Comptes Rendus
Doppler cross-correlation spectroscopy as a path to the detection of Earth-like planets
[Spectroscopie Doppler par corrélation croisée : une possibilité pour détecter des planètes similaires à la Terre]
Comptes Rendus. Physique, Volume 24 (2023) no. S2, pp. 27-36.

Au milieu du 20ème siècle, un changement de paradigme est apparu concernant la fréquence attendue des systèmes planétaires dans la galaxie ...un changement induit par l’observation des vitesses de rotation des étoiles de la séquence principale basse (Struve 1952) !

A la même époque, Fellgett (1955) propose de concentrer l’information Doppler diluée sur plusieurs dizaines de milliers de raies d’absorption pour permettre la mesure précise des vitesses stellaires. Cette idée a permis d’améliorer l’efficacité des mesures de vitesse radiale d’un facteur supérieur à 1000. Progressivement, la précision de la nouvelle génération de spectrographes utilisant la corrélation croisée est améliorée de 300 m/s à 0,1 m/s. ...Une idée qui contribuera de manière importante à la découverte de 51 Pegasi b et de plusieurs centaines de systèmes planétaires.

Les spectrographes à corrélation croisée dans le visible ou l’infrarouge seront-ils aujourd’hui capables de détecter des planètes rocheuses dans la zone habitable associée à leur étoile hôte ?

In the middle of the 20th century, a paradigm shift appeared concerning the expected frequency of planetary systems in the galaxy ...a shift induced by the observation of the rotational velocities of low main sequence stars (Struve 1952)!

At the same time, Fellgett (1955) proposed to concentrate the diluted Doppler information on several tens of thousands of absorption lines to allow the precise measurement of stellar velocities. This idea improved the efficiency of radial velocity measurements by a factor of over 1000. Gradually the accuracy of the new generation of spectrographs using cross-correlation is improved from 300 m/s to 0.1 m/s. ...An idea that will contribute in an important way to the discovery of 51 Pegasi b and several hundreds of planetary systems.

Will visible or infrared cross-correlation spectrographs today be able to detect rocky planets in the habitable zone associated with their host star?

Reçu le :
Accepté le :
Première publication :
Publié le :
DOI : 10.5802/crphys.153
Keywords: Astronomy, Planetology, Exoplanets, Exobiology, Velocimetry
Mot clés : Astronomie, Planétologie, Exoplanètes, Exobiologie, Vélocimétrie

Michel Mayor 1

1 Astronomy Department, University of Geneva, Ch.Pegasi 51, CH-1270 Versoix, Switzerland
Licence : CC-BY 4.0
Droits d'auteur : Les auteurs conservent leurs droits
@article{CRPHYS_2023__24_S2_27_0,
     author = {Michel Mayor},
     title = {Doppler cross-correlation spectroscopy as a path to the detection of {Earth-like} planets},
     journal = {Comptes Rendus. Physique},
     pages = {27--36},
     publisher = {Acad\'emie des sciences, Paris},
     volume = {24},
     number = {S2},
     year = {2023},
     doi = {10.5802/crphys.153},
     language = {en},
}
TY  - JOUR
AU  - Michel Mayor
TI  - Doppler cross-correlation spectroscopy as a path to the detection of Earth-like planets
JO  - Comptes Rendus. Physique
PY  - 2023
SP  - 27
EP  - 36
VL  - 24
IS  - S2
PB  - Académie des sciences, Paris
DO  - 10.5802/crphys.153
LA  - en
ID  - CRPHYS_2023__24_S2_27_0
ER  - 
%0 Journal Article
%A Michel Mayor
%T Doppler cross-correlation spectroscopy as a path to the detection of Earth-like planets
%J Comptes Rendus. Physique
%D 2023
%P 27-36
%V 24
%N S2
%I Académie des sciences, Paris
%R 10.5802/crphys.153
%G en
%F CRPHYS_2023__24_S2_27_0
Michel Mayor. Doppler cross-correlation spectroscopy as a path to the detection of Earth-like planets. Comptes Rendus. Physique, Volume 24 (2023) no. S2, pp. 27-36. doi : 10.5802/crphys.153. https://comptes-rendus.academie-sciences.fr/physique/articles/10.5802/crphys.153/

[1] S. J. Dick Bioastronomy: The Search for Extraterrestrial Life (J. Heidmann; M. J. Klein, eds.), Springer, New York, 1991, pp. 356-363

[2] O. Struve Proposal for a project of high-precision stellar radial velocity work, Observatory, Volume 72 (1952), pp. 199-200

[3] S. Beckwith; A. Sargent; R. Chini; R. Guesten A survey for circumstellar disks around young stellar objects, Astron. J., Volume 99 (1991), pp. 924-945 | DOI

[4] M. J. McCaughrean; C. R. O’Dell Direct imaging of circumstellar disks in the Orion Nebula, Astron. J., Volume 111 (1996), pp. 1977-1986 | DOI

[5] D. Belorizky The Sun, a variable star, l’Astronomie, Volume 52 (1938), pp. 359-361 | DOI

[6] B. Campbell; G. A. H. Walker Precision radial velocities with an absorption cell, Publ. Astron. Soc. Pac., Volume 91 (1979), pp. 540-545 | DOI

[7] G. W. Marcy; R. P. Butler Precision radial velocities with an iodine absorption cell, Publ. Astron. Soc. Pac., Volume 104 (1992), pp. 270-277 | DOI

[8] A. Baranne; M. Mayor; J. L Poncet Sur l’emploi d’un réseau echelle dans un spectrographe photoélectrique destinée à la mesure des vitesses radiales, C. R. Acad. Sci. B, Volume 285 (1977), pp. 117-120 | DOI

[9] A. Baranne; M. Mayor; J. L. Poncet CORAVEL: A new tool for radial velocity measurements, Vistas Astron., Volume 23 (1979), pp. 279-316 | DOI

[10] A. Baranne; D. Queloz; M. Mayor et al. ELODIE: A spectrograph for accurate radial velocity measurements, Astron. Astrophys. Suppl. Ser., Volume 119 (1996), pp. 373-390 | DOI

[11] A. Duquennoy; M. Mayor Multiplicity among solar type stars in the solar neighbourhood. II. Distribution of the orbital elements in an unbiased sample, Astron. Astrophys., Volume 248 (1991), pp. 485-524

[12] S. M. Andrews; J. Huang; L. Pérez et al. The disk substructures at high angular resolution project (DSHARP), Astrophys. J. Lett., Volume 869 (2018), p. L41-L56 | DOI

[13] A. Boss Proximity of Jupiter-like planets to low mass stars, Science, Volume 267 (1995), pp. 360-362 | DOI

[14] M. Mayor; D. Queloz A Jupiter-mass companion to a solar-type star, Nature, Volume 378 (1995), pp. 355-359 | DOI

[15] D. N. C. Lin; P. Bodenheimer; D. C. Richardson Orbital migration of the planetary companion of 51 Pegasi to its present location, Nature (London), Volume 380 (1996), pp. 606-607 | DOI

[16] P. Goldreich; S. Tremaine Disk-satellite interactions, Astrophys. J., Volume 241 (1980), pp. 425-441 | DOI

[17] D. N. C. Lin; J. Papaloizou On the tidal interaction between protoplanets and the protoplanetary disk. III—Orbital migration of protoplanets, Astrophys. J., Volume 309 (1986), pp. 846-857 | DOI

[18] J. Papaloizou; D. N. C. Lin On the tidal interaction between protoplanets and the primordial solar nebula. I—Linear calculation of the role of angular exchange, Astrophys. J., Volume 285 (1984), pp. 818-834 | DOI

[19] W. R. Ward Density waves in the solar nebula: Differential Lindblad torque, Icarus, Volume 67 (1986), pp. 164-180 | DOI

[20] F. Pepe; S. Cristiani; R. Rebolo et al. ESPRESSO at VLT. On-sky performance and first results, Astron. Astrophys., Volume 645 (2021), pp. 96-122 | DOI

[21] P. Fellgett A proposal for a radial velocity photometer, Opt. Acta, Volume 2 (1955), pp. 9-15 | DOI

[22] R. F. Griffin A photoelectric radial-velocity spectrometer, Astrophys. J., Volume 148 (1967), pp. 465-476 | DOI

[23] M. Mayor; F. Pepe; D. Queloz et al. Setting new standards with HARPS, Messenger, Volume 114 (2003), pp. 20-24

[24] X. Dumusque; M. Cretignier; D. Sosnowska et al. Three years of HARPS-N high-resolution spectroscopy and precise radial velocity data for the Sun, Astron. Astrophys., Volume 648 (2021), pp. 103-122 | DOI

[25] A. Collier-Cameron; A. Mortier; D. Phillips et al. Three years of Sun-as-a-star radial velocity observations on the approach to solar minimum, Mon. Not. R. Astron. Soc., Volume 487 (2016), pp. 1082-1100 | DOI

[26] Z. L. De Beurs; A. Vanderburg; C. Shallue et al. Identifying exoplanets with deep learning. IV. Removing stellar activity signals from radial velocity measurements using neural networks, Astrophys. J., Volume 164 (2022), pp. 49-70 | DOI

[27] M. Cretignier; X. Dumusque; R. Allart; F. Pepe; C. Lovis Measuring precise radial velocities on individual spectral lines, II. Dependance of stellar activity signal on line depth, Astron. Astrophys., Volume 633 (2020), pp. 76-91 | DOI

[28] M. Cretignier; X. Dumusque; N. Hara; F. Pepe YARARA:Significant improvement in RV precision through post-processing of spectral time series, Astron. Astrophys., Volume 653 (2021), pp. 43-66 | DOI

[29] J. P. Faria; A. Suárez Mascareño; P. Figueira et al. A candidate short-period sub-Earth orbiting Proxima Centauri, Astron. Astrophys., Volume 658 (2022), pp. 115-132 | DOI

[30] G. Anglada-Escudé; P. Amado; J. Barnes et al. A terrestrial planet candidate in a temperate orbit around Proxima Centauri, Nature (London), Volume 538 (2016), pp. 437-440 | DOI

[31] M. Gillon; A. Triaud; B.-O. Demory et al. Seven temperate terrestrial planets around the nearby ultracool dwarf star TRAPPIST-1, Nature, Volume 542 (2017), pp. 456-460 | DOI

[32] A. Marconi; M. Abreu; V. Adibekyan et al. ANDES, the high resolution spectrograph for the ELT: science case, baseline design and path to construction, Proc. SPIE, Volume 12184 (2022), 1218424 (pp 16) | DOI

[33] W. Benz; S. Ida; Y. Alibert; D. Lin; C. Mordasini Planet population synthesis, Protostars and Planets VI (H. Beutler et al., eds.), University of Arizona Press, Tucson, 2014, pp. 691-713

Cité par Sources :

Commentaires - Politique