Comptes Rendus
Precision experiments with muons and neutrons
[Expériences de précision avec les muons et les neutrons]
Comptes Rendus. Physique, Volume 21 (2020) no. 1, pp. 121-134.

Une sélection d’expériences de précision employant des muons ou des neutrons sont décrites. Cette sélection couvre les anomalies dans les mesures du facteur g μ -2 du muon et de la duré de vie du neutron, ainsi que les recherches de violation de saveur pour les leptons chargés (CLFV) des transitions μ - e - et du moment dipolaire électrique (EDM) du neutron. Ces programmes promettent des améliorations significatives de la sensibilité expérimentale, les facteurs d’améliorations sont compris entre 10 et 10,000, avec des nouvelles idées et méthodes. Le potentiel de découverte de nouvelle physique au-delà du Modèle Standard de la physique des particules est complémentaire aux recherches sur collisionneurs et aux programmes avec les neutrinos.

The precision experiments with muons and neutrons are described. The topics selected cover the anomalies of the muon g μ -2 and the neutron lifetime, and searches for charged lepton flavour violation CLFV of μ - e - transition and the neutron electric dipole moment (EDM). These physics programs are anticipating significant improvements of experimental sensitivities, by a factor of ten to more than 10,000 with novel ideas and methods. They would provide a unique discovery potential to new physics beyond the Standard Model of particle physics, and is complementary to the collider and neutrino physics programs.

Publié le :
DOI : 10.5802/crphys.13
Keywords: Neutron, Muon, Neutron lifetime, Muon magnetic moment, Muon anomaly, Lepton flavor violation, Electric dipole moment
Mot clés : Neutron, Muon, Temps de vie du neutron, Moment magnétique du muon, Anomalie du muon, Violation de la saveur leptonique, Moment dipolaire électrique
Yoshitaka Kuno 1 ; Guillaume Pignol 2

1 Osaka University, Machikaneyama, Toyonaka, Osaka, 560-0043, Japan
2 Univ. Grenoble Alpes, CNRS, Grenoble INP, LPSC-IN2P3, 38000 Grenoble, France
Licence : CC-BY 4.0
Droits d'auteur : Les auteurs conservent leurs droits
@article{CRPHYS_2020__21_1_121_0,
     author = {Yoshitaka Kuno and Guillaume Pignol},
     title = {Precision experiments with muons and neutrons},
     journal = {Comptes Rendus. Physique},
     pages = {121--134},
     publisher = {Acad\'emie des sciences, Paris},
     volume = {21},
     number = {1},
     year = {2020},
     doi = {10.5802/crphys.13},
     language = {en},
}
TY  - JOUR
AU  - Yoshitaka Kuno
AU  - Guillaume Pignol
TI  - Precision experiments with muons and neutrons
JO  - Comptes Rendus. Physique
PY  - 2020
SP  - 121
EP  - 134
VL  - 21
IS  - 1
PB  - Académie des sciences, Paris
DO  - 10.5802/crphys.13
LA  - en
ID  - CRPHYS_2020__21_1_121_0
ER  - 
%0 Journal Article
%A Yoshitaka Kuno
%A Guillaume Pignol
%T Precision experiments with muons and neutrons
%J Comptes Rendus. Physique
%D 2020
%P 121-134
%V 21
%N 1
%I Académie des sciences, Paris
%R 10.5802/crphys.13
%G en
%F CRPHYS_2020__21_1_121_0
Yoshitaka Kuno; Guillaume Pignol. Precision experiments with muons and neutrons. Comptes Rendus. Physique, Volume 21 (2020) no. 1, pp. 121-134. doi : 10.5802/crphys.13. https://comptes-rendus.academie-sciences.fr/physique/articles/10.5802/crphys.13/

[1] D. Dubbers; M. G. Schmidt The neutron and its role in cosmology and particle physics, Rev. Mod. Phys., Volume 83 (2011) no. 4, pp. 1111-1171 | DOI

[2] Y. Kuno; Y. Okada Muon decay and physics beyond the standard model, Rev. Mod. Phys., Volume 73 (2001), pp. 151-202 | DOI

[3] L. Calibbi; G. Signorelli Charged lepton flavour violation: An experimental and theoretical introduction, Riv. Nuovo Cimento, Volume 41 (2018) no. 2, pp. 71-174 | DOI

[4] A. Keshavarzi; D. Nomura; T. Teubner Muon g-2 and (MZ2): a new data-based analysis, Phys. Rev. D, Volume 97 (2018), 114025 | DOI

[5] G. W. Bennett et al. (Muon g-2 collaboration) Final report of the E821 muon anomalous magnetic moment measurement at BNL, Phys. Rev. D, Volume 73 (2006), 072003

[6] J. Grange et al. (Muon g-2 Collaboration) Muon (g-2) Technical Design Report, 2019 (preprint) | arXiv

[7] M. Abe et al. (J-PARC muon/edm collaboration) A new approach for measuring the muon anomalous magnetic moment and electric dipole moment, Progr. Theoret. Exp. Progress, Volume 2019 (2019), 053C02

[8] D. Hanneke; S. F. Hoogerheide; G. Gabrielse Cavity control of a single-electron quantum cyclotron: measuring the electron magnetic moment, Phys. Rev. A, Volume 83 (2011), 052122 | DOI

[9] F. E. Wietfeldt Measurements of the neutron lifetime, Atoms, Volume 6 (2018) no. 4, 70 | DOI

[10] A. T. Yue; M. S. Dewey; D. M. Gilliam; G. L. Greene; A. B. Laptev; J. S. Nico; W. M. Snow; F. E. Wietfeldt Improved determination of the neutron lifetime, Phys. Rev. Lett., Volume 111 (2013) no. 22, 222501

[11] A. P. Serebrov Neutron lifetime measurements with a large gravitational trap for ultracold neutrons, Phys. Rev. C, Volume 97 (2018) no. 5, 055503

[12] V. F. Ezhov Measurement of the neutron lifetime with ultra-cold neutrons stored in a magneto-gravitational trap, JETP Lett., Volume 107 (2018) no. 11, pp. 671-675 | DOI

[13] R. W. Pattie Jr. Measurement of the neutron lifetime using a magneto-gravitational trap and in situ detection, Science, Volume 360 (2018) no. 6389, pp. 627-632 | DOI

[14] A. Czarnecki; W. J. Marciano; A. Sirlin Neutron lifetime and axial coupling connection, Phys. Rev. Lett., Volume 120 (2018) no. 20, 202002 | DOI

[15] D. Dubbers; H. Saul; B. Märkisch; T. Soldner; H. Abele Exotic decay channels are not the cause of the neutron lifetime anomaly, Phys. Lett. B, Volume 791 (2019), pp. 6-10 | DOI

[16] F. E. Wietfeldt; G. Darius; M. S. Dewey; N. Fomin; G. L. Greene; J. Mulholland; W. M. Snow; A. T. Yue A path to a 0.1 s neutron lifetime measurement using the beam method, Phys. Proc., Volume 51 (2014), pp. 54-58 | DOI

[17] N. Nagakura Precise neutron lifetime experiment using pulsed neutron beams at J-PARC, PoS INPC, Volume 2016 (2017), 191

[18] S. T. Petcov The processes mu e Gamma, mu e e anti-e, Neutrino’ Neutrino gamma in the Weinberg–Salam model with neutrino mixing, Sov. J. Nucl. Phys., Volume 25 (1977), p. 340

[19] F. Feruglio; P. Paradisi; A. Pattori Lepton flavour violation in composite Higgs models, Eur. Phys. J. C, Volume 75 (2015), 579 | DOI

[20] G. M. Pruna; A. Singer The mu e gamma decay in a systematic effective field theory approach with dimension 6 operators, JHEP, Volume 1410 (2014), 014

[21] V. Cirigliano; S. Davidson; Y. Kuno Spin-dependent μ  e conversion, Phys. Lett. B, Volume 771 (2017), pp. 242-246 | DOI

[22] R. Kitano; M. Koike; Y. Okada Detailed calculation of lepton flavor violating muon-electron conversion rate for various nuclei, Phys. Rev. D, Volume 66 (2002), 096002 [Erratum Phys. Rev. D 76 (2017), 059902] | DOI

[23] V. Cirigliano; R. Kitano; Y. Okada; P. Tuzon Model discriminating power of μ  e conversion in nuclei, Phys. Rev. D, Volume 80 (2009), 013002 | DOI

[24] A. Baldini et al. (MEG Collaboration) Search for the lepton flavour violating decay μ + e + γ with the full dataset of the MEG experiment, Eur. Phys. J. C, Volume 76 (2016), 434 | DOI

[25] A. Baldini et al. (MEG II Collaboration) The design of the MEG II experiment, Eur. Phys. J. C, Volume 78 (2018), 380

[26] U. Bellgardt et al. (SINDRUM Collaboration) Search for the decay μ + e + e + e - , Nucl. Phys. B, Volume 299 (1988) no. 1, pp. 1-6 | DOI

[27] A. Blondel et al. (Mu3e Collaboration) Research Proposal for an Experiment to Search for the Decay μ eee, 2013 (preprint) | arXiv

[28] W. Bertl et al. (SINDRUM-II Collaboration) A search for muon to electron conversion in muonic gold, Eur. Phys. J. C, Volume 47 (2006), 337

[29] L. Bartoszek et al. (Mu2e Collaboration) Mu2e Technical Design Report, 2015 (preprint) | arXiv

[30] F. Abusalma et al. (Mu2e-II Collaboration) Expression of Interest for Evolution of the Mu2e Experiment, 2018 (preprint) | arXiv

[31] R. Abramishvili et al. (COMET collaboration) COMET Phase-I technical design report, PTEP, Volume 2020 (2020) no. 3, 033C01

[32] Y. Kuno; (COMET collaboration) A search for muon-to-electron conversion at J-PARC: the COMET experiment, Progr. Theoret. Exp. Progress, Volume 2013 (2013), 022C01

[33] Y. G. Cui et al. (COMET collaboration) J-PARC PAC E21 Proposal, 2009 (unpublished)

[34] J. C. Angélique et al. (COMET collaboration) COMET – A submission to the 2020 update of the European Strategy for Particle Physics on behalf of the COMET collaboration, 2018 (preprint) | arXiv

[35] R. M. Dzhilkibaev; V. M. Lobashev On the search for μ e conversion on nuclei, Sov. J. Nucl. Phys., Volume 49 (1989) no. 2, pp. 384-385

[36] S. Cook Delivering the worlds most intense muon beam, Phys. Rev. Accel. Beams, Volume 20 (2017) no. 3, 030101 | DOI

[37] Y. Kuno et al. (PRISM collaboration) J-PARC LOI, (2006), unpublished

[38] M. Pendlebury Revised experimental upper limit on the electric dipole moment of the neutron, Phys. Rev. D, Volume 92 (2015), 092003 | DOI

[39] J. Brod; U. Haisch; J. Zupan Constraints on CP-violating Higgs couplings to the third generation, JHEP, Volume 1311 (2013), 180

[40] J. Brod; E. Stamou Electric dipole moment constraints on CP-violating heavy-quark Yukawas at next-to-leading order, 2018 (preprint) | arXiv

[41] J. Brod; D. Skodras Electric dipole moment constraints on CP-violating light-quark Yukawas, JHEP, Volume 1901 (2019), 233

[42] J. M. Cline Is electroweak baryogenesis dead?, Philos. Trans. R. Soc. Lond. A, Volume 376 (2018) no. 2114, 20170116

[43] J. H. Smith; E. M. Purcell; N. F. Ramsey Phys. Rev., 108 (1957), pp. 120-122 | DOI

[44] C. Abel nEDM experiment at PSI: data-taking strategy and sensitivity of the dataset, EPJ Web Conf., Volume 219 (2019), 02001 | DOI

[45] www.psi.ch/nedm/edms-world-wide

[46] M. W. Ahmed A new cryogenic apparatus to search for the neutron electric dipole moment, JINST, Volume 14 (2019) no. 11, P11017

[47] C. Abel The n2EDM experiment at the Paul Scherrer Institute, EPJ Web Conf., Volume 219 (2019), 02002 | DOI

[48] T. M. Ito Performance of the upgraded ultracold neutron source at Los Alamos National Laboratory and its implication for a possible neutron electric dipole moment experiment, Phys. Rev. C, Volume 97 (2018), 012501

[49] S. Ahmed et al. [TUCAN Collaboration] First ultracold neutrons produced at TRIUMF, Phys. Rev. C, Volume 99 (2019), 025503

[50] A. Serebrov Present status and future prospects of n-EDM experiment of PNPI-ILL-PTI collaboration, PoS, Volume INPC2016 (2017), p. 179 | DOI

[51] E. Chanel The pulsed neutron beam EDM experiment, EPJ Web Conf., Volume 219 (2019), 02004 | DOI

[52] D. Wurm The PanEDM neutron electric dipole moment experiment at the ILL, EPJ Web Conf., Volume 219 (2019), 02006 | DOI

Cité par Sources :

Commentaires - Politique


Ces articles pourraient vous intéresser

Electric dipole moments: Flavor-diagonal CP violation

Oscar Naviliat-Cuncic; Rob G.E. Timmermans

C. R. Phys (2012)


Neutrino masses and oscillations: an overview

Jacques Bouchez

C. R. Phys (2005)


André Lagarrigue: From cosmic rays to the discovery of the weak neutral currents

Michel Davier

C. R. Phys (2019)