Comptes Rendus
Hunting for Cold Exoplanets via Microlensing
[La chasse aux exoplanètes froides par la méthode des microlentilles]
Comptes Rendus. Physique, Online first (2023), pp. 1-12.

La méthode des microlentilles gravitationnelles permet de détecter des planètes à des distances allant de quelques centaines de parsecs jusqu’au centre de notre Galaxie. La sensibilité maximale est atteinte pour les systèmes situés à mi-chemin du centre galactique, avec des planètes orbitant autour de l’étoile lentille à une distance de quelques UA. C’est la seule méthode qui permet actuellement de sonder les exoplanètes dans la gamme de masse Terre-Saturne au-delà de la limite des glaces, là où les scénarios d’accrétion de coeur prédisent que la plupart des planètes massives se formeraient. Bien que le nombre de planètes détectées soit relativement modeste (environ 130 planètes à ce jour) comparé aux méthodes de vitesse radiale et de transit, les microlentilles sondent une partie de l’espace des paramètres (séparation de l’hôte par rapport à la masse de la planète), qui n’est accessible à moyen terme à aucune autre technique. Les microlentilles ont permis de découvrir la première super-Terre froide et la première planète Jupiter en orbite autour d’une naine blanche. Elles ont aussi détecté des Terres, super-Terres, Neptunes, Saturnes, Jupiters, super-Jupiters, naines brunes orbitant autour d’étoiles de la séquence principale dans la gamme de masse 0.08-1M . Cette approche a aussi permis d’observer des planètes circumbinaires, des Jupiters dans la zone habitable, le premier candidat exolune et des planètes soit non-liées à une étoile, soit sur des orbites très lointaines. Les microlentilles ont été les premièrs à montrer que la présence d’une planète est la règle pour les étoiles de notre galaxie et que les super-Terres et Neptunes sont plus abondantes que les planètes telluriques de plus petite masse. Les observations actuelles fourniront très prochainement la fonction de masse des planètes froides jusqu’à quelques masses terrestres. La phase suivante sera un grand relevé de 450 jours avec le télescope spatial Nancy Grace Roman de la NASA à partir de 2027. Il donnera plus de 3000 planètes et fournira la fonction de masse des planètes froides jusqu’à la masse de Mars. S’il est combiné à la mission spatiale Européenne Euclid, il sera en mesure de rechercher des planètes telluriques non-liées, de mesurer leur masse et leur abondance.

Microlensing can detect planets at distances ranging from a few hundred parsecs all the way to the Galactic center. The maximum sensitivity is reached for systems that are located half way to the galactic center, with planets orbiting the lens star at a separation of few AUs. It is the only method currently probing exoplanets in the Earth-Saturn mass range beyond the snow line, where the core accretion theory originally predicted that most massive planets would form. Although the number of detected planets is relatively modest (130 planets to date) compared to that discovered by radial velocity and transit methods, microlensing probes a part of the parameter space (host separation as a function of planet mass), which is mostly not accessible in the medium term to any other technique. Microlensing has discovered the first cold super-Earth, and the first Jupiter planet orbiting a white dwarf. It also detected a number of Earth, Super-Earth, Neptune, Saturn, Jupiter, super-Jupiter orbiting main sequence stars in the mass range 0.08-1M . It also observed circumbinary planets, Jupiter in the habitable zone, the first exomoon candidate and free-floating planets. It has shown that having a planet is the rule for stars in our galaxy and shown that super-Earth and Neptune are more abundant than smaller mass telluric planets. Ground based microlensing will provide soon the mass function of cold planets down to few Earth Masses. The next phase, is a 450 days survey with the NASA Nancy Grace Roman Space Telescope from 2027. It will detect 3000+ planets and provide the mass function of cold planets down to the mass of Mars. If combined with the European Euclid Space mission, we will be able to probe for free-floating telluric planets and measure their masses.

Reçu le :
Accepté le :
Première publication :
DOI : 10.5802/crphys.151
Keywords: Exoplanets, Gravitational Lensing, Observations, Detection of Exoplanets, Planetary Systems, Micro-lensing
Mot clés : Exoplanètes, lentilles gravitationnelles, observations, détection des exoplanètes, systèmes planétaires, micro-lentilles
Jean-Philippe Beaulieu 1, 2

1 Institut d’Astrophysique de Paris, Sorbonne Universite, CNRS UMR 7095, 98bis Boulevard Arago, 75015 Paris, France
2 School of Physical Sciences, University of Tasmania, Private Bag 37 Hobart, Tasmania 7001 Australia
Licence : CC-BY 4.0
Droits d'auteur : Les auteurs conservent leurs droits
@article{CRPHYS_2023__24_S2_A14_0,
     author = {Jean-Philippe Beaulieu},
     title = {Hunting for {Cold} {Exoplanets} via {Microlensing}},
     journal = {Comptes Rendus. Physique},
     publisher = {Acad\'emie des sciences, Paris},
     year = {2023},
     doi = {10.5802/crphys.151},
     language = {en},
     note = {Online first},
}
TY  - JOUR
AU  - Jean-Philippe Beaulieu
TI  - Hunting for Cold Exoplanets via Microlensing
JO  - Comptes Rendus. Physique
PY  - 2023
PB  - Académie des sciences, Paris
N1  - Online first
DO  - 10.5802/crphys.151
LA  - en
ID  - CRPHYS_2023__24_S2_A14_0
ER  - 
%0 Journal Article
%A Jean-Philippe Beaulieu
%T Hunting for Cold Exoplanets via Microlensing
%J Comptes Rendus. Physique
%D 2023
%I Académie des sciences, Paris
%Z Online first
%R 10.5802/crphys.151
%G en
%F CRPHYS_2023__24_S2_A14_0
Jean-Philippe Beaulieu. Hunting for Cold Exoplanets via Microlensing. Comptes Rendus. Physique, Online first (2023), pp. 1-12. doi : 10.5802/crphys.151.

[1] Bohdan Paczyński Gravitational microlensing by the galactic halo, Astrophys. J., Volume 304 (1986), pp. 1-5 | DOI

[2] Bohdan Paczyński Gravitational Microlensing in the Local Group, Annu. Rev. Astron. Astrophys., Volume 34 (1996), pp. 419-460 | DOI

[3] B. Scott Gaudi Microlensing Surveys for Exoplanets, Annu. Rev. Astron. Astrophys., Volume 50 (2012), pp. 411-453 | DOI

[4] Andrew Gould; Abraham Loeb Discovering Planetary Systems through Gravitational Microlenses, Astrophys. J., Volume 396 (1992), pp. 104-114 | DOI

[5] David P. Bennett; Sun Hong Rhie Detecting Earth-Mass Planets with Gravitational Microlensing, Astrophys. J., Volume 472 (1996), pp. 660-664 | DOI

[6] Kim Griest; Neda Safizadeh The Use of High-Magnification Microlensing Events in Discovering Extrasolar Planets, Astrophys. J., Volume 500 (1998) no. 1, pp. 37-50 | DOI

[7] V. Batista; Subo Dong; Andrew Gould et al. Mass measurement of a single unseen star and planetary detection efficiency for OGLE 2007-BLG-050, Astron. Astrophys., Volume 508 (2009) no. 1, pp. 467-478 | DOI

[8] Jean-Philippe Beaulieu; David P. Bennett; P. Fouqué et al. Discovery of a cool planet of 5.5 Earth masses through gravitational microlensing, Nature, Volume 439 (2006) no. 7075, pp. 437-440 | DOI

[9] I. A. Bond; A. Udalski; M. Jaroszyński et al. OGLE 2003-BLG-235/MOA 2003-BLG-53: A Planetary Microlensing Event, Astrophys. J., Volume 606 (2004) no. 2, p. L155-L158 | DOI

[10] A. Udalski; M. Jaroszyński; Bohdan Paczyński et al. A Jovian-Mass Planet in Microlensing Event OGLE-2005-BLG-071, Astrophys. J., Volume 628 (2005) no. 2, p. L109-L112 | DOI

[11] B. Scott Gaudi; David P. Bennett; A. Udalski et al. Discovery of a Jupiter/Saturn Analog with Gravitational Microlensing, Science, Volume 319 (2008) no. 5865, pp. 927-930 | DOI

[12] T. Sumi; David P. Bennett; I. A. Bond et al. A Cold Neptune-Mass Planet OGLE-2007-BLG-368Lb: Cold Neptunes Are Common, Astrophys. J., Volume 710 (2010) no. 2, pp. 1641-1653 | DOI

[13] Y. Muraki; Cheongho Han; David P. Bennett et al. Discovery and Mass Measurements of a Cold, 10 Earth Mass Planet and Its Host Star, Astrophys. J., Volume 741 (2011) no. 1, 22 | DOI

[14] D. Kubas; Jean-Philippe Beaulieu; David P. Bennett et al. A frozen super-Earth orbiting a star at the bottom of the main sequence, Astron. Astrophys., Volume 540 (2012), A78 | DOI

[15] David P. Bennett; Aparna Bhattacharya; J. Anderson et al. Confirmation of the Planetary Microlensing Signal and Star and Planet Mass Determinations for Event OGLE-2005-BLG-169, Astrophys. J., Volume 808 (2015) no. 2, 169 | DOI

[16] V. Batista; Jean-Philippe Beaulieu; David P. Bennett et al. Confirmation of the OGLE-2005-BLG-169 Planet Signature and Its Characteristics with Lens-Source Proper Motion Detection, Astrophys. J., Volume 808 (2015) no. 2, 170 | DOI

[17] R. A. Street; A. Udalski; S. Calchi Novati et al. Spitzer Parallax of OGLE-2015-BLG-0966: A Cold Neptune in the Galactic Disk, Astrophys. J., Volume 819 (2016) no. 2, 93 | DOI

[18] I. A. Bond; David P. Bennett; T. Sumi et al. The lowest mass ratio planetary microlens: OGLE 2016-BLG-1195Lb, Mon. Not. Roy. Astron. Soc., Volume 469 (2017) no. 2, pp. 2434-2440 | DOI

[19] Iona Kondo; Jennifer C. Yee; David P. Bennett et al. OGLE-2018-BLG-1185b: A Low-mass Microlensing Planet Orbiting a Low-mass Dwarf, Astron. J., Volume 162 (2021) no. 2, 77 | DOI

[20] J. W. Blackman; Jean-Philippe Beaulieu; A. A. Cole et al. OGLE-2017-BLG-1434Lb: Confirmation of a cold super-Earth using Keck adaptive optics, Astron. J., Volume 161 (2021) no. 6, 279 | DOI

[21] David P. Bennett; Sun Hong Rhie; A. Udalski et al. The First Circumbinary Planet Found by Microlensing: OGLE-2007-BLG-349L(AB)c, Astron. J., Volume 152 (2016) no. 5, 125 | DOI

[22] David P. Bennett; V. Batista; I. A. Bond et al. MOA-2011-BLG-262Lb: A Sub-Earth-Mass Moon Orbiting a Gas Giant Primary or a High Velocity Planetary System in the Galactic Bulge, Astrophys. J., Volume 785 (2014) no. 2, 155 | DOI

[23] Julia Janczak; A. Fukui; Subo Dong et al. Sub-Saturn Planet MOA-2008-BLG-310Lb: Likely to be in the Galactic Bulge, Astrophys. J., Volume 711 (2010) no. 2, pp. 731-743 | DOI

[24] Aparna Bhattacharya; David P. Bennett; J. Anderson et al. The Star Blended with the MOA-2008-BLG-310 Source Is Not the Exoplanet Host Star, Astron. J., Volume 154 (2017) no. 2, 59 | DOI

[25] Yoon-Hyun Ryu; J. C. Yee; A. Udalski et al. OGLE-2016-BLG-1190Lb: The First Spitzer Bulge Planet Lies Near the Planet/Brown-dwarf Boundary, Astron. J., Volume 155 (2018) no. 1, 40 | DOI

[26] Jean-Philippe Beaulieu; David P. Bennett; V. Batista et al. Revisiting the Microlensing Event OGLE 2012-BLG-0026: A Solar Mass Star with Two Cold Giant Planets, Astrophys. J., Volume 824 (2016) no. 2, 83 | DOI

[27] V. Batista; Jean-Philippe Beaulieu; Andrew Gould et al. MOA-2011-BLG-293Lb: First Microlensing Planet Possibly in the Habitable Zone, Astrophys. J., Volume 780 (2014) no. 1, 54 | DOI

[28] Subo Dong; Andrew Gould; Andrzej Udalski et al. OGLE-2005-BLG-071Lb, the Most Massive M Dwarf Planetary Companion?, Astrophys. J., Volume 695 (2009) no. 2, pp. 970-987 | DOI

[29] V. Batista; Andrew Gould; S. Dieters et al. MOA-2009-BLG-387Lb: a massive planet orbiting an M dwarf, Astron. Astrophys., Volume 529 (2011), A102 | DOI

[30] Gregory Laughlin; Peter Bodenheimer; Fred C. Adams The Core Accretion Model Predicts Few Jovian-Mass Planets Orbiting Red Dwarfs, Astrophys. J., Volume 612 (2004) no. 1, p. L73-L76 | DOI

[31] Shigeru Ida; D. N. C. Lin Toward a Deterministic Model of Planetary Formation. III. Mass Distribution of Short-Period Planets around Stars of Various Masses, Astrophys. J., Volume 626 (2005) no. 2, pp. 1045-1060 | DOI

[32] Y. Alibert; C. Mordasini; W. Benz; C. Winisdoerffer Models of giant planet formation with migration and disc evolution, Astron. Astrophys., Volume 434 (2005) no. 1, pp. 343-353 | DOI

[33] J. W. Blackman; Jean-Philippe Beaulieu; David P. Bennett et al. A Jovian analogue orbiting a white dwarf star, Nature, Volume 598 (2021) no. 7880, pp. 272-275 | DOI

[34] Andrew Gould; Subo Dong; B. Scott Gaudi et al. Frequency of Solar-like Systems and of Ice and Gas Giants Beyond the Snow Line from High-magnification Microlensing Events in 2005-2008, Astrophys. J., Volume 720 (2010) no. 2, pp. 1073-1089 | DOI

[35] Andrew Cumming; Diana Dragomir An integrated analysis of radial velocities in planet searches, Mon. Not. Roy. Astron. Soc., Volume 401 (2010) no. 2, pp. 1029-1042 | DOI

[36] Andrew W. Howard; Geoffrey W. Marcy; Stephen T. Bryson et al. Planet Occurrence within 0.25 AU of Solar-type Stars from Kepler, Astrophys. J., Suppl. Ser., Volume 201 (2012) no. 2, 15 | DOI

[37] M. Mayor; M. Marmier; C. Lovis et al. The HARPS search for southern extra-solar planets XXXIV. Occurrence, mass distribution and orbital properties of super-Earths and Neptune-mass planets (2011) (preprint, arXiv:1109.2497) | DOI

[38] Arnaud Cassan; D. Kubas; Jean-Philippe Beaulieu et al. One or more bound planets per Milky Way star from microlensing observations, Nature, Volume 481 (2012) no. 7380, pp. 167-169 | DOI

[39] Christopher J. Burke; Jessie L. Christiansen; F. Mullally et al. Terrestrial Planet Occurrence Rates for the Kepler GK Dwarf Sample, Astrophys. J., Volume 809 (2015) no. 1, 8 | DOI

[40] Daisuke Suzuki; David P. Bennett; T. Sumi et al. The Exoplanet Mass-ratio Function from the MOA-II Survey: Discovery of a Break and Likely Peak at a Neptune Mass, Astrophys. J., Volume 833 (2016), 145 | DOI

[41] Daisuke Suzuki; David P. Bennett; Shigeru Ida et al. Microlensing Results Challenge the Core Accretion Runaway Growth Scenario for Gas Giants, Astrophys. J. Lett., Volume 869 (2018) no. 2, L34 | DOI

[42] Christian Clanton; B. Scott Gaudi Synthesizing Exoplanet Demographics: A Single Population of Long-period Planetary Companions to M Dwarfs Consistent with Microlensing, Radial Velocity, and Direct Imaging Surveys, Astrophys. J., Volume 819 (2016) no. 2, 125 | DOI

[43] Wei Zhu; Subo Dong Exoplanet Statistics and Theoretical Implications, Annu. Rev. Astron. Astrophys., Volume 59 (2021), pp. 291-336 | DOI

[44] Cheongho Han; A. Udalski; Andrew Gould et al. OGLE-2015-BLG-0051/KMT-2015-BLG-0048Lb: A Giant Planet Orbiting a Low-mass Bulge Star Discovered by High-cadence Microlensing Surveys, Astron. J., Volume 152 (2016) no. 4, 95 | DOI

[45] Yiannis Tsapras; R. A. Street; M. Hundertmark et al. ROME/REA: A Gravitational Microlensing Search for Exoplanets Beyond the Snow Line on a Global Network of Robotic Telescopes, Publ. Astron. Soc. Pac., Volume 131 (2019) no. 1006, 124401 | DOI

[46] The Microlensing Observations in Astrophysics (MOA) Collaboration; The Optical Gravitational Lensing Experiment (OGLE) Collaboration Unbound or distant planetary mass population detected by gravitational microlensing, Nature, Volume 473 (2011) no. 7347, pp. 349-352 | DOI

[47] Przemek Mróz; Andrzej Udalski; Jan Skowron et al. No large population of unbound or wide-orbit Jupiter-mass planets, Nature, Volume 548 (2017) no. 7666, pp. 183-186 | DOI

[48] Przemek Mróz; Yoon-Hyun Ryu; Jan Skowron et al. A Neptune-mass Free-floating Planet Candidate Discovered by Microlensing Surveys, Astron. J., Volume 155 (2018) no. 3, 121 | DOI

[49] Przemek Mróz; Radosław Poleski; Cheongho Han et al. A Free-floating or Wide-orbit Planet in the Microlensing Event OGLE-2019-BLG-0551, Astron. J., Volume 159 (2020) no. 6, 262 | DOI

[50] Yoon-Hyun Ryu; Przemek Mróz; Andrew Gould et al. KMT-2017-BLG-2820 and the Nature of the Free-floating Planet Population, Astron. J., Volume 161 (2021) no. 3, 126 | DOI

[51] Hyoun-Woo Kim; Kyu-Ha Hwang; Andrew Gould et al. KMT-2019-BLG-2073: Fourth Free-floating Planet Candidate with θ E < 10 μas, Astron. J., Volume 162 (2021) no. 1, 15 | DOI

[52] Jean-Philippe Beaulieu Accurate Mass Measurements for Planetary Microlensing Events Using High Angular Resolution Observations, Universe, Volume 4 (2018) no. 4, 61 | DOI

[53] A. Udalski; J. C. Yee; Andrew Gould et al. Spitzer as a Microlens Parallax Satellite: Mass Measurement for the OGLE-2014-BLG-0124L Planet and its Host Star, Astrophys. J., Volume 799 (2015) no. 2, 237 | DOI

[54] S. Calchi Novati; Andrew Gould; A. Udalski; J. W. Menzies et al. Pathway to the Galactic Distribution of Planets: Combined Spitzer and Ground-Based Microlens Parallax Measurements of 21 Single-Lens Events, Astrophys. J., Volume 804 (2015) no. 1, 20 | DOI

[55] Y. Shvartzvald; J. C. Yee; S. Calchi Novati et al. An Earth-mass Planet in a 1 au Orbit around an Ultracool Dwarf, Astrophys. J. Lett., Volume 840 (2017) no. 1, L3 | DOI

[56] Naoki Koshimoto; David P. Bennett Evidence of Systematic Errors in Spitzer Microlens Parallax Measurements, Astron. J., Volume 160 (2020) no. 4, 177, p. 177 | DOI

[57] F. Mogavero; Jean-Philippe Beaulieu Microlensing planet detection via geosynchronous and low Earth orbit satellites, Astron. Astrophys., Volume 585 (2016), A62 | DOI

[58] Etienne Bachelet; Matthew T. Penny WFIRST and EUCLID: Enabling the Microlensing Parallax Measurement from Space, Astrophys. J. Lett., Volume 880 (2019) no. 2, L32 | DOI

[59] G. Bertelli; L. Girardi; P. Marigo; E. Nasi Scaled solar tracks and isochrones in a large region of the Z-Y plane. I. From the ZAMS to the TP-AGB end for 0.15-2.5 {M} ? stars, Astron. Astrophys., Volume 484 (2008) no. 3, pp. 815-830 | DOI

[60] Naoki Koshimoto; A. Udalski; Jean-Philippe Beaulieu et al. OGLE-2012-BLG-0950Lb: The First Planet Mass Measurement from Only Microlens Parallax and Lens Flux, Astron. J., Volume 153 (2017) no. 1, 1 | DOI

[61] Jean-Philippe Beaulieu; V. Batista; David P. Bennett et al. Combining Spitzer Parallax and Keck II Adaptive Optics Imaging to Measure the Mass of a Solar-like Star Orbited by a Cold Gaseous Planet Discovered by Microlensing, Astron. J., Volume 155 (2018) no. 2, 78 | DOI

[62] Aparna Bhattacharya; Jean-Philippe Beaulieu; David P. Bennett et al. WFIRST Exoplanet Mass-measurement Method Finds a Planetary Mass of 39 ± 8 M for OGLE-2012-BLG-0950Lb, Astron. J., Volume 156 (2018) no. 6, 289 | DOI

[63] Aparna Bhattacharya; David P. Bennett; Jean-Philippe Beaulieu et al. MOA-2007-BLG-400 A Super-Jupiter-mass Planet Orbiting a Galactic Bulge K-dwarf Revealed by Keck Adaptive Optics Imaging, Astron. J., Volume 162 (2021) no. 2, 60 | DOI

[64] Aikaterini Vandorou; David P. Bennett; Jean-Philippe Beaulieu et al. Revisiting MOA 2013-BLG-220L: A Solar-type Star with a Cold Super-Jupiter Companion, Astron. J., Volume 160 (2020) no. 3, 121 | DOI

[65] Arnaud Cassan; Clément Ranc Interferometric observation of microlensing events, Mon. Not. Roy. Astron. Soc., Volume 458 (2016) no. 2, pp. 2074-2079 | DOI

[66] Arnaud Cassan; Clément Ranc; Olivier Absil et al. Microlensing mass measurement from images of rotating gravitational arcs, Nat. Astron., Volume 6 (2022), pp. 121-128 | DOI

[67] Subo Dong; A. Mérand; F. Delplancke-Ströbele et al. First Resolution of Microlensed Images, Astrophys. J., Volume 871 (2019) no. 1, 70 | DOI

[68] Kailash C. Sahu; Jay Anderson; Stefano Casertano et al. An Isolated Stellar-Mass Black Hole Detected Through Astrometric Microlensing (2022) (preprint, arXiv:2201.13296) | DOI

[69] David P. Bennett; Sun Hong Rhie Simulation of a Space-based Microlensing Survey for Terrestrial Extrasolar Planets, Astrophys. J., Volume 574 (2002) no. 2, pp. 985-1003 | DOI

[70] Jean-Philippe Beaulieu; E. Kerins; S. Mao et al. Towards A Census of Earth-mass Exo-planets with Gravitational Microlensing (2008) (preprint, arXiv:0808.0005v1) | DOI

[71] Jean-Philippe Beaulieu; David P. Bennett; V. Batista et al. EUCLID: Dark Universe Probe and Microlensing Planet Hunter, Pathways Towards Habitable Planets (Vincent Coudé du Foresto; Dawn M. Gelino; Ignasi Ribas, eds.) (Astronomical Society of the Pacific Conference Series), Volume 430 (2010), pp. 266-271

[72] Jean-Philippe Beaulieu; David P. Bennett; Eamonn Kerins; Matthew T. Penny Towards habitable Earths with EUCLID and WFIRST, The Astrophysics of Planetary Systems: Formation, Structure, and Dynamical Evolution (Alessandro Sozzetti; Mario G. Lattanzi; Alan P. Boss, eds.), Volume 6, Cambridge University Press, 2011, pp. 349-353 | DOI

[73] R. Laureijs; J. Amiaux; S. Arduini et al. Euclid Definition Study Report (2011) (preprint, arXiv:1110.3193) | DOI

[74] Committee for a Decadal Survey of Astronomy & Astrophysics; National Research Council New Worlds, New Horizons in Astronomy and Astrophysics, National Academies Press, 2010 | DOI

[75] J. Green; P. Schechter; C. Baltay et al. Wide-Field InfraRed Survey Telescope (WFIRST) Final Report (2012) (preprint, arXiv:1208.4012) | DOI

[76] Matthew T. Penny; E. Kerins; N. Rattenbury et al. ExELS: an exoplanet legacy science proposal for the ESA Euclid mission - I. Cold exoplanets, Mon. Not. Roy. Astron. Soc., Volume 434 (2013) no. 1, pp. 2-22 | DOI

[77] D. Spergel; N. Gehrels; C. Baltay et al. Wide-Field InfrarRed Survey Telescope-Astrophysics Focused Telescope Assets WFIRST-AFTA 2015 Report (2015) (preprint, arXiv:1503.03757) | DOI

[78] Matthew T. Penny; B. Scott Gaudi; Eamonn Kerins et al. Predictions of the WFIRST Microlensing Survey. I. Bound Planet Detection Rates, Astrophys. J., Suppl. Ser., Volume 241 (2019) no. 1, 3 | DOI

[79] Etienne Bachelet; David Specht; Matthew T. Penny et al. Euclid-Roman joint microlensing survey: early mass measurement, free floating planets and exomoons (2022) (preprint, arXiv:2202.09475v1) | DOI

Cité par Sources :

Commentaires - Politique


Ces articles pourraient vous intéresser

Detection of exoplanets: exploiting each property of light

Daniel Rouan; Anne-Marie Lagrange

C. R. Phys (2023)


The Fourier–Kelvin Stellar Interferometer (FKSI)—A practical infrared space interferometer on the path to the discovery and characterization of Earth-like planets around nearby stars

William C. Danchi; Bruno Lopez

C. R. Phys (2007)


Planetary formation and early phases

Aurélien Crida

C. R. Phys (2023)