[Formation planétaire et phases précoces]
Les planètes se forment dans des disques proto-planétaires. Dans cette revue, nous allons d’abord aborder la structure et les propriétés de ces disques, puis les phénomènes multiples qui permettent d’aboutir au produit final : un système planétaire. Premièrement viennent les processus de sédimentation et coagulation de la poussière micrométrique. Ensuite, les interactions complexes entre le gaz et des agrégats de poussière centimétrique entrainent des phénomènes très efficaces tels l’instabilité de flux et la « pebble accretion » . Enfin, l’accrétion du gaz se fait sur des cœurs solides d’une dizaine de masses terrestres.
Une fois le disque de gaz dissipé, les planètes géantes dotées d’anneaux massifs peuvent former des satellites, les planètes telluriques s’assemblent à partir d’embryons, et des instabilités dynamiques globales donnent aux systèmes planétaires leur architecture finale.
Planets form in proto-planetary disks. In this review, we describe the structure and properties of such disks, and the various phenomenons that lead to the final product: a planetary system. First, micrometre dust settles and coagulates. Then, a complex interplay between the gas and centimetre aggregates leads to efficient phenomenons such as the streaming instability and the pebble accretion. Finally, gas accretion proceeds on ten Earth mass solid cores.
Once the gas disk is dissipated, giant planets may form satellites from massive rings, the terrestrial planets assemble from smaller embryos, and global dynamical instabilities give the planetary systems their final architecture.
Accepté le :
Première publication :
Publié le :
Mot clés : Disques proto-planétaires, formation des planètes, formation des satellites, migration planétaire, dynamique
Aurélien Crida 1
@article{CRPHYS_2023__24_S2_233_0, author = {Aur\'elien Crida}, title = {Planetary formation and early phases}, journal = {Comptes Rendus. Physique}, pages = {233--248}, publisher = {Acad\'emie des sciences, Paris}, volume = {24}, number = {S2}, year = {2023}, doi = {10.5802/crphys.161}, language = {en}, }
Aurélien Crida. Planetary formation and early phases. Comptes Rendus. Physique, Volume 24 (2023) no. S2, pp. 233-248. doi : 10.5802/crphys.161. https://comptes-rendus.academie-sciences.fr/physique/articles/10.5802/crphys.161/
[1] et al. Angular momentum profiles of Class 0 protostellar envelopes, Astron. Astrophys., Volume 637 (2020), A92 | DOI
[2] Formation of protoplanetary disk by gravitational collapse of a non-rotating, SF2A-2019: Proceedings of the Annual meeting of the French Society of Astronomy and Astrophysics (P. Di Matteo; O. Creevey; Aurélien Crida et al., eds.) (2019)
[3] What determines the formation and characteristics of protoplanetary discs?, Astron. Astrophys., Volume 635 (2020), A67 | DOI
[4] Initial Conditions of Planet Formation: Lifetimes of Primordial Disks, Exoplanets and Disks: Their Formation and Diversity (Tomonori Usuda; Motohide Tamura; Miki Ishii, eds.) (American Institute of Physics Conference Series), Volume 1158, American Institute of Physics (2009), pp. 3-10 | DOI
[5] Black holes in binary systems. Observational appearance., Astron. Astrophys., Volume 24 (1973), pp. 337-355
[6] A powerful local shear instability in weakly magnetized disks. I – Linear analysis. II – Nonlinear evolution, Astrophys. J., Volume 376 (1991), pp. 214-233 | DOI
[7] Angular momentum transport and large eddy simulations in magnetorotational turbulence: the small Pm limit, Astron. Astrophys., Volume 579 (2015), A117 | DOI
[8] The evolution of viscous discs and the origin of the nebular variables., Mon. Not. Roy. Astron. Soc., Volume 168 (1974), pp. 603-637
[9] Thanatology in protoplanetary discs. The combined influence of Ohmic, Hall, and ambipolar diffusion on dead zones, Astron. Astrophys., Volume 566 (2014), A56 | DOI
[10] Global simulations of protoplanetary disks with net magnetic flux. I. Non-ideal MHD case, Astron. Astrophys., Volume 600 (2017), A75 | DOI
[11] Spirals, gaps, cavities, gapities: What do planets do in discs?, SF2A-2016: Proceedings of the Annual meeting of the French Society of Astronomy and Astrophysics (C. Reylé; J. Richard; L. Cambrésy; M. Deleuil; E. Pécontal; L. Tresse; I. Vauglin, eds.) (2016), pp. 477-479
[12] et al. Kinematic Evidence for an Embedded Protoplanet in a Circumstellar Disk, Astrophys. J. Lett., Volume 860 (2018) no. 1, L13 | DOI
[13] et al. Discovery of a planetary-mass companion within the gap of the transition disk around PDS 70, Astron. Astrophys., Volume 617 (2018), A44
[14] et al. An Ideal Testbed for Planet-Disk Interaction: Two Giant Protoplanets in Resonance Shaping the PDS 70 Protoplanetary Disk, Astrophys. J. Lett., Volume 884 (2019) no. 2, L41 | DOI
[15] The outcome of protoplanetary dust growth: pebbles, boulders, or planetesimals?. I. Mapping the zoo of laboratory collision experiments, Astron. Astrophys., Volume 513 (2010), A56 | DOI
[16] Breaking through: The effects of a velocity distribution on barriers to dust growth, Astron. Astrophys., Volume 544 (2012), L16 | DOI
[17] Breaking through: the effects of a velocity distribution on barriers to dust growth (Corrigendum), Astron. Astrophys., Volume 548 (2012), C1 | DOI
[18] Aerodynamics of solid bodies in the solar nebula., Mon. Not. Roy. Astron. Soc., Volume 180 (1977), pp. 57-70 | DOI
[19] SPH simulations of grain growth in protoplanetary disks, Astron. Astrophys., Volume 487 (2008) no. 1, pp. 265-270 | DOI
[20] Dust Sedimentation and Self-sustained Kelvin–Helmholtz Turbulence in Protoplanetary Disk Midplanes, Astrophys. J., Volume 643 (2006), pp. 1219-1232 | DOI
[21] Gravoturbulent Formation of Planetesimals, Astrophys. J., Volume 636 (2006), pp. 1121-1134 | DOI
[22] et al. Rapid planetesimal formation in turbulent circumstellar disks, Nature, Volume 448 (2007), pp. 1022-1025 | DOI
[23] Protoplanetary Disk Turbulence Driven by the Streaming Instability: Nonlinear Saturation and Particle Concentration, Astrophys. J., Volume 662 (2007), pp. 627-641 | DOI
[24] Formation of Protoplanets from Planetesimals in the Solar Nebula, Icarus, Volume 143 (2000) no. 1, pp. 15-27 | DOI
[25] Oligarchic Growth of Protoplanets, Icarus, Volume 131 (1998) no. 1, pp. 171-178 | DOI
[26] Rapid growth of gas-giant cores by pebble accretion, Astron. Astrophys., Volume 544 (2012), A32 | DOI
[27] Forming Planets via Pebble Accretion, Annu. Rev. Earth Planet Sci., Volume 45 (2017), pp. 359-387 | DOI
[28] The great dichotomy of the Solar System: Small terrestrial embryos and massive giant planet cores, Icarus, Volume 258 (2015), pp. 418-429 | DOI
[29] The Effect of a Strong Pressure Bump in the Sun’s Natal Disk: Terrestrial Planet Formation via Planetesimal Accretion Rather than Pebble Accretion, Astrophys. J., Volume 915 (2021) no. 1, 62 | DOI
[30] Building Terrestrial Planets, Annu. Rev. Earth Planet Sci., Volume 40 (2012) no. 1, pp. 251-275 | DOI
[31] et al. A pebble accretion model for the formation of the terrestrial planets in the Solar System, Sci. adv., Volume 7 (2021) no. 8, p. eabc0444 | DOI
[32] et al. Pebble-isolation mass: Scaling law and implications for the formation of super-Earths and gas giants, Astron. Astrophys., Volume 612 (2018), A30 | DOI
[33] Critical Protoplanetary Core Masses in Protoplanetary Disks and the Formation of Short-Period Giant Planets, Astrophys. J., Volume 521 (1999) no. 2, pp. 823-838 | DOI
[34] Separating gas-giant and ice-giant planets by halting pebble accretion, Astron. Astrophys., Volume 572 (2014), A35 | DOI
[35] et al. Formation of the Giant Planets by Concurrent Accretion of Solids and Gas, Icarus, Volume 124 (1996), pp. 62-85 | DOI
[36] Reduced gas accretion on super-Earths and ice giants, Astron. Astrophys., Volume 606 (2017), A146 | DOI
[37] Quasi-static contraction during runaway gas accretion onto giant planets, Astron. Astrophys., Volume 630 (2019), A82 | DOI
[38] et al. The Exoplanet Mass-ratio Function from the MOA-II Survey: Discovery of a Break and Likely Peak at a Neptune Mass, Astrophys. J., Volume 833 (2016) no. 2, 145 | DOI
[39] et al. Microlensing Results Challenge the Core Accretion Runaway Growth Scenario for Gas Giants, Astrophys. J. Lett., Volume 869 (2018) no. 2, L34 | DOI
[40] Formation of the Galilean Satellites: Conditions of Accretion, Astron. J., Volume 124 (2002), pp. 3404-3423 | DOI
[41] A common mass scaling for satellite systems of gaseous planets, Nature, Volume 441 (2006), pp. 834-839 | DOI
[42] Origin of the Different Architectures of the Jovian and Saturnian Satellite Systems, Astrophys. J., Volume 714 (2010), pp. 1052-1064 | DOI
[43] Formation of the regular satellites of giant planets in an extended gaseous nebula I: subnebula model and accretion of satellites, Icarus, Volume 163 (2003), pp. 198-231 | DOI
[44] Formation of the regular satellites of giant planets in an extended gaseous nebula II: satellite migration and survival, Icarus, Volume 163 (2003), pp. 232-255 | DOI
[45] On the Viability of the Magnetorotational Instability in Circumplanetary Disks, Astrophys. J., Volume 785 (2014), 101 | DOI
[46] Orbital Evolution of Moons in Weakly Accreting Circumplanetary Disks, Astrophys. J., Volume 153 (2017) no. 4, 194 | DOI
[47] The recent formation of Saturn’s moonlets from viscous spreading of the main rings, Nature, Volume 465 (2010), pp. 752-754 | DOI
[48] Origin of Saturn’s rings and inner moons by mass removal from a lost Titan-sized satellite, Nature, Volume 468 (2010), pp. 943-946 | DOI
[49] Formation of Regular Satellites from Ancient Massive Rings in the Solar System, Science, Volume 338 (2012), p. 1196 | DOI
[50] et al. Resonance locking in giant planets indicated by the rapid orbital expansion of Titan, Nat. Astron., Volume 4 (2020), pp. 1053-1058 | DOI
[51] et al. Accretion of Phobos and Deimos in an extended debris disc stirred by transient moons, Nat. Geosci., Volume 9 (2016), pp. 581-583 | DOI
[52] Exoplanet recycling in massive white-dwarf debris discs, Mon. Not. Roy. Astron. Soc., Volume 480 (2018) no. 2, pp. 2784-2812 | DOI
[53] et al. Planet-Disk Interactions and Early Evolution of Planetary Systems, Protostars and Planets VI (2014), pp. 667-689 | DOI
[54] Tidal torques on accretion discs in binary systems with extreme mass ratios, Mon. Not. Roy. Astron. Soc., Volume 186 (1979), pp. 799-812
[55] Disk-satellite interactions, Astrophys. J., Volume 241 (1980), pp. 425-441 | DOI
[56] Protoplanet Migration by Nebula Tides, Icarus, Volume 126 (1997), pp. 261-281 | DOI
[57] Disk Surface Density Transitions as Protoplanet Traps, Astrophys. J., Volume 642 (2006), pp. 478-487 | DOI
[58] Halting type I planet migration in non-isothermal disks, Astron. Astrophys., Volume 459 (2006), p. L17-L20 | DOI
[59] On the Corotation Torque in a Radiatively Inefficient Disk, Astrophys. J., Volume 672 (2008), pp. 1054-1067 | DOI
[60] Migration of protoplanets in radiative discs, Astron. Astrophys., Volume 487 (2008), p. L9-L12 | DOI
[61] Dynamical corotation torques on low-mass planets, Mon. Not. Roy. Astron. Soc., Volume 444 (2014) no. 3, pp. 2031-2042 | DOI
[62] Coorbital thermal torques on low-mass protoplanets, Mon. Not. Roy. Astron. Soc., Volume 472 (2017), pp. 4204-4219 | DOI
[63] Stellar irradiated discs and implications on migration of embedded planets. I. Equilibrium discs, Astron. Astrophys., Volume 549 (2013), A124 | DOI
[64] Stellar irradiated discs and implications on migration of embedded planets. II. Accreting-discs, Astron. Astrophys., Volume 564 (2014), A135 | DOI
[65] Stellar irradiated discs and implications on migration of embedded planets. III. Viscosity transitions, Astron. Astrophys., Volume 570 (2014), A75 | DOI
[66] On the tidal interaction between protoplanets and the primordial solar nebula. II – Self-consistent nonlinear interaction, Astrophys. J., Volume 307 (1986), pp. 395-409 | DOI
[67] On the width and shape of gaps in protoplanetary disks, Icarus, Volume 181 (2006), pp. 587-604 | DOI
[68] Formation of a disc gap induced by a planet: effect of the deviation from Keplerian disc rotation, Mon. Not. Roy. Astron. Soc., Volume 448 (2015) no. 1, pp. 994-1006 | DOI
[69] Runaway gas accretion and gap opening versus type I migration, Icarus, Volume 285 (2017), pp. 145-154 | DOI
[70] On the tidal interaction between protoplanets and the protoplanetary disk. III – Orbital migration of protoplanets, Astrophys. J., Volume 309 (1986), pp. 846-857 | DOI
[71] Migration of massive planets in accreting disks, Astron. Astrophys., Volume 574 (2015), A52 | DOI
[72] Toward a new paradigm for Type II migration, Astron. Astrophys., Volume 617 (2018), A98 | DOI
[73] Orbital migration of the planetary companion of 51 Pegasi to its present location, Nature, Volume 380 (1996), pp. 606-607 | DOI
[74] Spin-orbit angle distribution and the origin of (mis)aligned hot Jupiters, Astron. Astrophys., Volume 567 (2014), A42 | DOI
[75] The growth of planets by pebble accretion in evolving protoplanetary discs, Astron. Astrophys., Volume 582 (2015), A112 | DOI
[76] et al. Migration of Jupiter-mass planets in low-viscosity discs, Astron. Astrophys., Volume 646 (2021), A166 | DOI
[77] et al. Migration of Jupiter mass planets in discs with laminar accretion flows, Astron. Astrophys., Volume 658 (2022), A32 | DOI
[78] Probing the impact of varied migration and gas accretion rates for the formation of giant planets in the pebble accretion scenario, Mon. Not. Roy. Astron. Soc., Volume 501 (2021) no. 2, pp. 2017-2028 | DOI
[79] Building giant-planet cores at a planet trap, Astron. Astrophys., Volume 478 (2008) no. 3, pp. 929-937 | DOI
[80] Capture into first-order resonances and long-term stability of pairs of equal-mass planets, Celest. Mech. Dyn. Astron., Volume 130 (2018) no. 8, 54 | DOI
[81] Migration of Earth-sized planets in 3D radiative discs, Mon. Not. Roy. Astron. Soc., Volume 440 (2014), pp. 683-695 | DOI
[82] Hot super-Earths and giant planet cores from different migration histories, Astron. Astrophys., Volume 569 (2014), A56 | DOI
[83] Reversing type II migration: resonance trapping of a lighter giant protoplanet, Mon. Not. Roy. Astron. Soc., Volume 320 (2001), p. L55-L59
[84] The dynamics of Jupiter and Saturn in the gaseous protoplanetary disk, Icarus, Volume 191 (2007), pp. 158-171
[85] Long Range Outward Migration of Giant Planets, with Application to Fomalhaut b, Astrophys. J. Lett., Volume 705 (2009) no. 2, p. L148-L152 | DOI
[86] A low mass for Mars from Jupiter’s early gas-driven migration, Nature, Volume 475 (2011), pp. 206-209 | DOI
[87] The Grand Tack model: a critical review, Complex Planetary Systems, Proceedings of the International Astronomical Union, Volume 310 (2014), pp. 194-203 | DOI
[88] Migration of pairs of giant planets in low-viscosity discs, Astron. Astrophys., Volume 672 (2023), A190 | DOI
[89] Building the terrestrial planets: Constrained accretion in the inner Solar System, Icarus, Volume 203 (2009) no. 2, pp. 644-662 | DOI
[90] Terrestrial Planet Formation at Home and Abroad, Protostars and Planets VI (2014), pp. 595-618 | DOI
[91] Origin of the Moon in a giant impact near the end of the Earth’s formation, Nature, Volume 412 (2001), pp. 708-712 | DOI
[92] et al. Highly siderophile elements in Earth’s mantle as a clock for the Moon-forming impact, Nature, Volume 508 (2014) no. 7494, pp. 84-87 | DOI
[93] The role of dissipative evolution for three-planet, near-resonant extrasolar systems, Astron. Astrophys., Volume 625 (2019), A7 | DOI
[94] The onset of instability in resonant chains, Mon. Not. Roy. Astron. Soc., Volume 494 (2020) no. 4, pp. 4950-4968 | DOI
[95] et al. Breaking the chains: hot super-Earth systems from migration and disruption of compact resonant chains, Mon. Not. Roy. Astron. Soc., Volume 470 (2017) no. 2, pp. 1750-1770 | DOI
[96] et al. Formation of planetary systems by pebble accretion and migration. Hot super-Earth systems from breaking compact resonant chains, Astron. Astrophys., Volume 650 (2021), A152 | DOI
[97] Young Solar System’s Fifth Giant Planet?, Astrophys. J. Lett., Volume 742 (2011) no. 2, L22 | DOI
[98] Instability-driven Dynamical Evolution Model of a Primordially Five-planet Outer Solar System, Astrophys. J. Lett., Volume 744 (2012) no. 1, L3 | DOI
[99] Dynamics of the Giant Planets of the Solar System in the Gaseous Protoplanetary Disk and Their Relationship to the Current Orbital Architecture, Astrophys. J., Volume 134 (2007), pp. 1790-1798 | DOI
[100] Late Orbital Instabilities in the Outer Planets Induced by Interaction with a Self-gravitating Planetesimal Disk, Astrophys. J., Volume 142 (2011), 152 | DOI
[101] Origin of the orbital architecture of the giant planets of the Solar System, Nature, Volume 435 (2005), pp. 459-461 | DOI
[102] Chaotic capture of Jupiter’s Trojan asteroids in the early Solar System, Nature, Volume 435 (2005), pp. 462-465 | DOI
[103] Origin of the cataclysmic Late Heavy Bombardment period of the terrestrial planets, Nature, Volume 435 (2005), pp. 466-469 | DOI
[104] Origin of the structure of the Kuiper belt during a dynamical instability in the orbits of Uranus and Neptune, Icarus, Volume 196 (2008), pp. 258-273 | DOI
[105] Capture of Irregular Satellites during Planetary Encounters, Astrophys. J., Volume 133 (2007), pp. 1962-1976 | DOI
[106] Planetary Population Synthesis, Handbook of Exoplanets (Hans J. Deeg; Juan Antonio Belmonte, eds.), 2018, 143, p. 143 | DOI
Cité par Sources :
Commentaires - Politique