This article aims at giving a general presentation of spintronics, an important field of research developing today along many new directions in physics of condensed matter. We tried to present simply the physical phenomena involved in spintronics – no equations but many schematics. We also described the applications of spintronics, those of today and those expected to have an important impact on the next developments of the information and communication technologies.
Cet article se veut une présentation générale de la spintronique. C'est aujourd'hui un important domaine de recherche, qui se développe sur de nombreux nouveaux axes de la physique de la matière condensée. Nous avons voulu présenter simplement les phénomènes physiques impliqués dans la spintronique – sans équations, mais avec de nombreux schémas. Nous décrivons aussi les applications de la spintronique, celles d'aujourd'hui et celles dont l'on attend un impact important sur les prochains développements des technologies de l'information et de la communication.
Mot clés : Spintronique, Nano-magnétisme, Physique topologique, Technologies de l'information et de la communication
Albert Fert 1; Frédéric Nguyen Van Dau 1
@article{CRPHYS_2019__20_7-8_817_0, author = {Albert Fert and Fr\'ed\'eric Nguyen Van Dau}, title = {Spintronics, from giant magnetoresistance to magnetic skyrmions and topological insulators}, journal = {Comptes Rendus. Physique}, pages = {817--831}, publisher = {Elsevier}, volume = {20}, number = {7-8}, year = {2019}, doi = {10.1016/j.crhy.2019.05.020}, language = {en}, }
TY - JOUR AU - Albert Fert AU - Frédéric Nguyen Van Dau TI - Spintronics, from giant magnetoresistance to magnetic skyrmions and topological insulators JO - Comptes Rendus. Physique PY - 2019 SP - 817 EP - 831 VL - 20 IS - 7-8 PB - Elsevier DO - 10.1016/j.crhy.2019.05.020 LA - en ID - CRPHYS_2019__20_7-8_817_0 ER -
Albert Fert; Frédéric Nguyen Van Dau. Spintronics, from giant magnetoresistance to magnetic skyrmions and topological insulators. Comptes Rendus. Physique, Volume 20 (2019) no. 7-8, pp. 817-831. doi : 10.1016/j.crhy.2019.05.020. https://comptes-rendus.academie-sciences.fr/physique/articles/10.1016/j.crhy.2019.05.020/
[1] et al. Giant magnetoresistance of (001)Fe/(001) Cr magnetic superlattices, Phys. Rev. Lett., Volume 61 (1988) no. 21, pp. 2472-2475
[2] Enhanced magnetoresistance in layered magnetic structures with antiferromagnetic interlayer exchange, Phys. Rev. B, Volume 39 (1989) no. 7, pp. 4828-4830
[3] The electrical conductivity of transition metals, Proc. R. Soc. Lond. Ser. A, Math. Phys. Sci., Volume 153 (1936) no. 880, pp. 699-717
[4] Two-current conduction in nickel, Phys. Rev. Lett., Volume 21 (1968) no. 16, pp. 1190-1192
[5] Transport properties of ferromagnetic transition metals, J. Phys., Colloq., Volume 32 (1971) no. C1, p. C1-46–C1-50
[6] Electrical resistivity of ferromagnetic nickel and iron based alloys, J. Phys. F, Met. Phys., Volume 6 (1976) no. 5, pp. 849-871
[7] Origine de la résistivité dans le cobalt et ses alliages dilués, J. Phys. Chem. Solids, Volume 32 (1971) no. 12, pp. 2723-2735
[8] The residual resistivities of dilute iron-based alloys in the two-current model, J. Phys. F, Met. Phys., Volume 7 (1977) no. 1, p. L23-L25
[9] Chapter 9 Transport properties of ferromagnets, Handb. Ferromagn. Mater., Volume 3 (1982), pp. 747-804
[10] Layered magnetic structures: evidence for antiferromagnetic coupling of Fe layers across Cr interlayers, Phys. Rev. Lett., Volume 57 (1986) no. 19, pp. 2442-2445
[11] Theory of giant magnetoresistance effects in magnetic layered structures with antiferromagnetic coupling, Phys. Rev. Lett., Volume 63 (1989) no. 6, pp. 664-667
[12] Electrical conductivity of magnetic multilayered structures, Phys. Rev. Lett., Volume 65 (1990) no. 13, pp. 1643-1646
[13] Oscillations in exchange coupling and magnetoresistance in metallic superlattice structures: Co/Ru, Co/Cr, and Fe/Cr, Phys. Rev. Lett., Volume 64 (1990) no. 19, pp. 2304-2307
[14] Large magnetoresistance of field-induced giant ferrimagnetic multilayers, J. Phys. Soc. Jpn., Volume 59 (1990) no. 9, pp. 3061-3064
[15] et al. Very large magnetoresistance effects induced by antiparallel magnetization in two ultrathin cobalt films, J. Appl. Phys., Volume 67 (1990) no. 9, pp. 5680-5682
[16] Oscillatory interlayer coupling and giant magnetoresistance in Co/Cu multilayers, J. Magn. Magn. Mater., Volume 94 (1991) no. 1–2, p. L1-L5
[17] Oscillatory magnetic exchange coupling through thin copper layers, Phys. Rev. Lett., Volume 66 (1991) no. 16, pp. 2152-2155
[18] Giant magnetoresistive in soft ferromagnetic multilayers, Phys. Rev. B, Volume 43 (1991) no. 1, pp. 1297-1300
[19] P. Grünberg, Magnetic field sensor with ferromagnetic thin layers having magnetically antiparallel polarized components, US Patent No. US4949039A, 1989.
[20] Applications of magnetic nanostructures (S. Maekawa; T. Shinjō, eds.), Spin Dependent Transport in Magnetic Nanostructures, Taylor & Francis, 2002, pp. 237-279
[21] The emergence of spin electronics in data storage, Nat. Mater., Volume 6 (2007) no. 11, pp. 813-823
[22] et al. Magnetoresistive biochips, Europhys. News, Volume 34 (2003) no. 6, pp. 224-226
[23] Perpendicular giant magnetoresistances of Ag/Co multilayers, Phys. Rev. Lett., Volume 66 (1991) no. 23, pp. 3060-3063
[24] et al. Giant magnetoresistance in magnetic multilayered nanowires, Appl. Phys. Lett., Volume 65 (1994) no. 19, pp. 2484-2486
[25] Theory of the perpendicular magnetoresistance in magnetic multilayers, Phys. Rev. B, Volume 48 (1993) no. 10, pp. 7099-7113
[26] Conditions for efficient spin injection from a ferromagnetic metal into a semiconductor, Phys. Rev. B, Volume 64 (2001) no. 18
[27] Thermodynamic analysis of interfacial transport and of the thermomagnetoelectric system, Phys. Rev. B, Volume 35 (1987) no. 10, pp. 4959-4972
[28] Electric-field-dependent spin diffusion and spin injection into semiconductors, Phys. Rev. B, Volume 66 (2002) no. 20
[29] Estimation of spin-diffusion length from the magnitude of spin-current absorption: multiterminal ferromagnetic/nonferromagnetic hybrid structures, Phys. Rev. B, Volume 72 (2005) no. 1
[30] Spin current in metals and superconductors, J. Phys. Soc. Jpn., Volume 77 (2008) no. 3
[31] Tunneling between ferromagnetic films, Phys. Lett. A, Volume 54 (1975) no. 3, pp. 225-226
[32] Electron tunneling between ferromagnetic films, IEEE Trans. Magn., Volume 18 (1982) no. 2, pp. 707-708
[33] Large magnetoresistance at room temperature in ferromagnetic thin film tunnel junctions, Phys. Rev. Lett., Volume 74 (1995) no. 16, pp. 3273-3276
[34] Giant magnetic tunneling effect in Fe/Al2O3/Fe junction, J. Magn. Magn. Mater., Volume 139 (1995) no. 3, p. L231-L234
[35] et al. Large magnetoresistance in Fe/MgO/FeCo(001) epitaxial tunnel junctions on GaAs(001), Appl. Phys. Lett., Volume 79 (2001) no. 11, pp. 1655-1657
[36] Giant room-temperature magnetoresistance in single-crystal Fe/MgO/Fe magnetic tunnel junctions, Nat. Mater., Volume 3 (2004) no. 12, pp. 868-871
[37] et al. Giant tunnelling magnetoresistance at room temperature with MgO(100) tunnel barriers, Nat. Mater., Volume 3 (2004) no. 12, pp. 862-867
[38] et al. Tunnel magnetoresistance of 604% at 300 K by suppression of Ta diffusion in CoFeB/MgO/CoFeB pseudo-spin-valves annealed at high temperature, Appl. Phys. Lett., Volume 93 (2008) no. 8
[39] Structural and electronic properties of Co/Al2O3/Co magnetic tunnel junction from first principles, Phys. Rev. B, Volume 62 (2000) no. 6, pp. 3952-3959
[40] Theory of tunneling magnetoresistance in a junction with a nonmagnetic metallic interlayer, Phys. Rev. B, Volume 60 (1999) no. 2, pp. 1117-1121
[41] Complex band structure and tunneling through ferromagnet/insulator/ferromagnet junctions, Phys. Rev. Lett., Volume 85 (2000) no. 5, pp. 1088-1091
[42] Large magnetoresistance in bcc Co/MgO/Co and FeCo/MgO/FeCo tunnel junctions, Phys. Rev. B, Volume 70 (2004) no. 17
[43] Role of metal–oxide interface in determining the spin polarization of magnetic tunnel junctions, Science, Volume 286 (1999) no. 5439, pp. 507-509
[44] M. Bowen, et al., Nearly total spin polarization in La2/3Sr1/3MnO3 from tunneling experiments, 2002.
[45] et al. Spin-dependent tunneling characteristics of fully epitaxial magnetic tunneling junctions with a full-Heusler alloy Co2MnSi thin film and a MgO tunnel barrier, Appl. Phys. Lett., Volume 89 (2006) no. 19
[46] Large magnetoresistance using hybrid spin filter devices, Appl. Phys. Lett., Volume 80 (2002) no. 4, pp. 625-627
[47] Spintronics, magnetoresistive heads, and the emergence of the digital world, Proc. IEEE, Volume 104 (2016) no. 10, pp. 1787-1795
[48] The design of a one megabit non-volatile M-R memory chip using 1.5 × 5-μm cells, IEEE Trans. Magn., Volume 24 (1988) no. 6, pp. 3117-3119
[49] Magnetoresistive memory technology, Thin Solid Films, Volume 216 (1992) no. 1, pp. 162-168
[50] Oxide spintronics, IEEE Trans. Electron Devices, Volume 54 (2007) no. 5, pp. 1003-1023
[51] A new spin for oxide interfaces, Nat. Phys., Volume 14 (2018) no. 4, pp. 322-325
[52] Current-driven excitation of magnetic multilayers, J. Magn. Magn. Mater., Volume 159 (1996) no. 1–2, p. L1-L7
[53] Emission of spin waves by a magnetic multilayer traversed by a current, Phys. Rev. B, Volume 54 (1996) no. 13, pp. 9353-9358
[54] et al. Excitation of a magnetic multilayer by an electric current, Phys. Rev. Lett., Volume 80 (1998) no. 19, pp. 4281-4284
[55] Direct-current induced dynamics in Co90Fe10/Ni80Fe20 point contacts, Phys. Rev. Lett., Volume 92 (2004) no. 2
[56] Spin-polarized current switching of a Co thin film nanomagnet, Appl. Phys. Lett., Volume 77 (2000) no. 23, pp. 3809-3811
[57] et al. Spin-polarized current induced switching in Co/Cu/Co pillars, Appl. Phys. Lett., Volume 78 (2001) no. 23, pp. 3663-3665
[58] et al. Large microwave generation from current-driven magnetic vortex oscillators in magnetic tunnel junctions, Nat. Commun., Volume 1 (2010) no. 1, pp. 1-6
[59] et al. Switching a spin valve back and forth by current-induced domain wall motion, Appl. Phys. Lett., Volume 83 (2003) no. 3, pp. 509-511
[60] et al. A novel nonvolatile memory with spin torque transfer magnetization switching: spin-ram, IEEE InternationalElectron Devices Meeting, IEDM Technical Digest., 2005, pp. 459-462
[61] Everspin ships first ST-MRAM memory with 500× performance of flash | Computerworld https://www.computerworld.com/article/2493603/everspin-ships-first-st-mram-memory-with-500x-performance-of-flash.html ([Online]. Available:, Accessed 2019-3-5)
[62] Intel says FinFET-based embedded MRAM is production-ready | EE times https://www.eetimes.com/document.asp?doc_id=1334343# ([Online]. Available:, Accessed 2019-4-15)
[63] M. I. American Institute of Physics, V.I. Perel', JETP Lett., Volume 13 (1971)
[64] Spin Hall effect, Phys. Rev. Lett., Volume 83 (1999) no. 9, pp. 1834-1837
[65] Observation of the spin Hall effect in semiconductors, Science, Volume 306 (2004) no. 5703, pp. 1910-1913
[66] Direct electronic measurement of the spin Hall effect, Nature, Volume 442 (2006) no. 7099, pp. 176-179
[67] Electrical detection of spin currents: the spin-current-induced Hall effect (invited), J. Appl. Phys., Volume 101 (2007) no. 9
[68] et al. Spin–orbit torque magnetization switching of a three-terminal perpendicular magnetic tunnel junction, Appl. Phys. Lett., Volume 104 (2014) no. 4
[69] Spin Hall effects in metals, IEEE Trans. Magn., Volume 49 (2013) no. 10, pp. 5172-5193
[70] et al. Spin pumping and inverse spin Hall effect in platinum: the essential role of spin-memory loss at metallic interfaces, Phys. Rev. Lett., Volume 112 (2014) no. 10
[71] Spin transfer torque devices utilizing the giant spin Hall effect of tungsten, Appl. Phys. Lett., Volume 101 (2012) no. 12
[72] Spin-torque switching with the giant spin Hall effect of tantalum, Science, Volume 336 (2012) no. 6081, pp. 555-558
[73] Comparative measurements of inverse spin Hall effects and magnetoresistance in YIG/Pt and YIG/Ta, Phys. Rev. B, Volume 87 (2013) no. 17
[74] et al. Giant spin Hall effect induced by skew scattering from bismuth impurities inside thin film CuBi alloys, Phys. Rev. Lett., Volume 109 (2012) no. 15
[75] Hall effect in dilute magnetic alloys, J. Magn. Magn. Mater., Volume 24 (1981) no. 3, pp. 231-257
[76] Spin polarization of conduction electrons induced by electric current in two-dimensional asymmetric electron systems, Solid State Commun., Volume 73 (1990) no. 3, pp. 233-235
[77] et al. Fermi-level-dependent charge-to-spin current conversion by Dirac surface states of topological insulators, Nat. Phys., Volume 12 (2016) no. 11, pp. 1027-1031
[78] Quantum materials for spin and charge conversion, NPJ Quantum Mater., Volume 3 (2018) no. 1, p. 27
[79] et al. Current-induced spin polarization on metal surfaces probed by spin-polarized positron beam, Sci. Rep., Volume 4 (2015) no. 1, p. 4844
[80] et al. Spin to charge conversion at room temperature by spin pumping into a new type of topological insulator: α-Sn films, Phys. Rev. Lett., Volume 116 (2016) no. 9
[81] et al. Spin-electricity conversion induced by spin injection into topological insulators, Phys. Rev. Lett., Volume 113 (2014) no. 19
[82] et al. Spin-to-charge conversion using Rashba coupling at the interface between non-magnetic materials, Nat. Commun., Volume 4 (2013) no. 1, p. 2944
[83] et al. Highly efficient and tunable spin-to-charge conversion through Rashba coupling at oxide interfaces, Nat. Mater., Volume 15 (2016) no. 12, pp. 1261-1266
[84] et al. Scalable energy-efficient magnetoelectric spin-orbit logic, Nature, Volume 565 (2019) no. 7737, pp. 35-42
[85] Chiral symmetry breaking in magnetic thin films and multilayers, Phys. Rev. Lett., Volume 87 (2001) no. 3
[86] Nanoscale magnetic skyrmions in metallic films and multilayers: a new twist for spintronics, Nat. Rev. Mater., Volume 1 (2016) no. 7
[87] Magnetic skyrmions: advances in physics and potential applications, Nat. Rev. Mater., Volume 2 (2017) no. 7
[88] Perspective: magnetic skyrmions—overview of recent progress in an active research field, J. Appl. Phys., Volume 124 (2018) no. 24
[89] A thermodynamic theory of ‘weak’ ferromagnetism of antiferromagnetics, J. Phys. Chem. Solids, Volume 4 (1958) no. 4, pp. 241-255
[90] Anisotropic superexchange interaction and weak ferromagnetism, Phys. Rev., Volume 120 (1960) no. 1, pp. 91-98
[91] Role of anisotropic exchange interactions in determining the properties of spin-glasses, Phys. Rev. Lett., Volume 44 (1980) no. 23, pp. 1538-1541
[92] Magnetic and transport properties of metallic multilayers, Mater. Sci. Forum, Volume 59–60 (1991), pp. 439-480
[93] Tailoring magnetic skyrmions in ultra-thin transition metal films, Nat. Commun., Volume 5 (2014) no. 1, p. 4030
[94] Anatomy of Dzyaloshinskii–Moriya interaction at Co/Pt interfaces, Phys. Rev. Lett., Volume 115 (2015) no. 26
[95] et al. Direct Observation of the Dzyaloshinskii–Moriya interaction in a Pt/Co/Ni Film, Phys. Rev. Lett., Volume 114 (2015) no. 4
[96] et al. Interfacial Dzyaloshinskii–Moriya interaction in perpendicularly magnetized Pt/Co/AlOx ultrathin films measured by Brillouin light spectroscopy, Phys. Rev. B, Volume 91 (2015) no. 18
[97] Spontaneous skyrmion ground states in magnetic metals, Nature, Volume 442 (2006) no. 7104, pp. 797-801
[98] et al. Skyrmion lattice in a chiral magnet, Science, Volume 323 (2009) no. 5916, pp. 915-919
[99] et al. Real-space observation of a two-dimensional skyrmion crystal, Nature, Volume 465 (2010) no. 7300, pp. 901-904
[100] Spin-polarized scanning tunneling microscopy with antiferromagnetic probe tips, Phys. Rev. Lett., Volume 88 (2002) no. 5
[101] et al. Spontaneous atomic-scale magnetic skyrmion lattice in two dimensions, Nat. Phys., Volume 7 (2011) no. 9, pp. 713-718
[102] Writing and deleting single magnetic skyrmions, Science, Volume 341 (2013) no. 6146, pp. 636-639
[103] Nucleation, stability and current-induced motion of isolated magnetic skyrmions in nanostructures, Nat. Nanotechnol., Volume 8 (2013) no. 11, pp. 839-844
[104] et al. Additive interfacial chiral interaction in multilayers for stabilization of small individual skyrmions at room temperature, Nat. Nanotechnol., Volume 11 (2016) no. 5, pp. 444-448
[105] et al. Tunable room-temperature magnetic skyrmions in Ir/Fe/Co/Pt multilayers, Nat. Mater., Volume 16 (2017) no. 9, pp. 898-904
[106] et al. Observation of room-temperature magnetic skyrmions and their current-driven dynamics in ultrathin metallic ferromagnets, Nat. Mater., Volume 15 (2016) no. 5, pp. 501-506
[107] et al. Room-temperature creation and spin–orbit torque manipulation of skyrmions in thin films with engineered asymmetry, Nano Lett., Volume 16 (2016) no. 3, pp. 1981-1988
[108] et al. Fast current-driven domain walls and small skyrmions in a compensated ferrimagnet, Nat. Nanotechnol., Volume 13 (2018) no. 12, pp. 1154-1160
[109] et al. Magnetism. Blowing magnetic skyrmion bubbles, Science, Volume 349 (2015) no. 6245, pp. 283-286
[110] et al. Field-free deterministic ultrafast creation of magnetic skyrmions by spin–orbit torques, Nat. Nanotechnol., Volume 12 (2017) no. 11, pp. 1040-1044
[111] et al. Electrical detection of single magnetic skyrmions in metallic multilayers at room temperature, Nat. Nanotechnol., Volume 13 (2018) no. 3, pp. 233-237
[112] et al. Current-induced skyrmion generation and dynamics in symmetric bilayers, Nat. Commun., Volume 8 (2017)
[113] Memory on the racetrack, Nat. Nanotechnol., Volume 10 (2015) no. 3, pp. 195-198
[114] A strategy for the design of skyrmion racetrack memories, Sci. Rep., Volume 4 (2014) no. 1, p. 6784
[115] et al. Skyrmion–skyrmion and skyrmion–edge repulsions in skyrmion-based racetrack memory, Sci. Rep., Volume 5 (2015) no. 1, p. 7643
[116] Skyrmion-electronics: an overview and outlook, Proc. IEEE, Volume 104 (2016) no. 10, pp. 2040-2061
[117] Magnetic skyrmion logic gates: conversion, duplication and merging of skyrmions, Sci. Rep., Volume 5 (2015) no. 1, p. 9400
[118] Skyrmion-based dynamic magnonic crystal, Nano Lett., Volume 15 (2015) no. 6, pp. 4029-4036
[119] et al. Skyrmion based microwave detectors and harvesting, Appl. Phys. Lett., Volume 107 (2015) no. 26
[120] et al. Vowel recognition with four coupled spin-torque nano-oscillators, Nature, Volume 563 (2018) no. 7730, pp. 230-234
[121] et al. Evaluation of spin-transfer switching in CoFeB/MgO/CoFeB magnetic tunnel junctions, Jpn. J. Appl. Phys., Volume 44 (2005) no. 40, p. L1237-L1240
[122] Field-dependent size and shape of single magnetic skyrmions, Phys. Rev. Lett., Volume 114 (2015) no. 17
Cited by Sources:
Comments - Policy