[Structures magnétiques]
Alors que le ferromagnétisme est connu depuis des siècles, ce n'est qu'au vingtième siècle qu'on identifia des structures magnétiques plus complexes, comme le ferrimagnétisme, l'antiferromagnétisme, l'hélimagnétisme ou les structures magnétiques modulées. La possibilité de structures incommensurables ou à longue période fut d'abord déduite de modèles phénoménologiques tels que le modèle de Heisenberg. L'explication, plus fondamentale, de Rudermann, Kittel, Kasuya et Yoshida repose sur le phénomène général que sont les oscillations de Friedel. L'ordre cristallographique et l'ordre magnétique sont souvent antagonistes, et de leur coexistence résulte souvent une suite de transitions qui peuvent être continues ou non. La technique expérimentale la plus efficace pour l'étude de l'ordre magnétique est la diffraction de neutrons, mais l'analyse est souvent très compliquée et requiert des méthodes numériques élaborées impliquant la théorie des groupes. Dans le cas des structures incommensurables, il peut être intéressant de considérer le système physique tridimensionnel comme la section d'un cristal de dimension plus élevée. La détermination des structures magnétiques à partir des spectres neutroniques est facilitée par des programmes informatiques appropriés.
While ferromagnetism has been known since many centuries, more complex magnetic structures have only been identified in the twentieth century: ferrimagnetism, antiferromagnetism, helimagnetism, modulated structures… Incommensurable or long-period structures have first been deduced as consequences of phenomenological models, e.g., the Heisenberg Hamiltonian. The more fundamental explanation of Rudermann, Kittel, Kasuya, and Yoshida relies on the general phenomenon of Friedel oscillations. The coexistence of crystallographic order and magnetic order is sometimes antagonistic and results in sequences of transitions that may be continuous or not. The most effective experimental technique to observe magnetic order is neutron diffraction, but the analysis is sometimes very complicated and requires sophisticated numerical methods involving group theory. In the case of incommensurable structures, it may be useful to consider the three-dimensional system as the section of a higher-dimensional crystal. The determination of magnetic structures from neutron scattering data is facilitated by computers and adequate programs.
Mot clés : Magnétisme, Diffraction des neutrons, Cristallographie, Superespace, Structures incommensurables
Juan Rodríguez-Carvajal 1 ; Jacques Villain 2
@article{CRPHYS_2019__20_7-8_770_0, author = {Juan Rodr{\'\i}guez-Carvajal and Jacques Villain}, title = {Magnetic structures}, journal = {Comptes Rendus. Physique}, pages = {770--802}, publisher = {Elsevier}, volume = {20}, number = {7-8}, year = {2019}, doi = {10.1016/j.crhy.2019.07.004}, language = {en}, }
Juan Rodríguez-Carvajal; Jacques Villain. Magnetic structures. Comptes Rendus. Physique, Volume 20 (2019) no. 7-8, pp. 770-802. doi : 10.1016/j.crhy.2019.07.004. https://comptes-rendus.academie-sciences.fr/physique/articles/10.1016/j.crhy.2019.07.004/
[1] Propriétés des corps magnétiques à diverses températures, C. r. hebd. séances Acad. sci., Volume 118 (1894), p. 1134 (and references therein)
[2] Ann. Chim. Phys., 139 (1904), pp. 1204-1206 (The very short first article outlines the physical picture while the very long second one gives the details and the mathematical derivation)
[3] Les moments de rotation et le magnétisme dans la mécanique ondulatoire, J. Phys. Radium, Volume 8 (1927), pp. 74-84 https://hal.archives-ouvertes.fr/jpa-00205282/document
[4] Crystal statistics. III. Short-range order in a binary Ising lattice, Phys. Rev., Volume 65 (1944), pp. 117-149
[5] Théorie du paramagnétisme constant ; application au manganèse, C. R. hebd. séances Acad. Sci., Volume 17 (1932), pp. 5-105
[6] Eine mögliche Erklärung der Feldabhängigkeit der Suszeptibilität bei niedrigen Temperaturen, Phys. Z. Sowjetunion, Volume 4 (1933), p. 675 (English translation: A possible explanation of the field dependence of the susceptibility at low temperatures Collected Papers of L.D. Landau, 1965, pp. 73)
[7] Detection of antiferromagnetism by neutron diffraction, Phys. Rev., Volume 76 (1949), p. 1256
[8] Magnetic structure of magnetite and its use in studying the neutron magnetic interaction, Phys. Rev., Volume 81 (1951), p. 483
[9] Observation of magnetic superlattice peaks by X-ray diffraction on an antiferromagnetic NiO crystal, Phys. Lett. A, Volume 39 (1972), pp. 141-142
[10] Diffraction of X rays by magnetic crystals, Acta Crystallogr. A, Volume 37 (1981), pp. 314-331
[11] Antiferromagnetic arrangements in ferrites, Phys. Rev., Volume 87 (1952), p. 290
[12] Antiferromagnetic spintronics, Rev. Mod. Phys., Volume 90 (2018) no. 1
[13] Magnetic scattering of neutrons in magnetite, J. Phys. Chem. Solids, Volume 17 (1961), p. 308
[14] A new type of antiferromagnetic structure in the rutile type crystal, J. Phys. Soc. Jpn., Volume 14 (1959), p. 807
[15] Étude de l'antiferromagnétisme hélicoïdal de MnAu2 par diffraction de neutrons, J. Phys. Radium, Volume 22 (1961), p. 337
[16] Structure magnétique de l'alliage MnAu2, C. r. hebd. séances Acad. sci., Volume 249 (1959), p. 1334
[17] Configurations magnétiques, C. r. hebd. séances Acad. sci., Volume 252 (1961), p. 76 (2078)
[18] Sur la théorie de l'ordre magnétique, C. r. hebd. séances Acad. sci., Volume 258 (1964), p. 3835
[19] La structure des substances magnétiques, J. Phys. Chem. Solids, Volume 11 (1961), p. 303
[20] Zur Theorie des Ferromagnetismus, Z. Phys., Volume 49 (1928), pp. 619-636
[21] Indirect exchange coupling of nuclear magnetic moments by conduction electrons, Phys. Rev., Volume 96 (1954), p. 99
[22] Jacques Friedel et la théorie des métaux et alliages, C. R. Physique, Volume 17 (2016), pp. 276-290
[23] How the Friedel oscillations entered the physics of metallic alloys, C. R. Physique, Volume 17 (2016), pp. 291-293
[24] Friedel oscillations in graphene-based systems probed by scanning tunneling microscopy, C. R. Physique, Volume 17 (2016), pp. 294-301
[25] Friedel oscillations: decoding the hidden physics, C. R. Physique, Volume 17 (2016), pp. 302-321
[26] Magnetic Properties of Rare-Earth Metals (R.J. Elliott, ed.), Plenum Press, New York, 1972
[27] Phase diagram and magnetic structures of CeSb, Phys. Rev. B, Volume 16 (1977), p. 440
[28] Magnetic structures, Methods of Experimental Physics: Neutron Scattering, vol. 3, Academic Press, 1987
[29] Thermodynamical theory of ‘weak’ ferromagnetism in antiferromagnetic substances, Sov. Phys. JETP, Volume 32 (1957), p. 1547
[30] Anisotropic superexchange interaction and weak ferromagnetism, Phys. Rev., Volume 120 (1961), p. 91
[31] On the theory of plastic deformation and doubling, Zh. Eksp. Teor. Phys., Volume 8 (1938) no. 89 (1349)
[32] Critical behaviour by breaking of analyticity in the discrete Frenkel–Kontorova model, J. Phys. C, Volume 16 (1983), p. 1593
[33] The Devil's staircase and harmless staircase, J. Phys. C, Volume 15 (1980), pp. 3117-3134
[34] Thermal variation of the pitch of helical spin configurations, Phys. Rev., Volume 123 (1961), p. 2003
[35] Theory of dipole interaction in crystals, Phys. Rev., Volume 70 (1954), p. 954
[36] Classical spin-configuration stability in the presence of competing exchange forces, Phys. Rev., Volume 116 (1959), p. 888
[37] Method for determining ground-state spin configurations, Phys. Rev., Volume 120 (1960), p. 1580
[38] Field induced ordering in highly frustrated antiferromagnets, Phys. Rev. Lett., Volume 85 (2000), p. 3269
[39] Semiclassical theory of the magnetization process of the triangular lattice Heisenberg model, Phys. Rev. B, Volume 94 (2016)
[40] Representation analysis of magnetic structures, Acta Crystallogr. A, Volume 24 (1968), p. 217
[41] Symmetry and magnetic structures (B. Grenier; V. Simonet; H. Schober, eds.), Contribution of Symmetries in Condensed Matter, EPJ Web of Conferences, vol. 22, 2012
[42] et al. Neutron diffraction study of mesoporous and bulk hematite, α–Fe2O3, Chem. Mater., Volume 20 (2008), p. 4891
[43] Neutron Diffraction of Magnetic Materials, Consultants Bureau, Plenum Publishing Corporation, New York, 1991
[44] et al. Ordered spin ice state and magnetic fluctuations in Tb2Sn2O7, Phys. Rev. Lett., Volume 94 (2005)
[45] Spin-density-wave antiferromagnetism in chromium, Rev. Mod. Phys., Volume 60 (1988), pp. 209-283
[46] X-ray-scattering study of charge- and spin-density waves in chromium, Phys. Rev. B, Volume 51 (1995), pp. 10336-10344
[47] Magnetic inversion symmetry breaking and ferroelectricity in TbMnO3, Phys. Rev. Lett., Volume 95 (2005)
[48] Neutron scattering and polarisation by ferromagnetic materials, Phys. Rev., Volume 84 (1951), p. 912
[49] Polarisation effects in the magnetic elastic scattering of slow neutrons, Phys. Rev., Volume 130 (1963), p. 1670
[50] Fiz. Tverd. Tela, 4 (1962), p. 3461 (English translation: Sov. Phys., Solid State, 4, 1963, pp. 2533)
[51] Polarisation analysis of thermal-neutron scattering, Phys. Rev., Volume 181 (1969), p. 920
[52] Theory of Neutron Scattering from Condensed Matter, Oxford University Press, 1984
[53] Polarized neutron diffraction, Collect. SFN, Volume 13 (2014) (Owned by the authors, published by EDP Sciences, 2014) | DOI
[54] The spatial distribution of magnetisation density in Mn5Ge3, J. Phys. Condens. Matter, Volume 2 (1990) no. 11, p. 2713
[55] The magnetization distributions in some Heusler alloys proposed as half-metallic ferromagnets, J. Phys. Condens. Matter, Volume 12 (2000), p. 1827
[56] Neutron polarimetry, Proc. R. Soc. Lond. A, Volume 442 (1993), pp. 147-160
[57] Antiferromagnetism in CuO studied by neutron polarimetry, J. Phys. Condens. Matter, Volume 3 (1991), pp. 4281-4287
[58] Spherical neutron polarimetry with Cryopad-II, Physica B, Volume 267–268 (1999), pp. 69-74
[59] Neutron diffraction and polarimetric study of the magnetic and crystal structures of HoMnO3 and YMnO3, J. Phys. Condens. Matter, Volume 18 (2006)
[60] Helical spin ordering (F. Seitz; D. Turnbull; H. Ehrenreich, eds.), Solid State Physics, vol. 20, Academic Press, New York, 1967, pp. 305-411
[61] Spin configurations of ionic structures. Theory and practice, Magnetism, vol. III, Volume 24 (1963), p. 149 (Ch. 4. See also Acta Crystallogr. A, 1968, pp. 217 J. Phys. Colloques, 32, 1971 J. Magn. Magn. Mater., 24, 1981, pp. 267)
[62] Symmetry analysis in neutron diffraction studies of magnetic structures: 4. Theoretical group analysis of exchange Hamiltonian, J. Magn. Magn. Mater., Volume 12 (1979), pp. 239-274
[63] The accurate magnetic structure of CeAl2 at various temperatures in the ordered state, J. Phys. Condens. Matter, Volume 20 (2008)
[64] Neutron diffraction study of the magnetic ordering in the series (R = rare earth), Eur. Phys. J. B, Volume 24 (2001), pp. 59-70 | DOI
[65] Coherent magnetic diffraction from the uranium M4 edge in the multi-k magnet, USb, J. Phys. Conf. Ser., Volume 519 (2014)
[66] Physica B, 192 (1993), p. 55 https://www.ill.eu/sites/fullprof/ (Programs of the FullProf suite can be freely downloaded from)
[67] Re-entrant ferrimagnetism in TbMn6Ge6, J. Magn. Magn. Mater., Volume 150 (1995), p. 311
[68] Classical theory of the ground spin-state in cubic spinels, Phys. Rev., Volume 126 (1962) no. 2, p. 540
[69] Determination of the zero-field magnetic structure of the helimagnet MnSi at low temperature, Phys. Rev. B, Volume 93 (2016)
[70] Magnetic structure of the MnGe helimagnet and representation analysis, Phys. Rev. B, Volume 95 (2017)
[71] The Mathematical Theory of Symmetry in Solids, Oxford University Press, 1972
[72] Krystallsysteme und Krystallstructur, Teubner, Leipzig, 1891
[73] International Tables for Crystallography, Volume A, Space-Group Symmetry, 2016 | DOI
[74] Zur systematischen Strukturtheorie II, Z. Kristallogr., Volume 72 (1929), pp. 177-201
[75] Tr. Inst. Krist. Akad. SSSR, 11 (1955), pp. 33-67 (English translation in Sov. Phys. Crystallogr., 1, 1957, pp. 487-488)
[76] Generalization of Fedorov groups, Kristallografiya, Volume 2 (1957), pp. 15-20 (English translation in Sov. Phys. Crystallogr., 2, 1957, pp. 10-15)
[77] Magnetic symmetry (G.T. Rado; H. Shull, eds.), Magnetism, vol. II A, Academic Press, New York, 1965, p. 105 (Ch. 3)
[78] Sov. Phys. Crystallogr., Shubnikov groups, Handbook on the Symmetry and Physical Properties of Crystal Structures, 12, Izd. MGU, Moscow, 1968 no. 5, p. 723 (in Russian), English translation of text: J. Kopecky, B.O. Loopstra, Fysica Memo 175, Stichting, Reactor Centrum Nederland, 1971
[79] Magnetic space-group types, Acta Crystallogr. A, Volume 57 (2001), pp. 729-730
[80] Magnetic Space Groups, compiled by H.T. Stokes and B.J. Campbell, Department of Physics and Astronomy, Brigham Young University, Provo, Utah, USA. The last version of the tables date from June 2010. The tables can be found at http://stokes.byu.edu/iso/magneticspacegroups.php.
[81] The pseudo-symmetry of modulated crystal structures, Acta Crystallogr. A, Volume 30 (1974), pp. 777-785
[82] Symmetry operations for displacively modulated structures, Acta Crystallogr. A, Volume 33 (1977), pp. 493-497
[83] The superspace groups for incommensurable crystal structures with a one-dimensional modulation, Acta Crystallogr. A, Volume 37 (1981), pp. 625-636
[84] Symmetry of incommensurable crystal phases. I. Commensurate basic structures, Acta Crystallogr. A, Volume 36 (1980), pp. 399-408 (and 408–415)
[85] Incommensurable and commensurable modulated structures, International Tables for Crystallography, vol. C, Kluwer, Amsterdam, 2006, pp. 907-955 (Ch. 9.8)
[86] Aperiodic Crystals: From Modulated Phases to Quasicrystals, Oxford University Press, 2007
[87] Incommensurable Crystallography, Oxford University Press, Oxford, 2007
[88] Magnetic superspace groups and symmetry constraints in incommensurable magnetic phases, J. Phys. Condens. Matter, Volume 24 (2012)
[89] Structure factor of modulated crystal structures, Acta Crystallogr. A, Volume 38 (1982), pp. 87-92
[90] Generation of ()-dimensional superspace groups for describing the symmetry of modulated crystalline structures, Acta Crystallogr. A, Volume 67 (2011), pp. 45-55
[91] Aperiodic crystals and superspace concepts, Acta Crystallogr. B, Volume 70 (2014), pp. 617-651
[92] On the structure and symmetry of incommensurable phases. A practical formulation, Acta Crystallogr. A, Volume 43 (1987), pp. 216-226
[93] Magnetic and ferroelectric orderings in multiferroic α-NaFeO2, Phys. Rev. B, Volume 89 (2014)
[94] A profile refinement method for nuclear and magnetic structures, J. Appl. Crystallogr., Volume 2 (1969), p. 65
[95] Atomic Energy Research Establishment, Harwell, Oxfordshire, UK, 1973 (Report AERE-R7350)
[96] The Cambridge Crystallography Subroutine Library, J. Appl. Crystallogr., Volume 15 (1982), pp. 167-173 https://forge.epn-campus.eu/projects/sxtalsoft/repository/show/CCSL (The last version of the library can be downloaded from)
[97] Rietveld refinement guidelines, J. Appl. Crystallogr., Volume 32 (1999), pp. 36-50
[98] GSAS-II: the genesis of a modern open-source all purpose crystallography software package, J. Appl. Crystallogr., Volume 46 (2013), pp. 544-549 www.ncnr.nist.gov/xtal/software/gsas.html (The programs can be downloaded from)
[99] A Rietveld-analysis program RIETAN-98 and its applications to zeolites, Mater. Sci. Forum, Volume 321–324 (2000), pp. 198-205
[100] Three-dimensional visualization in powder diffraction, Solid State Phenom., Volume 130 (2007), pp. 15-20
[101] TOPAS and TOPAS-Academic: an optimization program integrating computer algebra and crystallographic objects written in C++, J. Appl. Crystallogr., Volume 51 (2018), pp. 210-218
[102] Simultaneous structure refinement of neutron, synchrotron and X-ray powder diffraction patterns, J. Appl. Crystallogr., Volume 21 (1988), pp. 22-27
[103] A new computer-program for Rietveld analysis of x-ray-powder diffraction patterns, J. Appl. Crystallogr., Volume 14 (1981), pp. 149-151
[104] MODY: a program for calculation of symmetry-adapted functions for ordered structures in crystals, J. Appl. Crystallogr., Volume 37 (2004), pp. 1015-1019
[105] A new protocol for the determination of magnetic structures using Simulated Annealing and Representational Analysis-SARAh, Physica B, Volume 276 (2000), pp. 680-681
[106] J. Rodriguez-Carvajal, A program for calculating irreducible representation of little groups and basis functions of polar and axial vector properties, Laboratoire Léon-Brillouin, 2004, unpublished.
[107] Bilbao Crystallographic Server II: representations of crystallographic point groups and space groups, Acta Crystallogr. A, Volume 43, 2011 no. 2, pp. 183-197 http://www.cryst.ehu.es (The web page is) | DOI
[108] Symmetry-based computational tools for magnetic crystallography, Annu. Rev. Mater. Res., Volume 45 (2015), pp. 217-248
[109] MAGNDATA: towards a database of magnetic structures. I. The commensurable case, J. Appl. Crystallogr., Volume 49 (2016), pp. 1750-1776
[110] MAGNDATA: towards a database of magnetic structures. II. The incommensurable case, J. Appl. Crystallogr., Volume 49 (2016), pp. 1941-1956
[111] et al. An interactive viewer for three-dimensional chemical structures http://jmol.sourceforge.net (This is an open source project initiated by end of the nineties with many contributors. The web page is)
[112] The programs REMOS and PREMOS (J.M. Perez-Mato; F.J. Zuniga; G. Madariaga, eds.), Methods of Structural Analysis of Modulated Structures and Quasicrystals, World Scientific, Singapore, 1991, pp. 249-261
[113] Crystallographic computing system JANA2006: general features, Z. Kristallogr., Volume 229 (2014) no. 5, pp. 345-352 | DOI
[114] ISODISPLACE: a web-based tool for exploring structural distortions, J. Appl. Crystallogr., Volume 39 (2006), pp. 607-614
[115] et al. ISOTROPY Software Suite (1984–2013) http://stokes.byu.edu/iso/isotropy.php (The programs, resources and references can be found at the web site)
[116] Tabulation of irreducible representations of the crystallographic space groups and their superspace extensions, Acta Crystallogr. A, Volume 69 (2013), pp. 388-395
[117] Neutrons and magnetic structures: analysis methods and tools, J. Phys. D, Appl. Phys., Volume 48 (2015)
[118] Mag2Pol: a program for the analysis of spherical neutron polarimetry, flipping ratio and integrated intensity data, J. Appl. Crystallogr., Volume 52 (2019), pp. 175-185
[119] N.A. Katcho, J. Rodriguez-Carvajal, A program for generating and identify arbitrary settings of general crystallographic groups, 2019, unpublished.
[120] Commission on Magnetic Structures of the International Union of Crystallography http://magcryst.org/
Cité par Sources :
Commentaires - Politique