Rare -hadron decays provide a rich environment to search for beyond Standard Model physics effects thanks to numerous observables. In the recent years, several tensions with the SM expectations have appeared. A review of the most important experimental results is presented together with their interpretation in the context of the effective Hamiltonian approach.
Les désintégrations rares des hadrons beaux fournissent un environnement riche pour rechercher des effets de physique au-delà du Modèle Standard grâce à de nombreuses observables. Dans les dernières années, plusieurs tensions avec les prédictions du Modèle Standard sont apparues. Une revue des résultats expérimentaux les plus importants est présentée ainsi que leur interprétation dans le contexte de l’approche d’Hamiltonien effectif.
Mots-clés : Physique des saveurs, Désintégrations rares, Diagrammes pingouins, Physique au-delà du Modèle Standard, Désintégrations de hadrons beaux
Ulrik Egede 1; Justine Serrano 2
@article{CRPHYS_2020__21_1_93_0, author = {Ulrik Egede and Justine Serrano}, title = {Rare $b$-hadron decays}, journal = {Comptes Rendus. Physique}, pages = {93--106}, publisher = {Acad\'emie des sciences, Paris}, volume = {21}, number = {1}, year = {2020}, doi = {10.5802/crphys.10}, language = {en}, }
Ulrik Egede; Justine Serrano. Rare $b$-hadron decays. Comptes Rendus. Physique, A perspective of High Energy Physics from precision measurements, Volume 21 (2020) no. 1, pp. 93-106. doi : 10.5802/crphys.10. https://comptes-rendus.academie-sciences.fr/physique/articles/10.5802/crphys.10/
[1] Effective Field Theories in Flavour Physics, Springer-Verlag, Berlin, Heidelberg, 2004 | DOI
[2] The LHCb detector at the LHC, JINST, Volume 3 (2008), S08005
[3] LHCb detector performance, Int. J. Mod. Phys. A, Volume 30 (2015), 1530022 | DOI
[4] The ATLAS experiment at the CERN large hadron collider, JINST, Volume 3 (2008), S08003
[5] The CMS experiment at the CERN LHC, JINST, Volume 3 (2008), S08004
[6] Belle II Technical Design Report, 2010 (preprint) | arXiv
[7] Search for decays of B mesons into ee, , and e final states, Phys. Rev. D, Volume 77 (2008), 032007
[8] Study of the rare decays of and B mesons into muon pairs using data collected during 2015 and 2016 with the ATLAS detector, J. High Energy Phys., Volume 2019 (2019), 98 | DOI
[9] The Belle II Physics Book, 2018 (preprint) | arXiv
[10] Framework TDR for the LHCb Upgrade: Technical Design Report (2012) no. CERN-LHCC-2012-007. LHCb-TDR-12 (Technical report)
[11] Expression of Interest for a Phase-II LHCb Upgrade: Opportunities in flavour physics, and beyond, in the HL-LHC era (2017) no. CERN-LHCC-2017-003 (Technical report)
[12] Untagged CP asymmetry as a probe for new physics, Nucl. Phys. B, Volume 704 (2005) no. 1-2, pp. 56-74 | DOI
[13] Averages of b-hadron, c-hadron, and -lepton properties as of 2018, 2019 (preprint) | arXiv
[14] Updated NNLO QCD predictions for the weak radiative B-meson decays, Phys. Rev. Lett., Volume 114 (2015), 221801 | DOI
[15] Observation of photon polarization in the b s transition, Phys. Rev. Lett., Volume 112 (2014), 161801
[16] First observation of the radiative decay , Phys. Rev. Lett., Volume 123 (2019), 031801
[17] Measurement of -violating and mixing-induced observables in decays, Phys. Rev. Lett., Volume 123 (2019), 081802
[18] Probing new physics via the effective lifetime, Phys. Rev. Lett., Volume 109 (2012), 041801
[19] B l l in the standard model with reduced theoretical uncertainty, Phys. Rev. Lett., Volume 112 (2014), 101801 | DOI
[20] First evidence for the decay , Phys. Rev. Lett., Volume 110 (2013), 021801
[21] Observation of the rare decay from the combined analysis of CMS and LHCb data, Nature, Volume 522 (2015), pp. 68-72 | DOI
[22] Measurement of the branching fraction and effective lifetime and search for B decays, Phys. Rev. Lett., Volume 118 (2017), 191801
[23] Measurement of properties of decays and search for with the CMS experiment (2019) no. CMS-PAS-BPH-16-004 (Technical report)
[24] B as current and future probe of new physics, J. High Energy Phys., Volume 2017 (2017), 76 | DOI
[25] B-decay discrepancies after Moriond 2019, Eur. Phys. J. C, Volume 80 (2020), 252 | DOI
[26] Search for the decays and in CDF run II, Phys. Rev. Lett., Volume 102 (2009), 201801
[27] A search for the rare decay B at BABAR, Phys. Rev. Lett., Volume 96 (2006), 241802
[28] Search for the decays and B , Phys. Rev. Lett., Volume 118 (2017), 251802
[29] Prospects for the measurements with the ATLAS detector in the Run 2 and HL-LHC data campaigns (2018) no. ATL-PHYS-PUB-2018-005 (Technical report)
[30] (CMS collaboration, Measurement of rare B decays with the Phase-2 upgraded CMS detector at the HL-LHC)
[31] Differential branching fractions and isospin asymmetries of B K decays, J. High Energy Phys., Volume 2014 (2014), 133 | DOI
[32] Differential branching fraction and angular analysis of decays, J. High Energy Phys., Volume 2015 (2015), 115 [Erratum: J. High Energy Phys.09 (2018), 145] | DOI
[33] Angular analysis and differential branching fraction of the decay , J. High Energy Phys., Volume 2015 (2015), 179 | DOI
[34] Differential branching fraction and angular analysis of the B K decay, J. High Energy Phys., Volume 02 (2013), 105 | DOI
[35] Direct CP, lepton flavor and isospin asymmetries in the decays B K , Phys. Rev. Lett., Volume 102 (2009), 091803
[36] Measurement of the differential branching fraction and forward-backword asymmetry for B K , Phys. Rev. Lett., Volume 103 (2009), 171801
[37] Measurement of the phase difference between short- and long-distance amplitudes in the B K decay, Eur. Phys. J. C, Volume 77 (2017), 161
[38] Symmetries and asymmetries of B K decays in the standard model and beyond, J. High Energy Phys., Volume 2009 (2009) no. 01, 19 | DOI
[39] B Kl l decay form factors from three-flavor lattice QCD, Phys. Rev. D, Volume 93 (2016), 025026
[40] Angular distribution and CP asymmetries in the decays and , Phys. Rev. D, Volume 61 (2000), 114028 [Erratum: Phys. Rev. D63 (2001), 019901] | DOI
[41] Forward backward asymmetry of dilepton angular distribution in the decay b sl l, Phys. Lett. B, Volume 273 (1991) no. 4, pp. 505-512 | DOI
[42] New observables in the decay mode , J. High Energy Phys., Volume 2008 (2008) no. 11, 032 | DOI
[43] Optimizing the basis of B K ll observables in the full kinematic range, J. High Energy Phys., Volume 2013 (2013), 137 | DOI
[44] Angular analysis of decays in pp collisions at with the ATLAS detector, J. High Energy Phys., Volume 2018 (2018), 47 | DOI
[45] Lepton-flavor-dependent angular analysis of B K , Phys. Rev. Lett., Volume 118 (2017), 111801
[46] Measurement of angular parameters from the decay B K in proton-proton collisions at , Phys. Lett. B, Volume 781 (2018), pp. 517-541 | DOI
[47] Angular analysis of the B K decay using 3 fb of integrated luminosity, J. High Energy Phys., Volume 2016 (2016), 104 | DOI
[48] On the impact of power corrections in the prediction of B K observables, J. High Energy Phys., Volume 2014 (2014), 125 | DOI
[49] Long-distance effects in BK from analyticity, Eur. Phys. J. C, Volume 78 (2018), 451 | DOI
[50] An empirical model to determine the hadronic resonance contributions to transitions, Eur. Phys. J. C, Volume 78 (2018), 453 | DOI
[51] Search for decays with semileptonic tagging at Belle, Phys. Rev. D, Volume 96 (2017), 091101 [Addendum: Phys. Rev. D97 no.9, (2018), 099902]
[52] New strategies for New Physics search in , and decays, J. High Energy Phys., Volume 04 (2009), 22 | DOI
[53] Search for BK at the BaBar experiment, Phys. Rev. Lett., Volume 118 (2017), 031802
[54] FCC-ee: The lepton collider: Future circular collider conceptual design report volume 2, Eur. Phys. J. Spec. Top., Volume 228 (2019), pp. 261-263 | DOI
[55] Search for lepton-universality violation in B K decays, Phys. Rev. Lett., Volume 122 (2019), 191801
[56] Test of lepton universality with B K decays, J. High Energy Phys., Volume 2017 (2017), 55 | DOI
[57] Measurement of branching fractions and rate asymmetries in the rare decays B K l l, Phys. Rev. D, Volume 86 (2012), 032012
[58] Test of lepton flavor universality in B K decays at Belle, 2019 (preprint) | arXiv
[59] Review of lepton universality tests in B decays, J. Phys. G, Volume 46 (2019), 023001 | DOI
[60] Test of lepton universality with decays, J. High Energy Phys., Volume 05 (2020), 40
[61] The processes mu e Gamma, mu e e anti-e, Neutrino’ Neutrino gamma in the Weinberg-Salam model with neutrino mixing, Sov. J. Nucl. Phys., Volume 25 (1977), p. 340 [Erratum: Sov. J. Nucl. Phys. 25 (1977), 698, Erratum: Yad. Fiz. 25 (1977), 1336]
[62] The full event interpretation, Comput. Softw. Big Sci., Volume 3 (2019), 6 | DOI
[63] Emerging patterns of New Physics with and without Lepton Flavour Universal contributions, Eur. Phys. J. C, Volume 79 (2019), 714 | DOI
[64] Update on the b s anomalies, Phys. Rev. D, Volume 100 (2019), 015045 | DOI
[65] New Physics in b s confronts new data on Lepton Universality, Eur. Phys. J. C, Volume 79 (2019), 719 | DOI
[66] Revisiting the vector leptoquark explanation of the B-physics anomalies, J. High Energy Phys., Volume 2019 (2019), 168 | DOI
[67] New Z-prime phenomenology, Phys. Rev. D, Volume 43 (1991) no. 1, p. R22-R24 | DOI
[68] Interpreting hints for lepton flavor universality violation, Phys. Rev. D, Volume 96 (2017), 055008 | DOI
[69] Unified lepton-hadron symmetry and a gauge theory of the basic interactions, Phys. Rev. D, Volume 8 (1973) no. 4, pp. 1240-1251 | DOI
Cited by Sources:
Comments - Policy