The precision experiments with muons and neutrons are described. The topics selected cover the anomalies of the muon and the neutron lifetime, and searches for charged lepton flavour violation CLFV of transition and the neutron electric dipole moment (EDM). These physics programs are anticipating significant improvements of experimental sensitivities, by a factor of ten to more than 10,000 with novel ideas and methods. They would provide a unique discovery potential to new physics beyond the Standard Model of particle physics, and is complementary to the collider and neutrino physics programs.
Une sélection d’expériences de précision employant des muons ou des neutrons sont décrites. Cette sélection couvre les anomalies dans les mesures du facteur du muon et de la duré de vie du neutron, ainsi que les recherches de violation de saveur pour les leptons chargés (CLFV) des transitions et du moment dipolaire électrique (EDM) du neutron. Ces programmes promettent des améliorations significatives de la sensibilité expérimentale, les facteurs d’améliorations sont compris entre 10 et 10,000, avec des nouvelles idées et méthodes. Le potentiel de découverte de nouvelle physique au-delà du Modèle Standard de la physique des particules est complémentaire aux recherches sur collisionneurs et aux programmes avec les neutrinos.
Mots-clés : Neutron, Muon, Temps de vie du neutron, Moment magnétique du muon, Anomalie du muon, Violation de la saveur leptonique, Moment dipolaire électrique
Yoshitaka Kuno 1; Guillaume Pignol 2
@article{CRPHYS_2020__21_1_121_0, author = {Yoshitaka Kuno and Guillaume Pignol}, title = {Precision experiments with muons and neutrons}, journal = {Comptes Rendus. Physique}, pages = {121--134}, publisher = {Acad\'emie des sciences, Paris}, volume = {21}, number = {1}, year = {2020}, doi = {10.5802/crphys.13}, language = {en}, }
Yoshitaka Kuno; Guillaume Pignol. Precision experiments with muons and neutrons. Comptes Rendus. Physique, A perspective of High Energy Physics from precision measurements, Volume 21 (2020) no. 1, pp. 121-134. doi : 10.5802/crphys.13. https://comptes-rendus.academie-sciences.fr/physique/articles/10.5802/crphys.13/
[1] The neutron and its role in cosmology and particle physics, Rev. Mod. Phys., Volume 83 (2011) no. 4, pp. 1111-1171 | DOI
[2] Muon decay and physics beyond the standard model, Rev. Mod. Phys., Volume 73 (2001), pp. 151-202 | DOI
[3] Charged lepton flavour violation: An experimental and theoretical introduction, Riv. Nuovo Cimento, Volume 41 (2018) no. 2, pp. 71-174 | DOI
[4] Muon g-2 and (MZ2): a new data-based analysis, Phys. Rev. D, Volume 97 (2018), 114025 | DOI
[5] Final report of the E821 muon anomalous magnetic moment measurement at BNL, Phys. Rev. D, Volume 73 (2006), 072003
[6] Muon (g-2) Technical Design Report, 2019 (preprint) | arXiv
[7] A new approach for measuring the muon anomalous magnetic moment and electric dipole moment, Progr. Theoret. Exp. Progress, Volume 2019 (2019), 053C02
[8] Cavity control of a single-electron quantum cyclotron: measuring the electron magnetic moment, Phys. Rev. A, Volume 83 (2011), 052122 | DOI
[9] Measurements of the neutron lifetime, Atoms, Volume 6 (2018) no. 4, 70 | DOI
[10] Improved determination of the neutron lifetime, Phys. Rev. Lett., Volume 111 (2013) no. 22, 222501
[11] Neutron lifetime measurements with a large gravitational trap for ultracold neutrons, Phys. Rev. C, Volume 97 (2018) no. 5, 055503
[12] Measurement of the neutron lifetime with ultra-cold neutrons stored in a magneto-gravitational trap, JETP Lett., Volume 107 (2018) no. 11, pp. 671-675 | DOI
[13] Measurement of the neutron lifetime using a magneto-gravitational trap and in situ detection, Science, Volume 360 (2018) no. 6389, pp. 627-632 | DOI
[14] Neutron lifetime and axial coupling connection, Phys. Rev. Lett., Volume 120 (2018) no. 20, 202002 | DOI
[15] Exotic decay channels are not the cause of the neutron lifetime anomaly, Phys. Lett. B, Volume 791 (2019), pp. 6-10 | DOI
[16] A path to a 0.1 s neutron lifetime measurement using the beam method, Phys. Proc., Volume 51 (2014), pp. 54-58 | DOI
[17] Precise neutron lifetime experiment using pulsed neutron beams at J-PARC, PoS INPC, Volume 2016 (2017), 191
[18] The processes mu e Gamma, mu e e anti-e, Neutrino’ Neutrino gamma in the Weinberg–Salam model with neutrino mixing, Sov. J. Nucl. Phys., Volume 25 (1977), p. 340
[19] Lepton flavour violation in composite Higgs models, Eur. Phys. J. C, Volume 75 (2015), 579 | DOI
[20] The mu e gamma decay in a systematic effective field theory approach with dimension 6 operators, JHEP, Volume 1410 (2014), 014
[21] Spin-dependent e conversion, Phys. Lett. B, Volume 771 (2017), pp. 242-246 | DOI
[22] Detailed calculation of lepton flavor violating muon-electron conversion rate for various nuclei, Phys. Rev. D, Volume 66 (2002), 096002 [Erratum Phys. Rev. D 76 (2017), 059902] | DOI
[23] Model discriminating power of e conversion in nuclei, Phys. Rev. D, Volume 80 (2009), 013002 | DOI
[24] Search for the lepton flavour violating decay e with the full dataset of the MEG experiment, Eur. Phys. J. C, Volume 76 (2016), 434 | DOI
[25] The design of the MEG II experiment, Eur. Phys. J. C, Volume 78 (2018), 380
[26] Search for the decay eee, Nucl. Phys. B, Volume 299 (1988) no. 1, pp. 1-6 | DOI
[27] Research Proposal for an Experiment to Search for the Decay eee, 2013 (preprint) | arXiv
[28] A search for muon to electron conversion in muonic gold, Eur. Phys. J. C, Volume 47 (2006), 337
[29] Mu2e Technical Design Report, 2015 (preprint) | arXiv
[30] Expression of Interest for Evolution of the Mu2e Experiment, 2018 (preprint) | arXiv
[31] COMET Phase-I technical design report, PTEP, Volume 2020 (2020) no. 3, 033C01
[32] A search for muon-to-electron conversion at J-PARC: the COMET experiment, Progr. Theoret. Exp. Progress, Volume 2013 (2013), 022C01
[33] J-PARC PAC E21 Proposal, 2009 (unpublished)
[34] COMET – A submission to the 2020 update of the European Strategy for Particle Physics on behalf of the COMET collaboration, 2018 (preprint) | arXiv
[35] On the search for e conversion on nuclei, Sov. J. Nucl. Phys., Volume 49 (1989) no. 2, pp. 384-385
[36] Delivering the worlds most intense muon beam, Phys. Rev. Accel. Beams, Volume 20 (2017) no. 3, 030101 | DOI
[37]
J-PARC LOI, (2006), unpublished[38] Revised experimental upper limit on the electric dipole moment of the neutron, Phys. Rev. D, Volume 92 (2015), 092003 | DOI
[39] Constraints on CP-violating Higgs couplings to the third generation, JHEP, Volume 1311 (2013), 180
[40] Electric dipole moment constraints on CP-violating heavy-quark Yukawas at next-to-leading order, 2018 (preprint) | arXiv
[41] Electric dipole moment constraints on CP-violating light-quark Yukawas, JHEP, Volume 1901 (2019), 233
[42] Is electroweak baryogenesis dead?, Philos. Trans. R. Soc. Lond. A, Volume 376 (2018) no. 2114, 20170116
[43] Phys. Rev., 108 (1957), pp. 120-122 | DOI
[44] nEDM experiment at PSI: data-taking strategy and sensitivity of the dataset, EPJ Web Conf., Volume 219 (2019), 02001 | DOI
[45] www.psi.ch/nedm/edms-world-wide
[46] A new cryogenic apparatus to search for the neutron electric dipole moment, JINST, Volume 14 (2019) no. 11, P11017
[47] The n2EDM experiment at the Paul Scherrer Institute, EPJ Web Conf., Volume 219 (2019), 02002 | DOI
[48] Performance of the upgraded ultracold neutron source at Los Alamos National Laboratory and its implication for a possible neutron electric dipole moment experiment, Phys. Rev. C, Volume 97 (2018), 012501
[49] First ultracold neutrons produced at TRIUMF, Phys. Rev. C, Volume 99 (2019), 025503
[50] Present status and future prospects of n-EDM experiment of PNPI-ILL-PTI collaboration, PoS, Volume INPC2016 (2017), p. 179 | DOI
[51] The pulsed neutron beam EDM experiment, EPJ Web Conf., Volume 219 (2019), 02004 | DOI
[52] The PanEDM neutron electric dipole moment experiment at the ILL, EPJ Web Conf., Volume 219 (2019), 02006 | DOI
Cited by Sources:
Comments - Policy