Comptes Rendus
Planetary formation and early phases
[Formation planétaire et phases précoces]
Comptes Rendus. Physique, Online first (2023), pp. 1-16.

Les planètes se forment dans des disques proto-planétaires. Dans cette revue, nous allons d’abord aborder la structure et les propriétés de ces disques, puis les phénomènes multiples qui permettent d’aboutir au produit final  : un système planétaire. Premièrement viennent les processus de sédimentation et coagulation de la poussière micrométrique. Ensuite, les interactions complexes entre le gaz et des agrégats de poussière centimétrique entrainent des phénomènes très efficaces tels l’instabilité de flux et la «  pebble accretion » . Enfin, l’accrétion du gaz se fait sur des cœurs solides d’une dizaine de masses terrestres.

Une fois le disque de gaz dissipé, les planètes géantes dotées d’anneaux massifs peuvent former des satellites, les planètes telluriques s’assemblent à partir d’embryons, et des instabilités dynamiques globales donnent aux systèmes planétaires leur architecture finale.

Planets form in proto-planetary disks. In this review, we describe the structure and properties of such disks, and the various phenomenons that lead to the final product: a planetary system. First, micrometre dust settles and coagulates. Then, a complex interplay between the gas and centimetre aggregates leads to efficient phenomenons such as the streaming instability and the pebble accretion. Finally, gas accretion proceeds on ten Earth mass solid cores.

Once the gas disk is dissipated, giant planets may form satellites from massive rings, the terrestrial planets assemble from smaller embryos, and global dynamical instabilities give the planetary systems their final architecture.

Reçu le :
Accepté le :
Première publication :
DOI : 10.5802/crphys.161
Keywords: Proto-planetary disks, formation of planets, formation of satellites, planetary migration, dynamics
Mot clés : Disques proto-planétaires, formation des planètes, formation des satellites, migration planétaire, dynamique
Aurélien Crida 1

1 Université Côte d’Azur, Observatoire de la Côte d’Azur, CNRS, laboratoire Lagrange, Boulevard de l’observatoire, CS34229, 06304 Nice cedex 4, France
Licence : CC-BY 4.0
Droits d'auteur : Les auteurs conservent leurs droits
@article{CRPHYS_2023__24_S2_A16_0,
     author = {Aur\'elien Crida},
     title = {Planetary formation and early phases},
     journal = {Comptes Rendus. Physique},
     publisher = {Acad\'emie des sciences, Paris},
     year = {2023},
     doi = {10.5802/crphys.161},
     language = {en},
     note = {Online first},
}
TY  - JOUR
AU  - Aurélien Crida
TI  - Planetary formation and early phases
JO  - Comptes Rendus. Physique
PY  - 2023
PB  - Académie des sciences, Paris
N1  - Online first
DO  - 10.5802/crphys.161
LA  - en
ID  - CRPHYS_2023__24_S2_A16_0
ER  - 
%0 Journal Article
%A Aurélien Crida
%T Planetary formation and early phases
%J Comptes Rendus. Physique
%D 2023
%I Académie des sciences, Paris
%Z Online first
%R 10.5802/crphys.161
%G en
%F CRPHYS_2023__24_S2_A16_0
Aurélien Crida. Planetary formation and early phases. Comptes Rendus. Physique, Online first (2023), pp. 1-16. doi : 10.5802/crphys.161.

[1] M. Gaudel; A. J. Maury; A. Belloche et al. Angular momentum profiles of Class 0 protostellar envelopes, Astron. Astrophys., Volume 637 (2020), A92 | DOI

[2] A. Verliat; Patrick Hennebelle; A. J. Maury; M. Gaudel Formation of protoplanetary disk by gravitational collapse of a non-rotating, SF2A-2019: Proceedings of the Annual meeting of the French Society of Astronomy and Astrophysics (P. Di Matteo; O. Creevey; Aurélien Crida et al., eds.) (2019)

[3] Patrick Hennebelle; Benoit Commerçon; Yueh-Ning Lee; Sébastien Charnoz What determines the formation and characteristics of protoplanetary discs?, Astron. Astrophys., Volume 635 (2020), A67 | DOI

[4] Eric E. Mamajek Initial Conditions of Planet Formation: Lifetimes of Primordial Disks, Exoplanets and Disks: Their Formation and Diversity (Tomonori Usuda; Motohide Tamura; Miki Ishii, eds.) (American Institute of Physics Conference Series), Volume 1158, American Institute of Physics (2009), pp. 3-10 | DOI

[5] N. I. Shakura; R. A. Sunyaev Black holes in binary systems. Observational appearance., Astron. Astrophys., Volume 24 (1973), pp. 337-355

[6] S. A. Balbus; J. F. Hawley A powerful local shear instability in weakly magnetized disks. I – Linear analysis. II – Nonlinear evolution, Astrophys. J., Volume 376 (1991), pp. 214-233 | DOI

[7] Heloise Meheut; Sébastien Fromang; Geoffroy Lesur; Marc Joos; Pierre-Yves Longaretti Angular momentum transport and large eddy simulations in magnetorotational turbulence: the small Pm limit, Astron. Astrophys., Volume 579 (2015), A117 | DOI

[8] D. Lynden-Bell; J. E. Pringle The evolution of viscous discs and the origin of the nebular variables., Mon. Not. Roy. Astron. Soc., Volume 168 (1974), pp. 603-637 | DOI

[9] Geoffroy Lesur; Matthew W. Kunz; Sébastien Fromang Thanatology in protoplanetary discs. The combined influence of Ohmic, Hall, and ambipolar diffusion on dead zones, Astron. Astrophys., Volume 566 (2014), A56 | DOI

[10] William Béthune; Geoffroy Lesur; Jonathan Ferreira Global simulations of protoplanetary disks with net magnetic flux. I. Non-ideal MHD case, Astron. Astrophys., Volume 600 (2017), A75 | DOI

[11] Aurélien Crida Spirals, gaps, cavities, gapities: What do planets do in discs?, SF2A-2016: Proceedings of the Annual meeting of the French Society of Astronomy and Astrophysics (C. Reylé; J. Richard; L. Cambrésy; M. Deleuil; E. Pécontal; L. Tresse; I. Vauglin, eds.) (2016), pp. 477-479

[12] C. Pinte; D. J. Price; F. Ménard et al. Kinematic Evidence for an Embedded Protoplanet in a Circumstellar Disk, Astrophys. J. Lett., Volume 860 (2018) no. 1, L13 | DOI

[13] M. Keppler; M. Benisty; A. Müller et al. Discovery of a planetary-mass companion within the gap of the transition disk around PDS 70, Astron. Astrophys., Volume 617 (2018), A44 | DOI

[14] Jaehan Bae; Zhaohuan Zhu; Clément Baruteau et al. An Ideal Testbed for Planet-Disk Interaction: Two Giant Protoplanets in Resonance Shaping the PDS 70 Protoplanetary Disk, Astrophys. J. Lett., Volume 884 (2019) no. 2, L41 | DOI

[15] C. Güttler; J. Blum; A. Zsom; C. W. Ormel; C. P. Dullemond The outcome of protoplanetary dust growth: pebbles, boulders, or planetesimals?. I. Mapping the zoo of laboratory collision experiments, Astron. Astrophys., Volume 513 (2010), A56 | DOI

[16] F. Windmark; T. Birnstiel; C. W. Ormel; C. P. Dullemond Breaking through: The effects of a velocity distribution on barriers to dust growth, Astron. Astrophys., Volume 544 (2012), L16 | DOI

[17] F. Windmark; T. Birnstiel; C. W. Ormel; C. P. Dullemond Breaking through: the effects of a velocity distribution on barriers to dust growth (Corrigendum), Astron. Astrophys., Volume 548 (2012), C1 | DOI

[18] S. J. Weidenschilling Aerodynamics of solid bodies in the solar nebula., Mon. Not. Roy. Astron. Soc., Volume 180 (1977), pp. 57-70 | DOI

[19] G. Laibe; J.-F. Gonzalez; L. Fouchet; S. T. Maddison SPH simulations of grain growth in protoplanetary disks, Astron. Astrophys., Volume 487 (2008) no. 1, pp. 265-270 | DOI

[20] Anders Johansen; T. Henning; H. Klahr Dust Sedimentation and Self-sustained Kelvin–Helmholtz Turbulence in Protoplanetary Disk Midplanes, Astrophys. J., Volume 643 (2006), pp. 1219-1232 | DOI

[21] Anders Johansen; H. Klahr; T. Henning Gravoturbulent Formation of Planetesimals, Astrophys. J., Volume 636 (2006), pp. 1121-1134 | DOI

[22] Anders Johansen; J. S. Oishi; M.-M. Mac Low et al. Rapid planetesimal formation in turbulent circumstellar disks, Nature, Volume 448 (2007), pp. 1022-1025 | DOI

[23] Anders Johansen; A. Youdin Protoplanetary Disk Turbulence Driven by the Streaming Instability: Nonlinear Saturation and Particle Concentration, Astrophys. J., Volume 662 (2007), pp. 627-641 | DOI

[24] Eiichiro Kokubo; Shigeru Ida Formation of Protoplanets from Planetesimals in the Solar Nebula, Icarus, Volume 143 (2000) no. 1, pp. 15-27 | DOI

[25] Eiichiro Kokubo; Shigeru Ida Oligarchic Growth of Protoplanets, Icarus, Volume 131 (1998) no. 1, pp. 171-178 | DOI

[26] Michiel Lambrechts; Anders Johansen Rapid growth of gas-giant cores by pebble accretion, Astron. Astrophys., Volume 544 (2012), A32 | DOI

[27] Anders Johansen; Michiel Lambrechts Forming Planets via Pebble Accretion, Annu. Rev. Earth Planet Sci., Volume 45 (2017), pp. 359-387 | DOI

[28] Alessandro Morbidelli; Michiel Lambrechts; Seth A. Jacobson; Bertram Bitsch The great dichotomy of the Solar System: Small terrestrial embryos and massive giant planet cores, Icarus, Volume 258 (2015), pp. 418-429 | DOI

[29] André Izidoro; Bertram Bitsch; Rajdeep Dasgupta The Effect of a Strong Pressure Bump in the Sun’s Natal Disk: Terrestrial Planet Formation via Planetesimal Accretion Rather than Pebble Accretion, Astrophys. J., Volume 915 (2021) no. 1, 62 | DOI

[30] Alessandro Morbidelli; J. I. Lunine; David P. O’Brien; Sean N. Raymond; Kevin J. Walsh Building Terrestrial Planets, Annu. Rev. Earth Planet Sci., Volume 40 (2012) no. 1, pp. 251-275 | DOI

[31] Anders Johansen; Thomas Ronnet; Martin Bizzarro et al. A pebble accretion model for the formation of the terrestrial planets in the Solar System, Sci. adv., Volume 7 (2021) no. 8, p. eabc0444 | DOI

[32] Bertram Bitsch; Alessandro Morbidelli; Anders Johansen et al. Pebble-isolation mass: Scaling law and implications for the formation of super-Earths and gas giants, Astron. Astrophys., Volume 612 (2018), A30 | DOI

[33] John C. B. Papaloizou; Caroline Terquem Critical Protoplanetary Core Masses in Protoplanetary Disks and the Formation of Short-Period Giant Planets, Astrophys. J., Volume 521 (1999) no. 2, pp. 823-838 | DOI

[34] Michiel Lambrechts; Anders Johansen; Alessandro Morbidelli Separating gas-giant and ice-giant planets by halting pebble accretion, Astron. Astrophys., Volume 572 (2014), A35 | DOI

[35] J. B. Pollack; O. Hubickyj; P. Bodenheimer et al. Formation of the Giant Planets by Concurrent Accretion of Solids and Gas, Icarus, Volume 124 (1996), pp. 62-85 | DOI

[36] Michiel Lambrechts; Elena Lega Reduced gas accretion on super-Earths and ice giants, Astron. Astrophys., Volume 606 (2017), A146 | DOI

[37] Michiel Lambrechts; Elena Lega; R. P. Nelson; Aurélien Crida; Alessandro Morbidelli Quasi-static contraction during runaway gas accretion onto giant planets, Astron. Astrophys., Volume 630 (2019), A82 | DOI

[38] Daisuke Suzuki; David P. Bennett; T. Sumi et al. The Exoplanet Mass-ratio Function from the MOA-II Survey: Discovery of a Break and Likely Peak at a Neptune Mass, Astrophys. J., Volume 833 (2016) no. 2, 145 | DOI

[39] Daisuke Suzuki; David P. Bennett; Shigeru Ida et al. Microlensing Results Challenge the Core Accretion Runaway Growth Scenario for Gas Giants, Astrophys. J. Lett., Volume 869 (2018) no. 2, L34 | DOI

[40] R. M. Canup; W. R. Ward Formation of the Galilean Satellites: Conditions of Accretion, Astron. J., Volume 124 (2002), pp. 3404-3423 | DOI

[41] R. M. Canup; W. R. Ward A common mass scaling for satellite systems of gaseous planets, Nature, Volume 441 (2006), pp. 834-839 | DOI

[42] T. Sasaki; G. R. Stewart; S. Ida Origin of the Different Architectures of the Jovian and Saturnian Satellite Systems, Astrophys. J., Volume 714 (2010), pp. 1052-1064 | DOI

[43] I. Mosqueira; P. R. Estrada Formation of the regular satellites of giant planets in an extended gaseous nebula I: subnebula model and accretion of satellites, Icarus, Volume 163 (2003), pp. 198-231 | DOI

[44] I. Mosqueira; P. R. Estrada Formation of the regular satellites of giant planets in an extended gaseous nebula II: satellite migration and survival, Icarus, Volume 163 (2003), pp. 232-255 | DOI

[45] Yuri I. Fujii; S. Okuzumi; T. Tanigawa; S.-i. Inutsuka On the Viability of the Magnetorotational Instability in Circumplanetary Disks, Astrophys. J., Volume 785 (2014), 101 | DOI

[46] Yuri I. Fujii; Hiroshi Kobayashi; Sanemichi Z. Takahashi; Oliver Gressel Orbital Evolution of Moons in Weakly Accreting Circumplanetary Disks, Astrophys. J., Volume 153 (2017) no. 4, 194 | DOI

[47] Sébastien Charnoz; J. Salmon; Aurélien Crida The recent formation of Saturn’s moonlets from viscous spreading of the main rings, Nature, Volume 465 (2010), pp. 752-754 | DOI

[48] R. M. Canup Origin of Saturn’s rings and inner moons by mass removal from a lost Titan-sized satellite, Nature, Volume 468 (2010), pp. 943-946 | DOI

[49] Aurélien Crida; Sébastien Charnoz Formation of Regular Satellites from Ancient Massive Rings in the Solar System, Science, Volume 338 (2012), p. 1196 | DOI

[50] Valéry Lainey; Luis Gomez Casajus; Jim Fuller et al. Resonance locking in giant planets indicated by the rapid orbital expansion of Titan, Nat. Astron., Volume 4 (2020), pp. 1053-1058 | DOI

[51] P. Rosenblatt; Sébastien Charnoz; K. M. Dunseath et al. Accretion of Phobos and Deimos in an extended debris disc stirred by transient moons, Nat. Geosci., Volume 9 (2016), pp. 581-583 | DOI

[52] R. van Lieshout; Q. Kral; Sébastien Charnoz; M. C. Wyatt; A. Shannon Exoplanet recycling in massive white-dwarf debris discs, Mon. Not. Roy. Astron. Soc., Volume 480 (2018) no. 2, pp. 2784-2812 | DOI

[53] Clément Baruteau; Aurélien Crida; S.-J. Paardekooper et al. Planet-Disk Interactions and Early Evolution of Planetary Systems, Protostars and Planets VI (2014), pp. 667-689 | DOI

[54] D. N. C. Lin; John C. B. Papaloizou Tidal torques on accretion discs in binary systems with extreme mass ratios, Mon. Not. Roy. Astron. Soc., Volume 186 (1979), pp. 799-812 | DOI | Zbl

[55] P. Goldreich; S. Tremaine Disk-satellite interactions, Astrophys. J., Volume 241 (1980), pp. 425-441 | DOI | MR

[56] W. R. Ward Protoplanet Migration by Nebula Tides, Icarus, Volume 126 (1997), pp. 261-281 | DOI

[57] Frédéric S. Masset; Alessandro Morbidelli; Aurélien Crida; Jonathan Ferreira Disk Surface Density Transitions as Protoplanet Traps, Astrophys. J., Volume 642 (2006), pp. 478-487 | DOI

[58] S.-J. Paardekooper; G. Mellema Halting type I planet migration in non-isothermal disks, Astron. Astrophys., Volume 459 (2006), p. L17-L20 | DOI

[59] Clément Baruteau; Frédéric S. Masset On the Corotation Torque in a Radiatively Inefficient Disk, Astrophys. J., Volume 672 (2008), pp. 1054-1067 | DOI

[60] W. Kley; Aurélien Crida Migration of protoplanets in radiative discs, Astron. Astrophys., Volume 487 (2008), p. L9-L12 | DOI

[61] S.-J. Paardekooper Dynamical corotation torques on low-mass planets, Mon. Not. Roy. Astron. Soc., Volume 444 (2014) no. 3, pp. 2031-2042 | DOI

[62] Frédéric S. Masset Coorbital thermal torques on low-mass protoplanets, Mon. Not. Roy. Astron. Soc., Volume 472 (2017), pp. 4204-4219 | DOI

[63] Bertram Bitsch; Aurélien Crida; Alessandro Morbidelli; W. Kley; I. Dobbs-Dixon Stellar irradiated discs and implications on migration of embedded planets. I. Equilibrium discs, Astron. Astrophys., Volume 549 (2013), A124 | DOI

[64] Bertram Bitsch; Alessandro Morbidelli; Elena Lega; Aurélien Crida Stellar irradiated discs and implications on migration of embedded planets. II. Accreting-discs, Astron. Astrophys., Volume 564 (2014), A135 | DOI

[65] Bertram Bitsch; Alessandro Morbidelli; Elena Lega; K. Kretke; Aurélien Crida Stellar irradiated discs and implications on migration of embedded planets. III. Viscosity transitions, Astron. Astrophys., Volume 570 (2014), A75 | DOI

[66] D. N. C. Lin; John C. B. Papaloizou On the tidal interaction between protoplanets and the primordial solar nebula. II – Self-consistent nonlinear interaction, Astrophys. J., Volume 307 (1986), pp. 395-409 | DOI

[67] Aurélien Crida; Alessandro Morbidelli; Frédéric S. Masset On the width and shape of gaps in protoplanetary disks, Icarus, Volume 181 (2006), pp. 587-604 | DOI

[68] K. D. Kanagawa; H. Tanaka; T. Muto; T. Tanigawa; T. Takeuchi Formation of a disc gap induced by a planet: effect of the deviation from Keplerian disc rotation, Mon. Not. Roy. Astron. Soc., Volume 448 (2015) no. 1, pp. 994-1006 | DOI

[69] Aurélien Crida; Bertram Bitsch Runaway gas accretion and gap opening versus type I migration, Icarus, Volume 285 (2017), pp. 145-154 | DOI

[70] D. N. C. Lin; John C. B. Papaloizou On the tidal interaction between protoplanets and the protoplanetary disk. III – Orbital migration of protoplanets, Astrophys. J., Volume 309 (1986), pp. 846-857 | DOI

[71] C. Dürmann; W. Kley Migration of massive planets in accreting disks, Astron. Astrophys., Volume 574 (2015), A52 | DOI

[72] C. M. T. Robert; Aurélien Crida; Elena Lega; H. Méheut; Alessandro Morbidelli Toward a new paradigm for Type II migration, Astron. Astrophys., Volume 617 (2018), A98 | DOI

[73] D. N. C. Lin; P. Bodenheimer; D. C. Richardson Orbital migration of the planetary companion of 51 Pegasi to its present location, Nature, Volume 380 (1996), pp. 606-607 | DOI

[74] Aurélien Crida; Konstantin Batygin Spin-orbit angle distribution and the origin of (mis)aligned hot Jupiters, Astron. Astrophys., Volume 567 (2014), A42 | DOI

[75] Bertram Bitsch; Michiel Lambrechts; Anders Johansen The growth of planets by pebble accretion in evolving protoplanetary discs, Astron. Astrophys., Volume 582 (2015), A112 | DOI

[76] Elena Lega; R. P. Nelson; Alessandro Morbidelli et al. Migration of Jupiter-mass planets in low-viscosity discs, Astron. Astrophys., Volume 646 (2021), A166 | DOI

[77] Elena Lega; Alessandro Morbidelli; R. P. Nelson et al. Migration of Jupiter mass planets in discs with laminar accretion flows, Astron. Astrophys., Volume 658 (2022), A32 | DOI

[78] N. Ndugu; Bertram Bitsch; Alessandro Morbidelli; Aurélien Crida; E. Jurua Probing the impact of varied migration and gas accretion rates for the formation of giant planets in the pebble accretion scenario, Mon. Not. Roy. Astron. Soc., Volume 501 (2021) no. 2, pp. 2017-2028 | DOI

[79] Alessandro Morbidelli; Aurélien Crida; Frédéric S. Masset; R. P. Nelson Building giant-planet cores at a planet trap, Astron. Astrophys., Volume 478 (2008) no. 3, pp. 929-937 | DOI

[80] Gabriele Pichierri; Alessandro Morbidelli; Aurélien Crida Capture into first-order resonances and long-term stability of pairs of equal-mass planets, Celest. Mech. Dyn. Astron., Volume 130 (2018) no. 8, 54 | DOI | MR | Zbl

[81] Elena Lega; Aurélien Crida; Bertram Bitsch; Alessandro Morbidelli Migration of Earth-sized planets in 3D radiative discs, Mon. Not. Roy. Astron. Soc., Volume 440 (2014), pp. 683-695 | DOI

[82] Christophe Cossou; Sean N. Raymond; Franck Hersant; Arnaud Pierens Hot super-Earths and giant planet cores from different migration histories, Astron. Astrophys., Volume 569 (2014), A56 | DOI

[83] Frédéric S. Masset; M. Snellgrove Reversing type II migration: resonance trapping of a lighter giant protoplanet, Mon. Not. Roy. Astron. Soc., Volume 320 (2001), p. L55-L59 | DOI

[84] Alessandro Morbidelli; Aurélien Crida The dynamics of Jupiter and Saturn in the gaseous protoplanetary disk, Icarus, Volume 191 (2007), pp. 158-171 | DOI

[85] Aurélien Crida; Frédéric S. Masset; Alessandro Morbidelli Long Range Outward Migration of Giant Planets, with Application to Fomalhaut b, Astrophys. J. Lett., Volume 705 (2009) no. 2, p. L148-L152 | DOI

[86] Kevin J. Walsh; Alessandro Morbidelli; Sean N. Raymond; David P. O’Brien; A. M. Mandell A low mass for Mars from Jupiter’s early gas-driven migration, Nature, Volume 475 (2011), pp. 206-209 | DOI

[87] Sean N. Raymond; Alessandro Morbidelli The Grand Tack model: a critical review, Complex Planetary Systems, Proceedings of the International Astronomical Union, Volume 310 (2014), pp. 194-203 | DOI

[88] P. Griveaud; Aurélien Crida; Elena Lega Migration of pairs of giant planets in low-viscosity discs, Astron. Astrophys., Volume 672 (2023), A190 | DOI

[89] Sean N. Raymond; David P. O’Brien; Alessandro Morbidelli; Nathan A. Kaib Building the terrestrial planets: Constrained accretion in the inner Solar System, Icarus, Volume 203 (2009) no. 2, pp. 644-662 | DOI

[90] Sean N. Raymond; Eiichiro Kokubo; Alessandro Morbidelli; R. Morishima; Kevin J. Walsh Terrestrial Planet Formation at Home and Abroad, Protostars and Planets VI (2014), pp. 595-618 | DOI

[91] R. M. Canup; E. Asphaug Origin of the Moon in a giant impact near the end of the Earth’s formation, Nature, Volume 412 (2001), pp. 708-712 | DOI

[92] Seth A. Jacobson; Alessandro Morbidelli; Sean N. Raymond et al. Highly siderophile elements in Earth’s mantle as a clock for the Moon-forming impact, Nature, Volume 508 (2014) no. 7494, pp. 84-87 | DOI

[93] Gabriele Pichierri; Konstantin Batygin; Alessandro Morbidelli The role of dissipative evolution for three-planet, near-resonant extrasolar systems, Astron. Astrophys., Volume 625 (2019), A7 | DOI

[94] Gabriele Pichierri; Alessandro Morbidelli The onset of instability in resonant chains, Mon. Not. Roy. Astron. Soc., Volume 494 (2020) no. 4, pp. 4950-4968 | DOI

[95] André Izidoro; Masahiro Ogihara; Sean N. Raymond et al. Breaking the chains: hot super-Earth systems from migration and disruption of compact resonant chains, Mon. Not. Roy. Astron. Soc., Volume 470 (2017) no. 2, pp. 1750-1770 | DOI

[96] André Izidoro; Bertram Bitsch; Sean N. Raymond et al. Formation of planetary systems by pebble accretion and migration. Hot super-Earth systems from breaking compact resonant chains, Astron. Astrophys., Volume 650 (2021), A152 | DOI

[97] David Nesvorný Young Solar System’s Fifth Giant Planet?, Astrophys. J. Lett., Volume 742 (2011) no. 2, L22 | DOI

[98] Konstantin Batygin; Michael E. Brown; Hayden Betts Instability-driven Dynamical Evolution Model of a Primordially Five-planet Outer Solar System, Astrophys. J. Lett., Volume 744 (2012) no. 1, L3 | DOI

[99] Alessandro Morbidelli; K. Tsiganis; Aurélien Crida; H. F. Levison; R. Gomes Dynamics of the Giant Planets of the Solar System in the Gaseous Protoplanetary Disk and Their Relationship to the Current Orbital Architecture, Astrophys. J., Volume 134 (2007), pp. 1790-1798 | DOI

[100] H. F. Levison; Alessandro Morbidelli; K. Tsiganis; David Nesvorný; R. Gomes Late Orbital Instabilities in the Outer Planets Induced by Interaction with a Self-gravitating Planetesimal Disk, Astrophys. J., Volume 142 (2011), 152 | DOI

[101] K. Tsiganis; R. Gomes; Alessandro Morbidelli; H. F. Levison Origin of the orbital architecture of the giant planets of the Solar System, Nature, Volume 435 (2005), pp. 459-461 | DOI

[102] Alessandro Morbidelli; H. F. Levison; K. Tsiganis; R. Gomes Chaotic capture of Jupiter’s Trojan asteroids in the early Solar System, Nature, Volume 435 (2005), pp. 462-465 | DOI

[103] R. Gomes; H. F. Levison; K. Tsiganis; Alessandro Morbidelli Origin of the cataclysmic Late Heavy Bombardment period of the terrestrial planets, Nature, Volume 435 (2005), pp. 466-469 | DOI

[104] H. F. Levison; Alessandro Morbidelli; C. Van Laerhoven; R. Gomes; K. Tsiganis Origin of the structure of the Kuiper belt during a dynamical instability in the orbits of Uranus and Neptune, Icarus, Volume 196 (2008), pp. 258-273 | DOI

[105] David Nesvorný; D. Vokrouhlický; Alessandro Morbidelli Capture of Irregular Satellites during Planetary Encounters, Astrophys. J., Volume 133 (2007), pp. 1962-1976 | DOI

[106] Christoph Mordasini Planetary Population Synthesis, Handbook of Exoplanets (Hans J. Deeg; Juan Antonio Belmonte, eds.), 2018, 143, p. 143 | DOI

Cité par Sources :

Commentaires - Politique


Ces articles pourraient vous intéresser

A coherent and comprehensive model of the evolution of the outer Solar System

Alessandro Morbidelli

C. R. Phys (2010)


Impacts in the primordial history of terrestrial planets

Alessandro Morbidelli

C. R. Géos (2007)


Direct imaging of exoplanets: Legacy and prospects

Gael Chauvin

C. R. Phys (2023)