115026 | DOI:10.1016/j.ssi.2019.115026
- Physical and structural properties of Ge-rich chalcogenide glass sandwiched by GeS crystalline layers, Ceramics International, Volume 44 (2018) no. 12, p. 13827 | DOI:10.1016/j.ceramint.2018.04.227
- Comparison of Lateral Crystal Growth in Selenium Thin Films and Surface of Bulk Samples, Crystal Growth Design, Volume 18 (2018) no. 7, p. 4103 | DOI:10.1021/acs.cgd.8b00505
- Structure and Chemical Order in S–Se Binary Glasses, The Journal of Physical Chemistry B, Volume 122 (2018) no. 50, p. 12219 | DOI:10.1021/acs.jpcb.8b10052
Cité par 62 documents. Sources : Crossref
Commentaires - Politique