[Évaporation, des exoplanètes aux exocomètes]
Une énorme quantité de travaux observationnels et théoriques ont été réalisés pour comprendre la physique et la chimie de la petite couche de gaz entourant les exoplanètes que l’on désigne aussi par le terme « atmosphère » . Avec l’aide d’observatoires spatiaux comme le télescope spatial Hubble ou l’observatoire infrarouge Spitzer, ou avec les derniers spectrographes au foyer des plus grands télescopes au sol, les données collectées sont aujourd’hui extrêmement riches en informations. La principale conclusion de ces vingt dernières années d’observations d’atmosphères d’exoplanètes est l’étonnante diversité des planètes qui ont été découvertes.
Nous nous intéressons ici à un phénomène particulier : l’évaporation d’exoplanètes qui sont en orbite très près de leurs étoiles. Nous décrivons les observations de l’échappement atmosphérique des exoplanètes. Puis nous montrerons les conséquences de ce phénomène sur les propriétés physiques des exoplanètes. Nous montrons que l’évaporation de petits corps est également observée dans certains systèmes extrasolaires, conduisant à la découverte d’exocomètes. Les observations spectroscopiques et photométriques ont permis de scruter les composantes de gaz et de poussières des queues cométaires. Enfin, les observations photométriques détaillées des exocomètes ont permis de mesurer les tailles des noyaux de comètes dans le système planétaire de β Pictoris ; la distribution de taille observée montre l’importance des collisions dans les dernières étapes de la formation des systèmes planétaires.
Here we review the last advances in our understanding of exoplanetary upper atmospheres, with a focus on the evaporation of exoplanets orbiting close to their stars. The atmospheric escape takes a significant part on the phenomena that sculpt the population of planets with short orbital distances.
We also observe evaporation of minor bodies in young planetary systems when they approach to their star. These “exocomets” have been studied since the mid 80’s, yielding a large amount of observational data. In particular, in the case of exocomets orbiting the young star β Pictoris, it has been shown that there are two different families of comets, tracing two different dynamical histories. Most recently, photometric observations with the NASA TESS space observatory allowed the detection of the dust tails produced by the evaporation of the exocomets’ nuclei. Using numerical simulation these observations allowed the derivation of the comets nuclei size distribution, which is found to be strikingly similar to the one observed in the Solar system and to the one expected for a collisionally relaxed population of minor bodies.
Accepté le :
Première publication :
Publié le :
Mot clés : Exoplanètes, Atmosphères, Exocomètes, Systèmes planétaires, Disques circumstellaires, Échappement atmosphérique, Bêta Pictoris
Alain Lecavelier des Etangs 1
@article{CRPHYS_2023__24_S2_221_0, author = {Alain Lecavelier des Etangs}, title = {Evaporation, from exoplanets to exocomets}, journal = {Comptes Rendus. Physique}, pages = {221--231}, publisher = {Acad\'emie des sciences, Paris}, volume = {24}, number = {S2}, year = {2023}, doi = {10.5802/crphys.142}, language = {en}, }
Alain Lecavelier des Etangs. Evaporation, from exoplanets to exocomets. Comptes Rendus. Physique, Volume 24 (2023) no. S2, pp. 221-231. doi : 10.5802/crphys.142. https://comptes-rendus.academie-sciences.fr/physique/articles/10.5802/crphys.142/
[1] Detection of an Extrasolar Planet Atmosphere, Astrophys. J., Volume 568 (2002) no. 1, pp. 377-384 | DOI
[2] et al. An extended upper atmosphere around the extrasolar planet HD209458b, Nature, Volume 422 (2003) no. 6928, pp. 143-146 | DOI
[3] et al. A continuum from clear to cloudy hot-Jupiter exoplanets without primordial water depletion, Nature, Volume 529 (2016) no. 7584, pp. 59-62 | DOI
[4] et al. An ultrahot gas-giant exoplanet with a stratosphere, Nature, Volume 548 (2017) no. 7665, pp. 58-61 | DOI
[5] et al. Water Vapor and Clouds on the Habitable-zone Sub-Neptune Exoplanet K2-18b, Astrophys. J. Lett., Volume 887 (2019) no. 1, L14 | DOI
[6] Water vapour in the atmosphere of the habitable-zone eight-Earth-mass planet K2-18 b, Nat. Astron., Volume 3 (2019), pp. 1086-1091 | DOI
[7] et al. Formation and dynamics of water clouds on temperate sub-Neptunes: the example of K2-18b, Astron. Astrophys., Volume 646 (2021), A171 | DOI
[8] Methane as a dominant absorber in the habitable-zone sub-Neptune K2-18 b, Nat. Astron., Volume 6 (2022), pp. 537-540 | DOI
[9] Rayleigh scattering in the transit spectrum of HD 189733b, Astron. Astrophys., Volume 481 (2008) no. 2, p. L83-L86 | DOI
[10] et al. HST hot-Jupiter transmission spectral survey: evidence for aerosols and lack of TiO in the atmosphere of WASP-12b, Mon. Not. Roy. Astron. Soc., Volume 436 (2013) no. 4, pp. 2956-2973 | DOI
[11] Rayleigh scattering by H in the extrasolar planet HD 209458b, Astron. Astrophys., Volume 485 (2008) no. 3, pp. 865-869 | DOI
[12] et al. The upper atmosphere of the exoplanet HD 209458 b revealed by the sodium D lines. Temperature-pressure profile, ionization layer, and thermosphere, Astron. Astrophys., Volume 527 (2011), A110 | DOI
[13] et al. Temperature-pressure profile of the hot Jupiter HD 189733b from HST sodium observations: detection of upper atmospheric heating, Mon. Not. Roy. Astron. Soc., Volume 422 (2012) no. 3, pp. 2477-2488 | DOI
[14] et al. Rayleigh Scattering in the Atmosphere of the Warm Exo-Neptune GJ 3470b, Astrophys. J., Volume 814 (2015) no. 2, 102 | DOI
[15] et al. Fast spin of the young extrasolar planet Pictoris b, Nature, Volume 509 (2014) no. 7498, pp. 63-65 | DOI
[16] A Jupiter-mass companion to a solar-type star, Nature, Volume 378 (1995) no. 6555, pp. 355-359 | DOI
[17] et al. Atmospheric Loss of Exoplanets Resulting from Stellar X-Ray and Extreme-Ultraviolet Heating, Astrophys. J. Letters, Volume 598 (2003) no. 2, p. L121-L124 | DOI
[18] 3D model of hydrogen atmospheric escape from HD 209458b and HD 189733b: radiative blow-out and stellar wind interactions, Astron. Astrophys., Volume 557 (2013), A124 | DOI
[19] 3D model of hydrogen atmospheric escape from HD 209458b and HD 189733b: radiative blow-out and stellar wind interactions, Astron. Astrophys., Volume 557 (2013), A124 | DOI
[20] Radiative braking in the extended exosphere of GJ 436 b, Astron. Astrophys., Volume 582 (2015), A65 | DOI
[21] An evaporating planet in the wind: stellar wind interactions with the radiatively braked exosphere of GJ 436 b, Astron. Astrophys., Volume 591 (2016), A121 | DOI
[22] et al. The long egress of GJ 436b’s giant exosphere, Astron. Astrophys., Volume 605 (2017), L7 | DOI
[23] et al. Hubble PanCET: an extended upper atmosphere of neutral hydrogen around the warm Neptune GJ 3470b, Astron. Astrophys., Volume 620 (2018), A147 | DOI
[24] A diagram to determine the evaporation status of extrasolar planets, Astron. Astrophys., Volume 461 (2007) no. 3, pp. 1185-1193 | DOI
[25] Mass-loss rates for transiting exoplanets, Astron. Astrophys., Volume 529 (2011), A136 | DOI
[26] How Thermal Evolution and Mass-loss Sculpt Populations of Super-Earths and Sub-Neptunes: Application to the Kepler-11 System and Beyond, Astrophys. J., Volume 761 (2012) no. 1, 59 | DOI
[27] et al. Hot super-Earths stripped by their host stars, Nat. Commun., Volume 7 (2016), 11201 | DOI
[28] The Role of Core Mass in Controlling Evaporation: The Kepler Radius Distribution and the Kepler-36 Density Dichotomy, Astrophys. J., Volume 776 (2013) no. 1, 2 | DOI
[29] The beta Pictoris circumstellar disk. V. Time variations of the Ca II-K line, Astron. Astrophys., Volume 185 (1987), pp. 267-270
[30] The beta Pictoris circumstellar disk. X. Numerical simulations of infalling evaporating bodies, Astron. Astrophys., Volume 236 (1990), pp. 202-216
[31] The Pictoris circumstellar disk. XXII. Investigating the model of multiple cometary infalls, Astron. Astrophys., Volume 310 (1996), pp. 181-198
[32] et al. HST-GHRS observations of Pictoris: additional evidence for infalling comets, Astron. Astrophys., Volume 290 (1994), pp. 245-258
[33] Pictoris, a young planetary system? A review, Planet. Space Sci., Volume 46 (1998) no. 6, pp. 629-648 | DOI
[34] et al. Two families of exocomets in the Pictoris system, Nature, Volume 514 (2014) no. 7523, pp. 462-464 | DOI
[35] et al. Exocomets in the circumstellar gas disk of HD 172555, Astron. Astrophys., Volume 561 (2014), L10 | DOI
[36] The Star-grazing Bodies in the HD 172555 System, Astron. J., Volume 155 (2018) no. 6, 242 | DOI
[37] Detection of Variable Gaseous Absorption Features in the Debris Disks Around Young A-type Stars, Publ. Astron. Soc. Pac., Volume 124 (2012) no. 920, pp. 1042-1056 | DOI
[38] Volatile-rich Circumstellar Gas in the Unusual 49 Ceti Debris Disk, Astrophys. J. Letters, Volume 796 (2014) no. 1, L11 | DOI
[39] UV Spectroscopy of Star-grazing Comets Within the 49 Ceti Debris Disk, Astrophys. J., Volume 824 (2016) no. 2, 126 | DOI
[40] HR 10 : a new beta Pictoris-like star ?, Astron. Astrophys., Volume 227 (1990), p. L13-L16
[41] et al. Discovery of CI around 51 Ophiuchi, Astron. Astrophys., Volume 321 (1997), p. L39-L42
[42] et al. HST-GHRS observations of candidate Pictoris-like circumstellar gaseous disks, Astron. Astrophys., Volume 325 (1997), pp. 228-236
[43] et al. Exocomets: A spectroscopic survey, Astron. Astrophys., Volume 639 (2020), A11 | DOI
[44] Circumstellar Gas-Disk Variability Around A-Type Stars: The Detection of Exocomets?, Publ. Astron. Soc. Pac., Volume 125 (2013) no. 929, pp. 759-774 | DOI
[45] A library of stellar light variations due to extra-solar comets, Astron. Astrophys. Suppl. Ser., Volume 140 (1999), pp. 15-20 | DOI
[46] Photometric stellar variation due to extra-solar comets, Astron. Astrophys., Volume 343 (1999), pp. 916-922
[47] et al. Planet Hunters IX. KIC 8462852 - where’s the flux?, Mon. Not. Roy. Astron. Soc., Volume 457 (2016) no. 4, pp. 3988-4004 | DOI
[48] et al. Detection of a repeated transit signature in the light curve of the enigma star KIC 8462852: A possible 928-day period, Astron. Astrophys., Volume 608 (2017), A132, p. 11 | DOI
[49] et al. Likely transiting exocomets detected by Kepler, Mon. Not. Roy. Astron. Soc., Volume 474 (2018) no. 2, pp. 1453-1468 | DOI
[50] et al. (2022) (in preparation)
[51] Transiting exocomets detected in broadband light by TESS in the Pictoris system, Astron. Astrophys., Volume 625 (2019), L13 | DOI
[52] et al. New exocomets of Pic, Astron. Astrophys., Volume 660 (2022), A49 | DOI
[53] et al. Exocomets size distribution in the ? Pictoris planetary system, Sci. Rep., Volume 12 (2022), 5855, pp. 865-869 | DOI
[54] Particulate Mass Loss from Comet Hale-Bopp, Astron. J., Volume 117 (1999) no. 2, pp. 1056-1062 | DOI
[55] et al. The Inner Coma and Nucleus of Comet Hale-Bopp: Results from a Stellar Occultation, Icarus, Volume 140 (1999) no. 1, pp. 205-220 | DOI
[56] The Extremely Active Comet C/Hale-Bopp (1995 O1): Production Rates from Nearly Five Years of Narrowband Photometry, AAS/Division for Planetary Sciences Meeting Abstracts #50 (AAS/Division for Planetary Sciences Meeting Abstracts), Volume 50 (2018), 210.06
[57] et al. Debiasing the NEOWISE Cryogenic Mission Comet Populations, Astron. J., Volume 154 (2017) no. 2, 53 | DOI
[58] et al. The orbit and size-frequency distribution of long period comets observed by Pan-STARRS1, Icarus, Volume 333 (2019), pp. 252-272 | DOI
[59] Collisional Model of Asteroids and Their Debris, J. Geophys. Res., Volume 74 (1969), pp. 2531-2554 | DOI
Cité par Sources :
Commentaires - Politique