Comptes Rendus
Science in the making 2: From 1940 to the early 1980s / La science en mouvement 2 : de 1940 aux premières années 1980
Magnetic structures
[Structures magnétiques]
Comptes Rendus. Physique, Volume 20 (2019) no. 7-8, pp. 770-802.

Alors que le ferromagnétisme est connu depuis des siècles, ce n'est qu'au vingtième siècle qu'on identifia des structures magnétiques plus complexes, comme le ferrimagnétisme, l'antiferromagnétisme, l'hélimagnétisme ou les structures magnétiques modulées. La possibilité de structures incommensurables ou à longue période fut d'abord déduite de modèles phénoménologiques tels que le modèle de Heisenberg. L'explication, plus fondamentale, de Rudermann, Kittel, Kasuya et Yoshida repose sur le phénomène général que sont les oscillations de Friedel. L'ordre cristallographique et l'ordre magnétique sont souvent antagonistes, et de leur coexistence résulte souvent une suite de transitions qui peuvent être continues ou non. La technique expérimentale la plus efficace pour l'étude de l'ordre magnétique est la diffraction de neutrons, mais l'analyse est souvent très compliquée et requiert des méthodes numériques élaborées impliquant la théorie des groupes. Dans le cas des structures incommensurables, il peut être intéressant de considérer le système physique tridimensionnel comme la section d'un cristal de dimension plus élevée. La détermination des structures magnétiques à partir des spectres neutroniques est facilitée par des programmes informatiques appropriés.

While ferromagnetism has been known since many centuries, more complex magnetic structures have only been identified in the twentieth century: ferrimagnetism, antiferromagnetism, helimagnetism, modulated structures… Incommensurable or long-period structures have first been deduced as consequences of phenomenological models, e.g., the Heisenberg Hamiltonian. The more fundamental explanation of Rudermann, Kittel, Kasuya, and Yoshida relies on the general phenomenon of Friedel oscillations. The coexistence of crystallographic order and magnetic order is sometimes antagonistic and results in sequences of transitions that may be continuous or not. The most effective experimental technique to observe magnetic order is neutron diffraction, but the analysis is sometimes very complicated and requires sophisticated numerical methods involving group theory. In the case of incommensurable structures, it may be useful to consider the three-dimensional system as the section of a higher-dimensional crystal. The determination of magnetic structures from neutron scattering data is facilitated by computers and adequate programs.

Publié le :
DOI : 10.1016/j.crhy.2019.07.004
Keywords: Magnetism, Neutron diffraction, Crystallography, Superspace, Incommensurable structures
Mot clés : Magnétisme, Diffraction des neutrons, Cristallographie, Superespace, Structures incommensurables

Juan Rodríguez-Carvajal 1 ; Jacques Villain 2

1 Diffraction Group, Institut Laue-Langevin, 38054 Grenoble cedex 9, France
2 Theory Group, Institut Laue-Langevin, 38054 Grenoble cedex 9, France
@article{CRPHYS_2019__20_7-8_770_0,
     author = {Juan Rodr{\'\i}guez-Carvajal and Jacques Villain},
     title = {Magnetic structures},
     journal = {Comptes Rendus. Physique},
     pages = {770--802},
     publisher = {Elsevier},
     volume = {20},
     number = {7-8},
     year = {2019},
     doi = {10.1016/j.crhy.2019.07.004},
     language = {en},
}
TY  - JOUR
AU  - Juan Rodríguez-Carvajal
AU  - Jacques Villain
TI  - Magnetic structures
JO  - Comptes Rendus. Physique
PY  - 2019
SP  - 770
EP  - 802
VL  - 20
IS  - 7-8
PB  - Elsevier
DO  - 10.1016/j.crhy.2019.07.004
LA  - en
ID  - CRPHYS_2019__20_7-8_770_0
ER  - 
%0 Journal Article
%A Juan Rodríguez-Carvajal
%A Jacques Villain
%T Magnetic structures
%J Comptes Rendus. Physique
%D 2019
%P 770-802
%V 20
%N 7-8
%I Elsevier
%R 10.1016/j.crhy.2019.07.004
%G en
%F CRPHYS_2019__20_7-8_770_0
Juan Rodríguez-Carvajal; Jacques Villain. Magnetic structures. Comptes Rendus. Physique, Volume 20 (2019) no. 7-8, pp. 770-802. doi : 10.1016/j.crhy.2019.07.004. https://comptes-rendus.academie-sciences.fr/physique/articles/10.1016/j.crhy.2019.07.004/

[1] P. Curie Propriétés des corps magnétiques à diverses températures, C. r. hebd. séances Acad. sci., Volume 118 (1894), p. 1134 (and references therein)

[2] P. Langevin Ann. Chim. Phys., 139 (1904), pp. 1204-1206 (The very short first article outlines the physical picture while the very long second one gives the details and the mathematical derivation)

[3] L. Brillouin Les moments de rotation et le magnétisme dans la mécanique ondulatoire, J. Phys. Radium, Volume 8 (1927), pp. 74-84 https://hal.archives-ouvertes.fr/jpa-00205282/document

[4] L. Onsager; B. Kaufman; B. Kaufman; L. Onsager Crystal statistics. III. Short-range order in a binary Ising lattice, Phys. Rev., Volume 65 (1944), pp. 117-149

[5] L. Néel Théorie du paramagnétisme constant ; application au manganèse, C. R. hebd. séances Acad. Sci., Volume 17 (1932), pp. 5-105

[6] L.D. Landau Eine mögliche Erklärung der Feldabhängigkeit der Suszeptibilität bei niedrigen Temperaturen, Phys. Z. Sowjetunion, Volume 4 (1933), p. 675 (English translation: A possible explanation of the field dependence of the susceptibility at low temperatures Collected Papers of L.D. Landau, 1965, pp. 73)

[7] C.G. Shull; J.S. Smart Detection of antiferromagnetism by neutron diffraction, Phys. Rev., Volume 76 (1949), p. 1256

[8] C.G. Shull; E.O. Wollan; W.A. Strauser Magnetic structure of magnetite and its use in studying the neutron magnetic interaction, Phys. Rev., Volume 81 (1951), p. 483

[9] F. de Bergevin; M. Brunel Observation of magnetic superlattice peaks by X-ray diffraction on an antiferromagnetic NiO crystal, Phys. Lett. A, Volume 39 (1972), pp. 141-142

[10] F. de Bergevin; M. Brunel Diffraction of X rays by magnetic crystals, Acta Crystallogr. A, Volume 37 (1981), pp. 314-331

[11] Y. Yafet; C. Kittel Antiferromagnetic arrangements in ferrites, Phys. Rev., Volume 87 (1952), p. 290

[12] V. Baltz; A. Manchon; M. Tsoi; T. Moriyama; T. Ono; Y. Tserkovnyak Antiferromagnetic spintronics, Rev. Mod. Phys., Volume 90 (2018) no. 1

[13] T. Riste Magnetic scattering of neutrons in magnetite, J. Phys. Chem. Solids, Volume 17 (1961), p. 308

[14] A. Yoshimori A new type of antiferromagnetic structure in the rutile type crystal, J. Phys. Soc. Jpn., Volume 14 (1959), p. 807

[15] A. Herpin; P. Mériel Étude de l'antiferromagnétisme hélicoïdal de MnAu2 par diffraction de neutrons, J. Phys. Radium, Volume 22 (1961), p. 337

[16] A. Herpin; P. Mériel; J. Villain Structure magnétique de l'alliage MnAu2, C. r. hebd. séances Acad. sci., Volume 249 (1959), p. 1334

[17] F. Bertaut Configurations magnétiques, C. r. hebd. séances Acad. sci., Volume 252 (1961), p. 76 (2078)

[18] F. Bertaut Sur la théorie de l'ordre magnétique, C. r. hebd. séances Acad. sci., Volume 258 (1964), p. 3835

[19] J. Villain La structure des substances magnétiques, J. Phys. Chem. Solids, Volume 11 (1961), p. 303

[20] W. Heisenberg Zur Theorie des Ferromagnetismus, Z. Phys., Volume 49 (1928), pp. 619-636

[21] M.A. Rudermann; C. Kittel Indirect exchange coupling of nuclear magnetic moments by conduction electrons, Phys. Rev., Volume 96 (1954), p. 99

[22] J. Villain; M. Lavagna; P. Bruno Jacques Friedel et la théorie des métaux et alliages, C. R. Physique, Volume 17 (2016), pp. 276-290

[23] D. Émile How the Friedel oscillations entered the physics of metallic alloys, C. R. Physique, Volume 17 (2016), pp. 291-293

[24] P. Mallet; I. Brihuega; V. Cherkez; J. Marìa Gómez-Rodríguez; J.-Y. Veuillen Friedel oscillations in graphene-based systems probed by scanning tunneling microscopy, C. R. Physique, Volume 17 (2016), pp. 294-301

[25] C. Bena Friedel oscillations: decoding the hidden physics, C. R. Physique, Volume 17 (2016), pp. 302-321

[26] Magnetic Properties of Rare-Earth Metals (R.J. Elliott, ed.), Plenum Press, New York, 1972

[27] J. Rossat-Mignod; P. Burlet; J. Villain; H. Bartholin; W. Tcheng-Si; D. Florence; O. Vogt Phase diagram and magnetic structures of CeSb, Phys. Rev. B, Volume 16 (1977), p. 440

[28] J. Rossat-Mignod Magnetic structures, Methods of Experimental Physics: Neutron Scattering, vol. 3, Academic Press, 1987

[29] I.E. Dzyaloshinskii Thermodynamical theory of ‘weak’ ferromagnetism in antiferromagnetic substances, Sov. Phys. JETP, Volume 32 (1957), p. 1547

[30] T. Moriya Anisotropic superexchange interaction and weak ferromagnetism, Phys. Rev., Volume 120 (1961), p. 91

[31] Y. Frenkel; T. Kontorova On the theory of plastic deformation and doubling, Zh. Eksp. Teor. Phys., Volume 8 (1938) no. 89 (1349)

[32] M. Peyrard; S. Aubry Critical behaviour by breaking of analyticity in the discrete Frenkel–Kontorova model, J. Phys. C, Volume 16 (1983), p. 1593

[33] J. Villain; M.B. Gordon The Devil's staircase and harmless staircase, J. Phys. C, Volume 15 (1980), pp. 3117-3134

[34] M.T. Freiser Thermal variation of the pitch of helical spin configurations, Phys. Rev., Volume 123 (1961), p. 2003

[35] T.M. Luttiger; L. Tisza Theory of dipole interaction in crystals, Phys. Rev., Volume 70 (1954), p. 954

[36] T.A. Kaplan Classical spin-configuration stability in the presence of competing exchange forces, Phys. Rev., Volume 116 (1959), p. 888

[37] T.A. Kaplan; D.H. Lyons Method for determining ground-state spin configurations, Phys. Rev., Volume 120 (1960), p. 1580

[38] M.E. Zhitomirsky; A. Honecker; O.A. Petrenko Field induced ordering in highly frustrated antiferromagnets, Phys. Rev. Lett., Volume 85 (2000), p. 3269

[39] T. Coletta; T.A. Toth; K. Penc; F. Mila Semiclassical theory of the magnetization process of the triangular lattice Heisenberg model, Phys. Rev. B, Volume 94 (2016)

[40] E.F. Bertaut Representation analysis of magnetic structures, Acta Crystallogr. A, Volume 24 (1968), p. 217

[41] J. Rodríguez-Carvajal; F. Bourée Symmetry and magnetic structures (B. Grenier; V. Simonet; H. Schober, eds.), Contribution of Symmetries in Condensed Matter, EPJ Web of Conferences, vol. 22, 2012

[42] A.H. Hill et al. Neutron diffraction study of mesoporous and bulk hematite, α–Fe2O3, Chem. Mater., Volume 20 (2008), p. 4891

[43] Y.A. Izyumov; V.E. Naish; R.P. Ozerov Neutron Diffraction of Magnetic Materials, Consultants Bureau, Plenum Publishing Corporation, New York, 1991

[44] I. Mirebeau et al. Ordered spin ice state and magnetic fluctuations in Tb2Sn2O7, Phys. Rev. Lett., Volume 94 (2005)

[45] E. Fawcett Spin-density-wave antiferromagnetism in chromium, Rev. Mod. Phys., Volume 60 (1988), pp. 209-283

[46] J.P. Hill; G. Helgesen; D. Gibbs X-ray-scattering study of charge- and spin-density waves in chromium, Phys. Rev. B, Volume 51 (1995), pp. 10336-10344

[47] M. Kenzelmann; A.B. Harris; S. Jonas; C. Broholm; J. Schefer; S.B. Kim; C.L. Zhang; S.-W. Cheong; O.P. Vajk; J.W. Lynn Magnetic inversion symmetry breaking and ferroelectricity in TbMnO3, Phys. Rev. Lett., Volume 95 (2005)

[48] C.G. Shull; E.O. Wollan; W.C. Koehler Neutron scattering and polarisation by ferromagnetic materials, Phys. Rev., Volume 84 (1951), p. 912

[49] M. Blume Polarisation effects in the magnetic elastic scattering of slow neutrons, Phys. Rev., Volume 130 (1963), p. 1670

[50] S.V. Maleyev; V.G. Baryakhtar; R.A. Suris Fiz. Tverd. Tela, 4 (1962), p. 3461 (English translation: Sov. Phys., Solid State, 4, 1963, pp. 2533)

[51] R.M. Moon; T. Riste; W.C. Koehler Polarisation analysis of thermal-neutron scattering, Phys. Rev., Volume 181 (1969), p. 920

[52] S.W. Lovesey Theory of Neutron Scattering from Condensed Matter, Oxford University Press, 1984

[53] E. Ressouche Polarized neutron diffraction, Collect. SFN, Volume 13 (2014) (Owned by the authors, published by EDP Sciences, 2014) | DOI

[54] J.B. Forsyth; P.J. Brown The spatial distribution of magnetisation density in Mn5Ge3, J. Phys. Condens. Matter, Volume 2 (1990) no. 11, p. 2713

[55] P.J. Brown; K.U. Neumann; P.J. Webster; K.R.A. Ziebeck The magnetization distributions in some Heusler alloys proposed as half-metallic ferromagnets, J. Phys. Condens. Matter, Volume 12 (2000), p. 1827

[56] P.J. Brown; J.B. Forsyth; F. Tasset Neutron polarimetry, Proc. R. Soc. Lond. A, Volume 442 (1993), pp. 147-160

[57] P.J. Brown; T. Chattopadhyay; J.B. Forsyth; V. Nunez; F. Tasset Antiferromagnetism in CuO studied by neutron polarimetry, J. Phys. Condens. Matter, Volume 3 (1991), pp. 4281-4287

[58] F. Tasset; P.J. Brown; E. Lelievre-Berna; T. Roberts; S. Pujol; J. Allibon; E. Bourgeat-Lami Spherical neutron polarimetry with Cryopad-II, Physica B, Volume 267–268 (1999), pp. 69-74

[59] P.J. Brown; T. Chatterji Neutron diffraction and polarimetric study of the magnetic and crystal structures of HoMnO3 and YMnO3, J. Phys. Condens. Matter, Volume 18 (2006)

[60] T. Nagamiya Helical spin ordering (F. Seitz; D. Turnbull; H. Ehrenreich, eds.), Solid State Physics, vol. 20, Academic Press, New York, 1967, pp. 305-411

[61] E.F. Bertaut Spin configurations of ionic structures. Theory and practice, Magnetism, vol. III, Volume 24 (1963), p. 149 (Ch. 4. See also Acta Crystallogr. A, 1968, pp. 217 J. Phys. Colloques, 32, 1971 J. Magn. Magn. Mater., 24, 1981, pp. 267)

[62] Y.A. Izyumov; V.E. Naish; Y.A. Izyumov; V.E. Naish; V.N. Syromiatnikov; Y.A. Izyumov; V.E. Naish; S.B. Petrov; Y.A. Izyumov; V.E. Naish; S.B. Petrov Symmetry analysis in neutron diffraction studies of magnetic structures: 4. Theoretical group analysis of exchange Hamiltonian, J. Magn. Magn. Mater., Volume 12 (1979), pp. 239-274

[63] J. Schweizer; F. Givord; J-X. Boucherle; F. Bourdarot; E. Ressouche The accurate magnetic structure of CeAl2 at various temperatures in the ordered state, J. Phys. Condens. Matter, Volume 20 (2008)

[64] E. Garcia-Matres; J.L. Martinez; J. Rodriguez-Carvajal Neutron diffraction study of the magnetic ordering in the series R2BaNiO5 (R = rare earth), Eur. Phys. J. B, Volume 24 (2001), pp. 59-70 | DOI

[65] J.A. Lim; E. Blackburn; G. Beutier; F. Livet; N. Magnani; A. Bombardi; R. Caciuffo; G.H. Lander Coherent magnetic diffraction from the uranium M4 edge in the multi-k magnet, USb, J. Phys. Conf. Ser., Volume 519 (2014)

[66] J. Rodríguez-Carvajal Physica B, 192 (1993), p. 55 https://www.ill.eu/sites/fullprof/ (Programs of the FullProf suite can be freely downloaded from)

[67] P. Schobinger-Papamantellos; J. Rodríguez-Carvajal; G. André; K.H.J. Buschow Re-entrant ferrimagnetism in TbMn6Ge6, J. Magn. Magn. Mater., Volume 150 (1995), p. 311

[68] D.H. Lyons; T.A. Kaplan; K. Dwight; N. Menyuk Classical theory of the ground spin-state in cubic spinels, Phys. Rev., Volume 126 (1962) no. 2, p. 540

[69] P. Dalmas de Réotier; A. Maisuradze; A. Yaouanc; B. Roessli; A. Amato; D. Andreica; G. Lapertot Determination of the zero-field magnetic structure of the helimagnet MnSi at low temperature, Phys. Rev. B, Volume 93 (2016)

[70] A. Yaouanc; P. Dalmas de Reotier; A. Maisuradze; B. Roessli Magnetic structure of the MnGe helimagnet and representation analysis, Phys. Rev. B, Volume 95 (2017)

[71] C. Bradley; A. Cracknell The Mathematical Theory of Symmetry in Solids, Oxford University Press, 1972

[72] A. Schoenflies Krystallsysteme und Krystallstructur, Teubner, Leipzig, 1891

[73] International Tables for Crystallography, Volume A, Space-Group Symmetry, 2016 | DOI

[74] H. Heesch Zur systematischen Strukturtheorie II, Z. Kristallogr., Volume 72 (1929), pp. 177-201

[75] N.V. Belov; N.N. Neronova; T.S. Smirnova Tr. Inst. Krist. Akad. SSSR, 11 (1955), pp. 33-67 (English translation in Sov. Phys. Crystallogr., 1, 1957, pp. 487-488)

[76] A.M. Zamorzaev Generalization of Fedorov groups, Kristallografiya, Volume 2 (1957), pp. 15-20 (English translation in Sov. Phys. Crystallogr., 2, 1957, pp. 10-15)

[77] W. Opechowski; R. Guccione Magnetic symmetry (G.T. Rado; H. Shull, eds.), Magnetism, vol. II A, Academic Press, New York, 1965, p. 105 (Ch. 3)

[78] V.A. Koptsik; V.A. Koptsik Sov. Phys. Crystallogr., Shubnikov groups, Handbook on the Symmetry and Physical Properties of Crystal Structures, 12, Izd. MGU, Moscow, 1968 no. 5, p. 723 (in Russian), English translation of text: J. Kopecky, B.O. Loopstra, Fysica Memo 175, Stichting, Reactor Centrum Nederland, 1971

[79] D.B. Litvin Magnetic space-group types, Acta Crystallogr. A, Volume 57 (2001), pp. 729-730

[80] Magnetic Space Groups, compiled by H.T. Stokes and B.J. Campbell, Department of Physics and Astronomy, Brigham Young University, Provo, Utah, USA. The last version of the tables date from June 2010. The tables can be found at http://stokes.byu.edu/iso/magneticspacegroups.php.

[81] P.M. de Wolff The pseudo-symmetry of modulated crystal structures, Acta Crystallogr. A, Volume 30 (1974), pp. 777-785

[82] P.M. de Wolff Symmetry operations for displacively modulated structures, Acta Crystallogr. A, Volume 33 (1977), pp. 493-497

[83] P.M. de Wolff; T. Janssen; A. Janner The superspace groups for incommensurable crystal structures with a one-dimensional modulation, Acta Crystallogr. A, Volume 37 (1981), pp. 625-636

[84] A. Janner; T. Janssen Symmetry of incommensurable crystal phases. I. Commensurate basic structures, Acta Crystallogr. A, Volume 36 (1980), pp. 399-408 (and 408–415)

[85] T. Janssen; A. Janner; A. Looijenga-Vos; P. de Wolf Incommensurable and commensurable modulated structures, International Tables for Crystallography, vol. C, Kluwer, Amsterdam, 2006, pp. 907-955 (Ch. 9.8)

[86] T. Janssen; G. Chapuis; M. de Boissieu Aperiodic Crystals: From Modulated Phases to Quasicrystals, Oxford University Press, 2007

[87] S. van Smaalen Incommensurable Crystallography, Oxford University Press, Oxford, 2007

[88] J.M. Perez-Mato; J.L. Ribeiro; V. Petricek; M.I. Aroyo Magnetic superspace groups and symmetry constraints in incommensurable magnetic phases, J. Phys. Condens. Matter, Volume 24 (2012)

[89] A. Yamamoto Structure factor of modulated crystal structures, Acta Crystallogr. A, Volume 38 (1982), pp. 87-92

[90] H.T. Stokes; B.J. Campbell; S. van Smaalen Generation of (3+d)-dimensional superspace groups for describing the symmetry of modulated crystalline structures, Acta Crystallogr. A, Volume 67 (2011), pp. 45-55

[91] T. Janssen; A. Janner Aperiodic crystals and superspace concepts, Acta Crystallogr. B, Volume 70 (2014), pp. 617-651

[92] J.M. Perez-Mato; G. Madariaga; F.J. Zuniga; A. Garcia-Arribas On the structure and symmetry of incommensurable phases. A practical formulation, Acta Crystallogr. A, Volume 43 (1987), pp. 216-226

[93] N. Terada; D.D. Khalyavin; J.M. Perez-Mato; P. Manuel; D. Prabhakaran; A. Daoud-Aladine; P.G. Radaelli; H.S. Suzuki; H. Kitazawa Magnetic and ferroelectric orderings in multiferroic α-NaFeO2, Phys. Rev. B, Volume 89 (2014)

[94] H.M. Rietveld A profile refinement method for nuclear and magnetic structures, J. Appl. Crystallogr., Volume 2 (1969), p. 65

[95] A.W. Hewat Atomic Energy Research Establishment, Harwell, Oxfordshire, UK, 1973 (Report AERE-R7350)

[96] J.C. Matthewman; P. Thomson; P.J. Brown The Cambridge Crystallography Subroutine Library, J. Appl. Crystallogr., Volume 15 (1982), pp. 167-173 https://forge.epn-campus.eu/projects/sxtalsoft/repository/show/CCSL (The last version of the library can be downloaded from)

[97] L.B. McCusker; R.B. Von Dreele; D.E. Cox; D. Louer; P. Scardi Rietveld refinement guidelines, J. Appl. Crystallogr., Volume 32 (1999), pp. 36-50

[98] B.H. Toby; R.B. Von Dreele GSAS-II: the genesis of a modern open-source all purpose crystallography software package, J. Appl. Crystallogr., Volume 46 (2013), pp. 544-549 www.ncnr.nist.gov/xtal/software/gsas.html (The programs can be downloaded from)

[99] F. Izumi; T. Ikeda A Rietveld-analysis program RIETAN-98 and its applications to zeolites, Mater. Sci. Forum, Volume 321–324 (2000), pp. 198-205

[100] F. Izumi; K. Momma Three-dimensional visualization in powder diffraction, Solid State Phenom., Volume 130 (2007), pp. 15-20

[101] A.A. Coelho TOPAS and TOPAS-Academic: an optimization program integrating computer algebra and crystallographic objects written in C++, J. Appl. Crystallogr., Volume 51 (2018), pp. 210-218

[102] J.K. Maichle; J. Ihringer; W. Prandl Simultaneous structure refinement of neutron, synchrotron and X-ray powder diffraction patterns, J. Appl. Crystallogr., Volume 21 (1988), pp. 22-27

[103] D.B. Wiles; R.A. Young A new computer-program for Rietveld analysis of x-ray-powder diffraction patterns, J. Appl. Crystallogr., Volume 14 (1981), pp. 149-151

[104] W. Sikora; F. Bialasb; L. Pytlik MODY: a program for calculation of symmetry-adapted functions for ordered structures in crystals, J. Appl. Crystallogr., Volume 37 (2004), pp. 1015-1019

[105] A.S. Wills A new protocol for the determination of magnetic structures using Simulated Annealing and Representational Analysis-SARAh, Physica B, Volume 276 (2000), pp. 680-681

[106] J. Rodriguez-Carvajal, A program for calculating irreducible representation of little groups and basis functions of polar and axial vector properties, Laboratoire Léon-Brillouin, 2004, unpublished.

[107] M.I. Aroyo; J.M. Perez-Mato; D. Orobengoa; E. Tasci; G. de la Flor; A. Kirov; M.I. Aroyo; J.M. Perez-Mato; C. Capillas; E. Kroumova; S. Ivantchev; G. Madariaga; A. Kirov; H. Wondratschek; M.I. Aroyo; A. Kirov; C. Capillas; J.M. Perez-Mato; H. Wondratschek Bilbao Crystallographic Server II: representations of crystallographic point groups and space groups, Acta Crystallogr. A, Volume 43, 2011 no. 2, pp. 183-197 http://www.cryst.ehu.es (The web page is) | DOI

[108] J.M. Perez-Mato; S.V. Gallego; E.S. Tasci; L. Elcoro; G. de la Flor; M.I. Aroyo Symmetry-based computational tools for magnetic crystallography, Annu. Rev. Mater. Res., Volume 45 (2015), pp. 217-248

[109] S.V. Gallego; J. Manuel Perez-Mato; L. Elcoro; E.S. Tasci; R.M. Hanson; K. Momma; M.I. Aroyo; G. Madariaga MAGNDATA: towards a database of magnetic structures. I. The commensurable case, J. Appl. Crystallogr., Volume 49 (2016), pp. 1750-1776

[110] S.V. Gallego; J. Manuel Perez-Mato; L. Elcoro; E.S. Tasci; R.M. Hanson; K. Momma; M.I. Aroyo; G. Madariaga MAGNDATA: towards a database of magnetic structures. II. The incommensurable case, J. Appl. Crystallogr., Volume 49 (2016), pp. 1941-1956

[111] D. Gezelter; B.A. Smith; E. Willighagen et al. An interactive viewer for three-dimensional chemical structures http://jmol.sourceforge.net (This is an open source project initiated by end of the nineties with many contributors. The web page is)

[112] A. Yamamoto The programs REMOS and PREMOS (J.M. Perez-Mato; F.J. Zuniga; G. Madariaga, eds.), Methods of Structural Analysis of Modulated Structures and Quasicrystals, World Scientific, Singapore, 1991, pp. 249-261

[113] V. Petricek; M. Dusek; L. Palatinus Crystallographic computing system JANA2006: general features, Z. Kristallogr., Volume 229 (2014) no. 5, pp. 345-352 | DOI

[114] B.J. Campbell; H.T. Stokes; D.E. Tanner; D.M. Hatch ISODISPLACE: a web-based tool for exploring structural distortions, J. Appl. Crystallogr., Volume 39 (2006), pp. 607-614

[115] H.T. Stokes et al. ISOTROPY Software Suite (1984–2013) http://stokes.byu.edu/iso/isotropy.php (The programs, resources and references can be found at the web site)

[116] H.T. Stokes; B.J. Campbell; R. Cordes Tabulation of irreducible representations of the crystallographic space groups and their superspace extensions, Acta Crystallogr. A, Volume 69 (2013), pp. 388-395

[117] F. Damay Neutrons and magnetic structures: analysis methods and tools, J. Phys. D, Appl. Phys., Volume 48 (2015)

[118] N. Qureshi Mag2Pol: a program for the analysis of spherical neutron polarimetry, flipping ratio and integrated intensity data, J. Appl. Crystallogr., Volume 52 (2019), pp. 175-185

[119] N.A. Katcho, J. Rodriguez-Carvajal, A program for generating and identify arbitrary settings of general crystallographic groups, 2019, unpublished.

[120] Commission on Magnetic Structures of the International Union of Crystallography http://magcryst.org/

Cité par Sources :

Commentaires - Politique