Comptes Rendus
Impact of stellar variability on exoplanet detectability and characterisation
[Impact de la variabilité stellaire sur la détectabilité et la caractérisation des exoplanètes]
Comptes Rendus. Physique, Online first (2023), pp. 1-15.

La variabilité stellaire est devenue un problème majeur pour détecter les planètes de faible masse en utilisant la méthode des vitesses radiales. Je présente les approches suivies pour caractériser l’amplitude et les propriétés de la variabilité stellaire en vitesse radiale. Plus précisément, l’approche consistant à utiliser notre connaissance du Soleil pour mieux comprendre les différents processus qui se produisent à différentes échelles s’est avérée très utile. Cela a été fait de différentes manières, sur la base d’observations et de modèles. Ceci est crucial car il est alors possible de comparer les vitesses radiales intégrées au disque avec les structures réelles de la surface solaire, telles que les taches et les plages, et avec les flux photosphériques à différentes échelles spatiales. De nombreux processus physiques affectent en effet les mesures de vitesse radiale : ils sont principalement dus aux caractéristiques magnétiques (taches et plages), aux écoulements (oscillations, granulation, supergranulation, circulation méridienne), et aux interactions entre les champs magnétiques et les écoulements (inhibition du blueshift convectif dans les plages). Je présente plus en détail une sélection d’études visant à caractériser l’impact de la variabilité stellaire, en particulier la relation entre les indicateurs d’activité et les vitesses radiales, puis je me concentre sur la caractérisation des masses et les performances de détection. Enfin, je passe brièvement en revue l’impact de la variabilité stellaire sur les transits photométriques et l’astrométrie, qui sont également affectés, mais dans une moindre mesure.

Stellar variability has become a major issue to detect low mass planets using the radial velocity technique. I present the approaches followed to characterise the amplitude and the properties of stellar variability in radial velocity. More specifically, the approach consisting in using our knowledge of the Sun to understand better the different processes which are occuring at different scales proved to be very useful. This has been done in different ways, based on observations and models. This is crucial because it is then possible to compare disk-integrated radial velocities with actual structures on the solar surface, such as spots and plages, and with photospheric flows at different spatial scales. Many physical processes indeed affect the radial velocity measurements: they are mostly due to magnetic features (spots and plages), flows (oscillations, granulation, supergranulation, meridional flows), and to the interactions between magnetic fields and flows (inhibition of the convective blueshift in plages). I present in more detail a selection of studies aiming at characterising the impact of stellar variability, in particular the relationship between activity indicators and radial velocities, and then focusing on mass characterisation and detection performance. Finally, I briefly review the impact of stellar variability on photometric transits and astrometry, which are also affected, but to a lesser extent.

Reçu le :
Accepté le :
Première publication :
DOI : 10.5802/crphys.140
Keywords: Exoplanets, Stellar variability, Radial velocity, Photometric transits, Astrometry
Mot clés : Exoplanètes, Variabilité stellaire, Vitesses radiales, Transits photométriques, Astrométrie
Nadège Meunier 1

1 Univ. Grenoble Alpes, CNRS, IPAG, F-38000 Grenoble, France
Licence : CC-BY 4.0
Droits d'auteur : Les auteurs conservent leurs droits
@article{CRPHYS_2023__24_S2_A4_0,
     author = {Nad\`ege Meunier},
     title = {Impact of stellar variability on exoplanet detectability and characterisation},
     journal = {Comptes Rendus. Physique},
     publisher = {Acad\'emie des sciences, Paris},
     year = {2023},
     doi = {10.5802/crphys.140},
     language = {en},
     note = {Online first},
}
TY  - JOUR
AU  - Nadège Meunier
TI  - Impact of stellar variability on exoplanet detectability and characterisation
JO  - Comptes Rendus. Physique
PY  - 2023
PB  - Académie des sciences, Paris
N1  - Online first
DO  - 10.5802/crphys.140
LA  - en
ID  - CRPHYS_2023__24_S2_A4_0
ER  - 
%0 Journal Article
%A Nadège Meunier
%T Impact of stellar variability on exoplanet detectability and characterisation
%J Comptes Rendus. Physique
%D 2023
%I Académie des sciences, Paris
%Z Online first
%R 10.5802/crphys.140
%G en
%F CRPHYS_2023__24_S2_A4_0
Nadège Meunier. Impact of stellar variability on exoplanet detectability and characterisation. Comptes Rendus. Physique, Online first (2023), pp. 1-15. doi : 10.5802/crphys.140.

[1] M. Mayor; D. Queloz A Jupiter-mass companion to a solar-type star, Nature, Volume 378 (1995) no. 6555, pp. 355-359 | DOI

[2] M. Gillon; A. H. M. J. Triaud; B.-O. Demory et al. Seven temperate terrestrial planets around the nearby ultracool dwarf star TRAPPIST-1, Nature, Volume 542 (2017) no. 7642, pp. 456-460 | DOI

[3] G. Lo Curto; F. Pepe; G. Avila et al. HARPS gets new fibres after 12 years of operations, Messenger, Volume 162 (2015), pp. 9-15

[4] S. H. Saar; R. A. Donahue Activity-related radial velocity variation in cool stars, Astrophys. J., Volume 485 (1997), pp. 319-327 | DOI

[5] A.-M. Lagrange; M. Desort; N. Meunier Using the Sun to estimate Earth-like planets detection capabilities. I. Impact of cold spots, Astron. Astrophys., Volume 512 (2010), A38 | DOI

[6] N. Meunier; A.-M. Lagrange; M. Desort Reconstructing the solar integrated radial velocity using MDI/SOHO, Astron. Astrophys., Volume 519 (2010), A66 | DOI

[7] N. Meunier; M. Desort; A.-M. Lagrange Using the Sun to estimate Earth-like planets detection capabilities. II. Impact of plages, Astron. Astrophys., Volume 512 (2010), A39 | DOI

[8] C. Lovis; X. Dumusque; N. C. Santos et al. The HARPS search for southern extra-solar planets. XXXI. Magnetic activity cycles in solar-type stars: statistics and impact on precise radial velocities, 2011 (preprint) | arXiv

[9] J. C. Costes; C. A. Watson; E. de Mooij et al. Long-term stellar activity variations and their effect on radial-velocity measurements, Mon. Not. R. Astron. Soc., Volume 505 (2021) no. 1, pp. 830-850 | DOI

[10] R. D. Haywood; A. Collier Cameron; Y. C. Unruh et al. The Sun as a planet-host star: proxies from SDO images for HARPS radial-velocity variations, Mon. Not. R. Astron. Soc., Volume 457 (2016), pp. 3637-3651 | DOI

[11] T. W. Milbourne; R. D. Haywood; D. F. Phillips et al. HARPS-N solar RVs are dominated by large, bright magnetic regions, Astrophys. J., Volume 874 (2019), 107 | DOI

[12] R. D. Haywood; T. W. Milbourne; S. H. Saar et al. Unsigned magnetic flux as a proxy for radial-velocity variations in sun-like stars, Astrophys. J., Volume 935 (2022) no. 1, 6 | DOI

[13] N. Meunier; A.-M. Lagrange Radial-velocity variations due to meridional flows in the Sun and solar-type stars: impact on exoplanet detectability, Astron. Astrophys., Volume 638 (2020), A54 | DOI

[14] A. F. Lanza; P. Molaro; L. Monaco; R. D. Haywood Long-term radial-velocity variations of the Sun as a star: The HARPS view, Astron. Astrophys., Volume 587 (2016), A103 | DOI

[15] X. Dumusque; A. Glenday; D. F. Phillips et al. HARPS-N observes the Sun as a Star, Astrophys. J. Lett., Volume 814 (2015), L21 | DOI

[16] D. F. Phillips; A. G. Glenday; X. Dumusque et al. An astro-comb calibrated solar telescope to search for the radial velocity signature of Venus, Advances in Optical and Mechanical Technologies for Telescopes and Instrumentation II (R. Navarro; J. H. Burge, eds.) (Society of Photo-Optical Instrumentation Engineers (SPIE) Conference Series), Volume 9912, SPIE, 2016, p. 99126Z | DOI

[17] A. Collier Cameron; A. Mortier; D. Phillips et al. Three years of Sun-as-a-star radial-velocity observations on the approach to solar minimum, Mon. Not. R. Astron. Soc., Volume 487 (2019), pp. 1082-1100 | DOI

[18] X. Dumusque; M. Cretignier; D. Sosnowska et al. Three years of HARPS-N high-resolution spectroscopy and precise radial velocity data for the Sun, Astron. Astrophys., Volume 648 (2021), A103 | DOI

[19] S. Borgniet; N. Meunier; A.-M. Lagrange Using the Sun to estimate Earth-like planets detection capabilities. V. Parameterizing the impact of solar activity components on radial velocities, Astron. Astrophys., Volume 581 (2015), A133 | DOI

[20] N. Meunier; A.-M. Lagrange; T. Boulet; S. Borgniet Activity time series of old stars from late F to early K. I. Simulating radial velocity, astrometry, photometry, and chromospheric emission, Astron. Astrophys., Volume 627 (2019), A56 | DOI

[21] N. Meunier; A.-M. Lagrange Activity time series of old stars from late F to early K. II. Radial velocity jitter and exoplanet detectability, Astron. Astrophys., Volume 628 (2019), A125 | DOI

[22] N. Meunier; A.-M. Lagrange; S. Cuzacq Activity time series of old stars from late F to early K. IV. What limits the correction using the chromospheric emission?, Astron. Astrophys., Volume 632 (2019), A81 | DOI

[23] H. M. Cegla; C. A. Watson; S. Shelyag; M. Mathioudakis; S. Moutari Stellar surface magnetoconvection as a source of astrophysical noise. III. Sun-as-a-Star simulations and optimal noise diagnostics, Astrophys. J., Volume 879 (2019) no. 1, 55 | DOI

[24] S. Sulis; D. Mary; L. Bigot 3D magneto-hydrodynamical simulations of stellar convective noise for improved exoplanet detection. I. Case of regularly sampled radial velocity observations, Astron. Astrophys., Volume 635 (2020), A146 | DOI

[25] N. Meunier; A.-M. Lagrange; S. Borgniet; M. Rieutord Using the Sun to estimate Earth-like planet detection capabilities. VI. Simulation of granulation and supergranulation radial velocity and photometric time series, Astron. Astrophys., Volume 583 (2015), A118 | DOI

[26] N. Meunier; A.-M. Lagrange Unexpectedly strong effect of supergranulation on the detectability of Earth twins orbiting Sun-like stars with radial velocities, Astron. Astrophys., Volume 625 (2019), L6 | DOI

[27] N. Meunier; A.-M. Lagrange The effects of granulation and supergranulation on Earth-mass planet detectability in the habitable zone around F6-K4 stars, Astron. Astrophys., Volume 642 (2020), A157 | DOI

[28] A.-M. Lagrange; N. Meunier; M. Desort; F. Malbet Using the Sun to estimate Earth-like planets detection capabilities. III. Impact of spots and plages on astrometric detection, Astron. Astrophys., Volume 528 (2011), L9 | DOI

[29] V. V. Makarov; D. Parker; R. K. Ulrich Astrometric jitter of the Sun as a star, Astrophys. J., Volume 717 (2010), pp. 1202-1205 | DOI

[30] D. Queloz; F. Bouchy; C. Moutou et al. The CoRoT-7 planetary system: two orbiting super-Earths, Astron. Astrophys., Volume 506 (2009) no. 1, pp. 303-319 | DOI

[31] I. Boisse; F. Bouchy; G. Hébrard et al. Disentangling between stellar activity and planetary signals, Astron. Astrophys., Volume 528 (2011), A4 | DOI

[32] A. P. Hatzes; R. Dvorak; G. Wuchterl et al. An investigation into the radial velocity variations of CoRoT-7, Astron. Astrophys., Volume 520 (2010), A93 | DOI

[33] V. E. Moulds; C. A. Watson; X. Bonfils; S. P. Littlefair; E. K. Simpson Finding exoplanets orbiting young active stars—I. Technique, Mon. Not. R. Astron. Soc., Volume 430 (2013) no. 3, pp. 1709-1721 | DOI

[34] X. Dumusque; I. Boisse; N. C. Santos SOAP 2.0: A tool to estimate the photometric and radial velocity variations induced by stellar spots and plages, Astrophys. J., Volume 796 (2014), 132 | DOI

[35] E. Herrero; I. Ribas; C. Jordi et al. Modelling the photosphere of active stars for planet detection and characterization, Astron. Astrophys., Volume 586 (2016), A131 | DOI

[36] X. Dumusque; S. Udry; C. Lovis; N. C. Santos; M. J. P. F. G. Monteiro Planetary detection limits taking into account stellar noise. I. Observational strategies to reduce stellar oscillation and granulation effects, Astron. Astrophys., Volume 525 (2011), A140 | DOI

[37] S. Sulis; D. Mary; L. Bigot A bootstrap method for sinusoid detection in colored noise and uneven sampling. Application to exoplanet detection, Proceedings of the 25th European Signal Processing Conference (2017), pp. 1095-1099 | DOI

[38] D. Queloz; G. W. Henry; J. P. Sivan et al. No planet for HD 166435, Astron. Astrophys., Volume 379 (2001), pp. 279-287 | DOI

[39] J. C. Siegel; R. A. Rubenzahl; S. Halverson; A. W. Howard Into the depths: a new activity metric for high-precision radial velocity measurements based on line depth variations, Astron. J., Volume 163 (2022) no. 6, 260 | DOI

[40] I. Boisse; C. Moutou; A. Vidal-Madjar et al. Stellar activity of planetary host star HD 189 733, Astron. Astrophys., Volume 495 (2009), pp. 959-966 | DOI

[41] X. Dumusque; F. Pepe; C. Lovis et al. An Earth-mass planet orbiting α Centauri B, Nature, Volume 491 (2012), pp. 207-211 | DOI

[42] N. Meunier; A.-M. Lagrange Using the Sun to estimate Earth-like planets detection capabilities. IV. Correcting for the convective component, Astron. Astrophys., Volume 551 (2013), A101 | DOI

[43] V. Rajpaul; S. Aigrain; M. A. Osborne; S. Reece; S. Roberts A Gaussian process framework for modelling stellar activity signals in radial velocity data, Mon. Not. R. Astron. Soc., Volume 452 (2015), pp. 2269-2291 | DOI

[44] X. Dumusque; F. Borsa; M. Damasso et al. Radial-velocity fitting challenge. II. First results of the analysis of the data set, Astron. Astrophys., Volume 598 (2017), A133 | DOI

[45] L. Malavolta; A. W. Mayo; T. Louden et al. An ultra-short period rocky super-earth with a secondary eclipse and a neptune-like companion around K2-141, Astron. J., Volume 155 (2018) no. 3, 107 | DOI

[46] M. Damasso; A. S. Bonomo; N. Astudillo-Defru et al. Eyes on K2-3: A system of three likely sub-Neptunes characterized with HARPS-N and HARPS, Astron. Astrophys., Volume 615 (2018), A69 | DOI

[47] A. B. Davis; J. Cisewski; X. Dumusque; D. A. Fischer; E. B. Ford Insights on the spectral signatures of stellar activity and planets from PCA, Astrophys. J., Volume 846 (2017) no. 1, 59 | DOI

[48] É. M. Hébrard; J.-F. Donati; X. Delfosse et al. Modelling the RV jitter of early-M dwarfs using tomographic imaging, Mon. Not. R. Astron. Soc., Volume 461 (2016) no. 2, pp. 1465-1497 | DOI

[49] A. Collier Cameron; E. B. Ford; S. Shahaf et al. Separating planetary reflex Doppler shifts from stellar variability in the wavelength domain, Mon. Not. R. Astron. Soc., Volume 505 (2021) no. 2, pp. 1699-1717 | DOI

[50] S. E. Dodson-Robinson; V. R. Delgado; J. Harrell; C. L. Haley Magnitude-squared coherence: a powerful tool for disentangling doppler planet discoveries from stellar activity, Astron. J., Volume 163 (2022) no. 4, 169 | DOI

[51] N. Meunier; A.-M. Lagrange; L. Mbemba Kabuiku et al. Variability of stellar granulation and convective blueshift with spectral type and magnetic activity. I. K and G main sequence stars, Astron. Astrophys., Volume 597 (2017), A52 | DOI

[52] X. Dumusque Measuring precise radial velocities on individual spectral lines. I. Validation of the method and application to mitigate stellar activity, Astron. Astrophys., Volume 620 (2018), A47 | DOI

[53] M. Cretignier; X. Dumusque; R. Allart; F. Pepe; C. Lovis Measuring precise radial velocities on individual spectral lines. II. Dependance of stellar activity signal on line depth, Astron. Astrophys., Volume 633 (2020), A76 | DOI

[54] S. Bellotti; P. Petit; J. Morin et al. Mitigating stellar activity jitter with different line lists for least-squares deconvolution. Analysis of a parametric and a randomised line selection, Astron. Astrophys., Volume 657 (2022), A107 | DOI

[55] M. Cretignier; X. Dumusque; F. Pepe Stellar activity correction using PCA decomposition of shells, Astron. Astrophys., Volume 659 (2022), A68 | DOI

[56] L. Tal-Or; M. Zechmeister; A. Reiners et al. The CARMENES search for exoplanets around M dwarfs. Radial-velocity variations of active stars in visual-channel spectra, Astron. Astrophys., Volume 614 (2018), A122 | DOI

[57] S. Aigrain; F. Pont; S. Zucker A simple method to estimate radial velocity variations due to stellar activity using photometry, Mon. Not. R. Astron. Soc., Volume 419 (2012) no. 4, pp. 3147-3158 | DOI

[58] B. E. Nelson; E. B. Ford; J. Buchner et al. Quantifying the Bayesian evidence for a planet in radial velocity data, Astron. J., Volume 159 (2020) no. 2, 73 | DOI

[59] L. L. Zhao; D. A. Fischer; E. B. Ford et al. The EXPRES Stellar Signals Project II. State of the Field in Disentangling Photospheric Velocities, Astron. J., Volume 163 (2022) no. 4, 171 | DOI

[60] S. Sulis; D. Mary; L. Bigot A study of periodograms standardized using training datasets and application to exoplanet detection, IEEE Trans. Signal Process., Volume 65 (2017), pp. 2136-2150 | DOI | MR | Zbl

[61] N. C. Hara; J.-B. Delisle; N. Unger; X. Dumusque Testing whether a signal is strictly periodic. Application to disentangling planets and stellar activity in radial velocities, Astron. Astrophys., Volume 658 (2022), A177 | DOI

[62] N. C. Hara; N. Unger; J.-B. Delisle; R. F. Díaz; D. Ségransan Detecting exoplanets with the false inclusion probability. Comparison with other detection criteria in the context of radial velocities, Astron. Astrophys., Volume 663 (2022), A14 | DOI

[63] S. Sulis; D. Mary; L. Bigot; M. Deleuil Semi-supervised standardized detection of extrasolar planets, Astron. Astrophys., Volume 667 (2022), A104 | DOI

[64] N. Meunier Stellar variability in radial velocity, 2021 (preprint) | arXiv

[65] H. M. Cegla; C. A. Watson; T. R. Marsh et al. Stellar jitter from variable gravitational redshift: implications for radial velocity confirmation of habitable exoplanets, Mon. Not. R. Astron. Soc., Volume 421 (2012), p. L54-L58 | DOI

[66] V. V. Makarov Variability of surface flows on the Sun and the implications for exoplanet detection, Astrophys. J., Volume 715 (2010) no. 1, pp. 500-505 | DOI

[67] M. Desort; A.-M. Lagrange; F. Galland; S. Udry; M. Mayor Search for exoplanets with the radial-velocity technique: quantitative diagnostics of stellar activity, Astron. Astrophys., Volume 473 (2007), pp. 983-993 | DOI

[68] I. Boisse; X. Bonfils; N. C. Santos SOAP. A tool for the fast computation of photometry and radial velocity induced by stellar spots, Astron. Astrophys., Volume 545 (2012), A109 | DOI

[69] A. Reiners; D. Shulyak; G. Anglada-Escudé et al. Radial velocity signatures of Zeeman broadening, Astron. Astrophys., Volume 552 (2013), A103 | DOI

[70] W. J. Chaplin; H. M. Cegla; C. A. Watson; G. R. Davies; W. H. Ball Filtering solar-like oscillations for exoplanet detection in radial velocity observations, Astron. J., Volume 157 (2019) no. 4, 163 | DOI

[71] A. F. Lanza; L. Gizon; T. V. Zaqarashvili; Z.-C. Liang; K. Rodenbeck Sectoral r modes and periodic radial velocity variations of Sun-like stars, Astron. Astrophys., Volume 623 (2019), A50 | DOI

[72] P. L. Pallé; T. Roca Cortés; A. Jiménez; GOLF Team; Virgo Team The Sun as a Star: Background, Intensity and Velocity, Power Spectra and Convection, Stellar Structure: Theory and Test of Connective Energy Transport (A. Gimenez; E. F. Guinan; B. Montesinos, eds.) (Astronomical Society of the Pacific Conference Series), Volume 173, Astronomical Society of the Pacific, 1999, p. 297

[73] H. M. Cegla; C. A. Watson; S. Shelyag et al. Stellar surface magneto-convection as a source of astrophysical noise. II. Center-to-limb parameterization of absorption line profiles and comparison to observations, Astrophys. J., Volume 866 (2018), 55 | DOI

[74] H. Cegla The impact of stellar surface magnetoconvection and oscillations on the detection of temperate, earth-mass planets around sun-like stars, Geosciences, Volume 9 (2019), 114 | DOI

[75] J. W. Harvey High resolution helioseismolog, Probing the Depths of a Star: the Study of Solar Oscillation from Space (R. W. Noyes; E. J. Rhodes Jr., eds.), Volume 400, JPL, 1984, p. 327

[76] N. Meunier; R. Tkaczuk; T. Roudier Intensity variations inside supergranules, Astron. Astrophys., Volume 463 (2007), pp. 745-753 | DOI

[77] M. Rieutord; F. Rincon The Sun’s supergranulation, Living Rev. Sol. Phys., Volume 7 (2010), 2 | DOI

[78] F. Rincon; M. Rieutord The Sun’s supergranulation, Living Rev. Sol. Phys., Volume 15 (2018), 6 | DOI

[79] R. K. Ulrich Solar meridional circulation from doppler shifts of the Fe I line at 5250 Å as measured by the 150-foot solar tower telescope at the Mt. Wilson observatory, Astrophys. J., Volume 725 (2010) no. 1, pp. 658-669 | DOI

[80] D. Dravins; L. Lindegren; A. Nordlund Solar granulation—Influence of convection on spectral line asymmetries and wavelength shifts, Astron. Astrophys., Volume 96 (1981), pp. 345-364

[81] A. Jimenez; P. L. Palle; C. Regulo; T. Roca Cortes; G. R. Isaak The radial velocity of the sun as a star and the solar cycle, Adv. Space Res., Volume 6 (1986), pp. 89-92 | DOI

[82] D. Deming; C. Plymate On the apparent velocity of integrated sunlight. 2: 1983–1992 and comparisons with magnetograms, Astrophys. J., Volume 426 (1994), pp. 382-386 | DOI

[83] R. S. McMillan; T. L. Moore; M. L. Perry; P. H. Smith Radial velocity observations of the sun at night, Astrophys. J., Volume 403 (1993), pp. 801-809 | DOI

[84] N. Meunier; A.-M. Lagrange; K. De Bondt Comparison of different exoplanet mass detection limit methods using a sample of main-sequence intermediate-type stars, Astron. Astrophys., Volume 545 (2012), A87 | DOI

[85] N. Meunier; R. Pous; S. Sulis et al. Activity time series of old stars from late F to early K. V. Mass characterisation and exoplanet detectability in radial velocity, Astron. Astrophys. (2022) (in preparation)

[86] N. Meunier; L. Mignon; A.-M. Lagrange Variability in stellar granulation and convective blueshift with spectral type and magnetic activity. II. From young to old main-sequence K-G-F stars, Astron. Astrophys., Volume 607 (2017), A124 | DOI

[87] F. Liebing; S. V. Jeffers; A. Reiners; M. Zechmeister Convective blueshift strengths of 810 F to M solar-type stars, Astron. Astrophys., Volume 654 (2021), A168 | DOI

[88] N. Meunier; A.-M. Lagrange The impact of surface flows at different scales: exoplanet detectability in radial velocity and high-precision astrometry, SF2A-2021: Proceedings of the Annual Meeting of the French Society of Astronomy and Astrophysics (A. Siebert; A. Siebert; K. Baillié; E. Lagadec; N. Lagarde; J. Malzac; J.-B. Marquette; M. N’Diaye; J. Richard; O. Venot, eds.) (2021), pp. 371-374

[89] G. Bruno; M. Deleuil Stellar activity and transits, 2021 (preprint) | arXiv

[90] S. Czesla; K. F. Huber; U. Wolter; S. Schröter; J. H. M. M. Schmitt How stellar activity affects the size estimates of extrasolar planets, Astron. Astrophys., Volume 505 (2009) no. 3, pp. 1277-1282 | DOI

[91] R. D. Haywood; A. Collier Cameron; D. Queloz et al. Planets and stellar activity: hide and seek in the CoRoT-7 system, Mon. Not. R. Astron. Soc., Volume 443 (2014) no. 3, pp. 2517-2531 | DOI

[92] A. Silva-Valio; A. F. Lanza; R. Alonso; P. Barge Properties of starspots on CoRoT-2, Astron. Astrophys., Volume 510 (2010), A25 | DOI

[93] G. Bruno; M. Deleuil; J.-M. Almenara et al. Disentangling planetary and stellar activity features in the CoRoT-2 light curve, Astron. Astrophys., Volume 595 (2016), A89 | DOI

[94] A. Chiavassa; A. Caldas; F. Selsis et al. Measuring stellar granulation during planet transits, Astron. Astrophys., Volume 597 (2017), A94 | DOI

[95] S. Sulis; M. Lendl; S. Hofmeister et al. Mitigating flicker noise in high-precision photometry. I. Characterization of the noise structure, impact on the inferred transit parameters, and predictions for CHEOPS observations, Astron. Astrophys., Volume 636 (2020), A70 | DOI

[96] B. M. Morris; M. G. Bobra; E. Agol; Y. J. Lee; S. L. Hawley The stellar variability noise floor for transiting exoplanet photometry with PLATO, Mon. Not. R. Astron. Soc., Volume 493 (2020) no. 4, pp. 5489-5498 | DOI

[97] G. Bruno; N. K. Lewis; K. B. Stevenson et al. Starspot occultations in infrared transit spectroscopy: The case of WASP-52b, Astron. J., Volume 156 (2018) no. 3, 124 | DOI

[98] B. V. Rackham; D. Apai; M. S. Giampapa The transit light source effect: false spectral features and incorrect densities for M-dwarf transiting planets, Astrophys. J., Volume 853 (2018) no. 2, 122 | DOI

[99] B. V. Rackham; D. Apai; M. S. Giampapa The transit light source effect. II. The impact of stellar heterogeneity on transmission spectra of planets orbiting broadly Sun-like stars, Astron. J., Volume 157 (2019) no. 3, 96 | DOI

[100] N. Meunier; A.-M. Lagrange; S. Borgniet Activity time series of old stars from late F to early K. V. Effect on exoplanet detectability with high-precision astrometry, Astron. Astrophys., Volume 644 (2020), A77 | DOI

[101] The Theia Collaboration; C. Boehm; A. Krone-Martins; A. Amorim et al. Theia: Faint objects in motion or the new astrometry frontier, 2017 (preprint) | arXiv

[102] F. Malbet; C. Boehm; A. Krone-Martins et al. Faint objects in motion: the new frontier of high precision astrometry, Exp. Astron., Volume 51 (2021) no. 3, pp. 845-886 | DOI

[103] N. Meunier; A.-M. Lagrange A new estimation of astrometric exoplanet detection limits in the habitable zone around nearby stars, Astron. Astrophys., Volume 659 (2022), A104 | DOI

Cité par Sources :

Commentaires - Politique


Ces articles pourraient vous intéresser

Interactions of exoplanets with their environment

Antoine Strugarek

C. R. Phys (2023)


CoRoT pictures transiting exoplanets

Claire Moutou; Magali Deleuil

C. R. Géos (2015)


Evaporation, from exoplanets to exocomets

Alain Lecavelier des Etangs

C. R. Phys (2023)