Comptes Rendus
Demain l'énergie – Séminaire Daniel-Dautreppe, Grenoble, France, 2016
Use of vegetal biomass for biofuels and bioenergy. Competition with the production of bioproducts and materials?
[L'utilisation de la biomasse végétale pour la production de biocarburants et de bioénergie. En compétition avec la production de bioproduits et de matériaux ?]
Comptes Rendus. Physique, Volume 18 (2017) no. 7-8, pp. 462-468.

La bioéconomie européenne représente un chiffre d'affaires de deux mille cent milliards d'euros. Elle inclut les secteurs de l'alimentation humaine et animale. Les industries dites « basées sur le végétal », qui fabriquent des produits chimiques, des plastiques, des produits pharmaceutiques, du papier et ses produits dérivés, l'industrie de la forêt, le secteur des textiles, les biocarburants et la bioénergie y contribuent pour 600 milliards d'euros et 3,2 millions d'emplois. Cet article compare le pétrole et la biomasse végétale en termes d'extraction, de gisement et de composition chimique. L'utilisation de la biomasse végétale pour la production d'énergie est ensuite présentée, en détaillant la production de biocarburants. La dernière partie donne des exemples de bioproduits qui pourraient être obtenus dans des bioraffineries lignocellulosiques (à base de bois) intégrées à la production de fibres de cellulose.

The total European bioeconomy represents 2.1 trillion euros turnover. It includes the food, feed and beverages sectors that are responsible for about half of the turnover. The bio-based industries – chemicals and plastics, pharmaceuticals, paper and paper products, forest-based industries, textile sector, biofuels, and bioenergy – contribute with 600 billion euros and 3.2 million employees. This paper will first give key figures for fossil fuel versus vegetal biomass stocks and production. The chemical composition of vegetal biomass will be described in a second part, and compared with fossil raw material. The use of vegetal biomass for energy will then be discussed, with a focus on the production of biofuels. The last part will give examples of bioproducts that could be obtained from wood in biorefineries integrated into the cellulose fiber industry.

Publié le :
DOI : 10.1016/j.crhy.2017.10.002
Keywords: Vegetal biomass, Bioeconomy, Biorefinery, Biofuels, Bioenergy, Bioproducts
Mot clés : Biomasse végétale, Bioéconomie, Bioraffinerie, Biocarburants, Bioénergie, Bioproduits
Christine Chirat 1

1 University of Grenoble Alpes, LGP2, CNRS, Grenoble INP-Pagora, 38000 Grenoble, France
@article{CRPHYS_2017__18_7-8_462_0,
     author = {Christine Chirat},
     title = {Use of vegetal biomass for biofuels and bioenergy. {Competition} with the production of bioproducts and materials?},
     journal = {Comptes Rendus. Physique},
     pages = {462--468},
     publisher = {Elsevier},
     volume = {18},
     number = {7-8},
     year = {2017},
     doi = {10.1016/j.crhy.2017.10.002},
     language = {en},
}
TY  - JOUR
AU  - Christine Chirat
TI  - Use of vegetal biomass for biofuels and bioenergy. Competition with the production of bioproducts and materials?
JO  - Comptes Rendus. Physique
PY  - 2017
SP  - 462
EP  - 468
VL  - 18
IS  - 7-8
PB  - Elsevier
DO  - 10.1016/j.crhy.2017.10.002
LA  - en
ID  - CRPHYS_2017__18_7-8_462_0
ER  - 
%0 Journal Article
%A Christine Chirat
%T Use of vegetal biomass for biofuels and bioenergy. Competition with the production of bioproducts and materials?
%J Comptes Rendus. Physique
%D 2017
%P 462-468
%V 18
%N 7-8
%I Elsevier
%R 10.1016/j.crhy.2017.10.002
%G en
%F CRPHYS_2017__18_7-8_462_0
Christine Chirat. Use of vegetal biomass for biofuels and bioenergy. Competition with the production of bioproducts and materials?. Comptes Rendus. Physique, Volume 18 (2017) no. 7-8, pp. 462-468. doi : 10.1016/j.crhy.2017.10.002. https://comptes-rendus.academie-sciences.fr/physique/articles/10.1016/j.crhy.2017.10.002/

[1] S. Piotrowski; M. Michael Carus; D. Carrez European bioeconomy in figures, Ind. Biotechnol., Volume 12 (2016) no. 2, pp. 78-82 | DOI

[2] M. Besbes; F. Martial; I. Naudy-Fesquet; P. Roosz; J. Tronyo Tableaux de l'économie française, Insee Références, Institut national de la statistique et des études économiques, Paris, 2017

[3] Global Forest Resources Assessment 2015, FAO, Rome, 2016 (ISBN: 978-92-5-209283-4)

[4] S. Piotrowski; M. Carus; R. Essel Sustainable biomass supply and demand: a scenario analysis, Open Agric., Volume 1 (2016), pp. 18-28 | DOI

[5] Key Renewable Trends. Excerpt from Renewable Information, International Energy Agency, 2016 https://www.iea.org/publications/freepublications/publication/KeyRenewablesTrends.pdf

[6] OECD/FAO Biofuels, OECD–FAO Agricultural Outlook 2016–2025, OECD Publishing, Paris, 2016 | DOI

[7] J.P. Mikkola; E. Sklavounos; A.W.T. King; P. Virtanen The biorefinery and green chemistry, Ionic Liquids in the Biorefinery Concept: Challenges and Perspectives, RSC Green Chemistry, RSC Publishing, London, 2015, pp. 1-37 (eISBN 978-1-78262-259-8) | DOI

[8] http://www.upmbiofuels.com/whats-new/other-publications/Documents/Publications/ecofys-crude-tall-oil-low-iluc-risk-assessment-report.pdf

[9] J. Ralph; G. Brunow; W. Boerjan Lignins, eLS, John Wiley & Sons, Ltd, 2001

[10] http://www.iea-bioenergy.task42-biorefineries.com/

[11] A. Dufresne Nanocellulose. From Nature to High Performance Tailored Materials, Walter de Gruyter GmbH, Berlin/Boston, 2012 (475 pp)

[12] A. van Heiningen Converting a kraft pulp mill into an integrated forest biorefinery, Pulp Pap. Can., Volume 107 (2006) no. 6, p. T141-T146

[13] C. Chirat; D. Lachenal; M. Sanglard Biorefinery in a kraft pulp mill: extraction of xylans from hardwood chips prior to the production of cellulosic paper pulp, Process Biochem., Volume 47 (2012), pp. 381-385

[14] J. Boucher; C. Chirat; D. Lachenal Extraction of hemicelluloses from wood in a pulp biorefinery, and subsequent fermentation into ethanol, Energy Convers. Manag., Volume 88 (2014), pp. 1120-1126

[15] M. Sanglard; C. Chirat; B. Jarman; D. Lachenal Biorefinery in a pulp mill: simultaneous production of cellulosic fibres from Eucalyptus globulus by soda/anthraquinone cooking and surface-active agents, Holzforschung, Volume 67 (2013) no. 5, pp. 481-488

[16] V. Deloule; C. Chirat; C. Boisset; W. Chroboczek; B. Toussaint Softwood hemicelluloses as potential prebiotics, Autrans, France, June 28–July 1 (2016), pp. 87-90

Cité par Sources :

Commentaires - Politique


Ces articles pourraient vous intéresser

A new era for lignocellulosics utilization through biotechnology

Alain Michel Boudet

C. R. Biol (2011)


Bioethanol production from water hyacinth with isolated thermophilic microbial consortium from Kenya

Selamawit Shiferaw Deffar; Anil Kumar; Anthony Muliwa; ...

C. R. Chim (2024)


Intermediate pyrolysis of Ficus nitida wood in a fixed-bed reactor: effect of pyrolysis parameters on bio-oil and bio-char yields and properties

Amine Tabal; Oumayma Belyazid; Hicham Dahman; ...

C. R. Chim (2023)