Comptes Rendus
Direct imaging of exoplanets: Legacy and prospects
[Imagerie directe des exoplanètes : Héritage et perspectives]
Comptes Rendus. Physique, Online first (2023), pp. 1-22.

Comprendre comment les planètes géantes et terrestres se forment et évoluent, quelle est leur structure interne et celle de leur atmosphère, représente l’un des défis majeurs de l’astronomie moderne, qui est directement lié à la recherche ultime de la vie à l’horizon 2030–2050. Cependant, plusieurs obstacles astrophysiques (compréhension de la formation et de la physique des exoplanètes géantes et terrestres), biologiques (identification des meilleurs biomarqueurs) et technologiques (innovations techniques pour les nouvelles générations de télescopes et d’instruments) doivent être surmontés. Du point de vue astrophysique, il est en effet crucial de comprendre les mécanismes de formation et d’évolution des planètes géantes, y compris les interactions entre la planète et le disque, qui vont complètement sculpter les architectures planétaires et ainsi dominer la formation de planètes terrestres, notamment dans les régions autour de l’étoile hôte capables d’accueillir la vie. Il est également important de développer une instrumentation et des techniques dédiées pour étudier dans leur totalité la population de planètes géantes et terrestres, mais aussi de révéler dans un futur proche les premiers marqueurs biologiques de la vie dans les atmosphères des planètes terrestres. Dans cette perspective, l’imagerie directe depuis des observatoires au sol ou dans l’espace joue un rôle central, de concert avec d’autres techniques d’observation. Dans cet article, je rappellerai brièvement la genèse de cette technique d’observation, les principales innovations et défis instrumentaux, les cibles stellaires et les relevés, pour ensuite présenter les principaux résultats obtenus jusqu’à présent sur la physique et les mécanismes de formation et dévolution des jeunes planètes géantes et les architectures des systèmes planétaires. Je présenterai ensuite les perspectives passionnantes offertes par la prochaine génération d’imageurs de planètes sur le point d’être mis en ligne, notamment sur les futurs extrêmement grands télescopes. A l’échelle d’une vie humaine, nous pourrions bien assister à la première découverte d’une exoplanète et à la première détection d’indices de vie dans l’atmosphère d’une exo-Terre proche !

Understanding how giant and terrestrial planets form and evolve, what is their internal structure and that of their atmosphere, represents one of the major challenges of modern astronomy, which is directly connected to the ultimate search for life at the horizon 2030–2050. However, several astrophysical (understanding of the formation and physics of giant and terrestrial exoplanets), biological (identification of the best biomarkers) and technological (technical innovations for the new generations of telescopes and instruments) obstacles must be overcome. From the astrophysical point of view, it is indeed crucial to understand the mechanisms of formation and evolution of giant planets, including planet and disk interactions, which will completely sculpt the planetary architectures and thus dominate the formation of terrestrial planets, especially in regions around the host star capable of supporting life. It is also important to develop dedicated instrumentation and techniques to study in their totality the population of giant and terrestrial planets, but also to reveal in the near future the first biological markers of life in the atmospheres of terrestrial planets. In that perspective, direct imaging from ground-based observatories or in space is playing a central role in concert with other observing techniques. In this paper, I will briefly review the genesis of this observing technique, the main instrumental innovation and challenges, stellar targets and surveys, to then present the main results obtained so far about the physics and the mechanisms of formation and evolution of young giant planets and planetary system architectures. I will then present the exciting perspectives offered by the upcoming generation of planet imagers about to come online, particularly on the future extremely large telescopes. On the timescale of a human Life, we may well be witnessing the first discovery of an exoplanet and the first detection of indices of life in the atmosphere of a nearby exo-Earth!

Reçu le :
Accepté le :
Première publication :
DOI : 10.5802/crphys.139
Keywords: Exoplanets, Planetary systems, Atmosphere, Architecture, Direct imaging, Spectroscopy
Mot clés : Exoplanètes, Systèmes planétaires, Atmosphère, Architecture, Imagerie directe, Spectroscopie
Gael Chauvin 1

1 J.-L. Lagrange Laboratory , Côte d’Azur Observatory, UMR 7293 Bâtiment H. Fizeau, 28, Avenue Valrose, Nice cedex 2, 06108, France
Licence : CC-BY 4.0
Droits d'auteur : Les auteurs conservent leurs droits
@article{CRPHYS_2023__24_S2_A12_0,
     author = {Gael Chauvin},
     title = {Direct imaging of exoplanets: {Legacy} and prospects},
     journal = {Comptes Rendus. Physique},
     publisher = {Acad\'emie des sciences, Paris},
     year = {2023},
     doi = {10.5802/crphys.139},
     language = {en},
     note = {Online first},
}
TY  - JOUR
AU  - Gael Chauvin
TI  - Direct imaging of exoplanets: Legacy and prospects
JO  - Comptes Rendus. Physique
PY  - 2023
PB  - Académie des sciences, Paris
N1  - Online first
DO  - 10.5802/crphys.139
LA  - en
ID  - CRPHYS_2023__24_S2_A12_0
ER  - 
%0 Journal Article
%A Gael Chauvin
%T Direct imaging of exoplanets: Legacy and prospects
%J Comptes Rendus. Physique
%D 2023
%I Académie des sciences, Paris
%Z Online first
%R 10.5802/crphys.139
%G en
%F CRPHYS_2023__24_S2_A12_0
Gael Chauvin. Direct imaging of exoplanets: Legacy and prospects. Comptes Rendus. Physique, Online first (2023), pp. 1-22. doi : 10.5802/crphys.139.

[1] T. Nakajima; B. R. Oppenheimer; S. R. Kulkarni et al. Discovery of a cool brown dwarf, Nature, Volume 378 (1995), pp. 463-465 | DOI

[2] D. Mouillet; J. D. Larwood; J. C. B. Papaloizou; A. M. Lagrange A planet on an inclined orbit as an explanation of the warp in the Beta Pictoris disc, Mon. Not. R. Astron. Soc., Volume 292 (1997), pp. 896-904 | DOI

[3] S. Lacour Astrometry of directly imaged exoplanets with optical interferometry, C. R. Phys., Volume 24 (2023) no. S2 (Online first) | DOI

[4] J. L. Beuzit; A. Vigan; D. Mouillet et al. SPHERE: the exoplanet imager for the very large telescope, Astron. Astrophys., Volume 631 (2019), A155 | DOI

[5] B. A. Macintosh; A. Anthony; J. Atwood et al. The Gemini planet imager: first light and commissioning, Adaptive Optics Systems IV (E. Marchetti; L. M. Close; J.-P. Vran, eds.) (Society of Photo-Optical Instrumentation Engineers (SPIE) Conference Series), Volume 9148, SPIE, 2014, p. 91480J | DOI

[6] M. Kasper; N. Cerpa Urra; P. Pathak et al. PCS—a roadmap for exoearth imaging with the ELT, The Messenger, Volume 182 (2021), pp. 38-43 | DOI

[7] R. Galicher; J. Mazoyer Imaging exoplanets with coronagraphic instruments, C. R. Phys., Volume 24 (2023) no. S2 (Online first) | DOI

[8] S. M. Rucinski; J. Krautter TW Hya—A T Tauri star far from any dark cloud, Astron. Astrophys., Volume 121 (1983), pp. 217-225

[9] J. H. Kastner; B. Zuckerman; D. A. Weintraub; T. Forveille X-ray and molecular emission from the nearest region of recent star formation., Science, Volume 277 (1997), pp. 67-71 | DOI

[10] B. Zuckerman; I. Song Young stars near the sun, Annu. Rev. Astron. Astrophys., Volume 42 (2004), pp. 685-721 | DOI

[11] C. A. O. Torres; G. R. Quast; C. H. F. Melo; M. F. Sterzik Young nearby loose associations, Handbook of Star Forming Regions, Volume II (B. Reipurth, ed.), Volume 5, 2008, p. 757

[12] J. Gagné; D. Lafrenière; R. Doyon; L. Malo; É. Artigau BANYAN. V. A systematic all-sky survey for new very late-type low-mass stars and brown dwarfs in nearby young moving groups, Astrophys. J., Volume 798 (2015), 73 | DOI

[13] A. Vigan; C. Fontanive; M. Meyer et al. The SPHERE infrared survey for exoplanets (SHINE). III. The demographics of young giant exoplanets below 300 au with SPHERE, Astron. Astrophys., Volume 651 (2021), A72 | DOI

[14] A. Müller; M. Keppler; T. Henning et al. Orbital and atmospheric characterization of the planet within the gap of the PDS 70 transition disk, Astron. Astrophys., Volume 617 (2018), L2 | DOI

[15] S. Y. Haffert; A. J. Bohn; J. de Boer et al. Two accreting protoplanets around the young star PDS 70, Nat. Astron., Volume 3 (2019), pp. 749-754 | DOI

[16] M. Benisty; J. Bae; S. Facchini et al. A circumplanetary disk around PDS70c, Astrophys. J. Lett., Volume 916 (2021) no. 1, L2 | DOI

[17] A. Garufi; C. Dominik; C. Ginski et al. A SPHERE survey of self-shadowed planet-forming disks, Astron. Astrophys., Volume 658 (2022), A137 | DOI

[18] J. Milli; N. Engler; H. M. Schmid et al. Optical polarised phase function of the HR 4796A dust ring, Astron. Astrophys., Volume 626 (2019), A54 | DOI

[19] A. Gibbs; K. Wagner; D. Apai et al. VLT/SPHERE multiwavelength high-contrast imaging of the HD 115600 debris disk: new constraints on the dust geometry and the presence of young giant planets, Astron. J., Volume 157 (2019) no. 1, 39 | DOI

[20] M. Keppler; M. Benisty; A. Müller et al. Discovery of a planetary-mass companion within the gap of the transition disk around PDS 70, Astron. Astrophys., Volume 617 (2018), A44 | DOI

[21] T. Thanathibodee; N. Calvet; J. Bae; J. Muzerolle; R. F. Hernández Magnetospheric accretion as a source of Hα emission from protoplanets around PDS 70, Astrophys. J., Volume 885 (2019) no. 1, 94 | DOI

[22] M. Keppler; R. Teague; J. Bae et al. Highly structured disk around the planet host PDS 70 revealed by high-angular resolution observations with ALMA, Astron. Astrophys., Volume 625 (2019), A118 | DOI

[23] A. Boccaletti Observations of circumstellar disks in scattered light with SPHERE at the VLT, C. R. Phys., Volume 24 (2023) no. S2 (Online first) | DOI

[24] G. Chauvin; A.-M. Lagrange; C. Dumas et al. A giant planet candidate near a young brown dwarf. Direct VLT/NACO observations using IR wavefront sensing, Astron. Astrophys., Volume 425 (2004), p. L29-L32 | DOI

[25] G. Chauvin; A.-M. Lagrange; B. Zuckerman et al. A companion to AB Pic at the planet/brown dwarf boundary, Astron. Astrophys., Volume 438 (2005) no. 3, p. L29-L32 | DOI

[26] D. Lafrenière; R. Jayawardhana; M. H. van Kerkwijk Direct imaging and spectroscopy of a planetary-mass candidate companion to a young solar analog, Astrophys. J. Lett., Volume 689 (2008) no. 2, L153 | DOI

[27] J. Carson; C. Thalmann; M. Janson et al. Direct imaging discovery of a “Super-Jupiter” around the late B-type star κ and, Astrophys. J. Lett., Volume 763 (2013) no. 2, L32 | DOI

[28] C. Marois; B. Macintosh; T. Barman et al. Direct imaging of multiple planets orbiting the star HR 8799, Science, Volume 322 (2008) no. 5906, pp. 1348-1352 | DOI

[29] A.-M. Lagrange; D. Gratadour; G. Chauvin et al. A probable giant planet imaged in the β Pictoris disk. VLT/NaCo deep L’-band imaging, Astron. Astrophys., Volume 493 (2009) no. 2, p. L21-L25 | DOI

[30] J. Rameau; G. Chauvin; A.-M. Lagrange et al. A survey of young, nearby, and dusty stars conducted to understand the formation of wide-orbit giant planets. VLT/NaCo adaptive optics thermal and angular differential imaging, Astron. Astrophys., Volume 553 (2013), A60 | DOI

[31] M. Kuzuhara; M. Tamura; T. Kudo et al. Direct imaging of a cold jovian exoplanet in orbit around the sun-like star GJ 504, Astrophys. J., Volume 774 (2013) no. 1, 11 | DOI

[32] B. Macintosh; J. R. Graham; T. Barman et al. Discovery and spectroscopy of the young jovian planet 51 Eri b with the gemini planet imager, Science, Volume 350 (2015) no. 6256, pp. 64-67 | DOI

[33] G. Chauvin; S. Desidera; A.-M. Lagrange et al. Discovery of a warm, dusty giant planet around HIP 65426, Astron. Astrophys., Volume 605 (2017), L9 | DOI

[34] A. J. Bohn; M. A. Kenworthy; C. Ginski et al. Two directly imaged, wide-orbit giant planets around the young, solar analog TYC 8998-760-1, Astrophys. J. Lett., Volume 898 (2020) no. 1, L16 | DOI

[35] M. Janson; R. Gratton; L. Rodet et al. A wide-orbit giant planet in the high-mass b Centauri binary system, Nature, Volume 600 (2021) no. 7888, pp. 231-234 | DOI

[36] M. S. Marley; J. J. Fortney; O. Hubickyj; P. Bodenheimer; J. J. Lissauer On the luminosity of young Jupiters, Astrophys. J., Volume 655 (2007) no. 1, pp. 541-549 | DOI

[37] G.-D. Marleau; Y. Aoyama; R. Kuiper et al. Accreting protoplanets: Spectral signatures and magnitude of gas and dust extinction at Hα, Astron. Astrophys., Volume 657 (2022), A38 | DOI

[38] M. Nowak; S. Lacour; A.-M. Lagrange; et al.; Gravity Collaboration Direct confirmation of the radial-velocity planet β Pictoris c, Astron. Astrophys., Volume 642 (2020), L2 | DOI

[39] G. M. Brandt; T. D. Brandt; T. J. Dupuy; D. Michalik; G.-D. Marleau The first dynamical mass measurement in the HR 8799 system, Astrophys. J. Lett., Volume 915 (2021) no. 1, L16 | DOI

[40] B. Charnay; P. Drossart Characterization and modelling of exoplanetary atmospheres, C. R. Phys., Volume 24 (2023) no. S2 (Online first) | DOI

[41] M. Bonnefoy; G. Chauvin; A.-M. Lagrange et al. A library of near-infrared integral field spectra of young M-L dwarfs, Astron. Astrophys., Volume 562 (2014), A127 | DOI

[42] J. C. Filippazzo; E. L. Rice; J. Faherty et al. Fundamental parameters and spectral energy distributions of young and field age objects with masses spanning the stellar to planetary regime, Astrophys. J., Volume 810 (2015) no. 2, 158 | DOI

[43] D. J. M. Petit dit de la Roche; H. J. Hoeijmakers; I. A. G. Snellen Molecule mapping of HR8799b using OSIRIS on Keck. Strong detection of water and carbon monoxide, but no methane, Astron. Astrophys., Volume 616 (2018), A146 | DOI

[44] N. Madhusudhan; A. Burrows; T. Currie Model atmospheres for massive gas giants with thick clouds: application to the hr 8799 planets and predictions for future detections, Astrophys. J., Volume 737 (2011) no. 1, 34 | DOI

[45] Y. Zhou; D. Apai; B. W. P. Lew et al. Cloud atlas: high-contrast time-resolved observations of planetary-mass companions, Astron. J., Volume 157 (2019) no. 3, 128 | DOI

[46] V. Christiaens; S. Casassus; O. Absil et al. Separating extended disc features from the protoplanet in PDS 70 using VLT/SINFONI, Mon. Not. R. Astron. Soc., Volume 486 (2019) no. 4, pp. 5819-5837 | DOI

[47] G. Chauvin Two decades of exoplanetary science with adaptive optics, Adaptive Optics Systems VI (L. M. Close; L. Schreiber; D. Schmidt, eds.) (Society of Photo-Optical Instrumentation Engineers (SPIE) Conference Series), Volume 10703, SPIE, 2018, p. 1070305 | arXiv

[48] H. J. Hoeijmakers; H. Schwarz; I. A. G. Snellen et al. Medium-resolution integral-field spectroscopy for high-contrast exoplanet imaging. Molecule maps of the β Pictoris system with SINFONI, Astron. Astrophys., Volume 617 (2018), A144 | DOI

[49] T. S. Barman; Q. M. Konopacky; B. Macintosh; C. Marois Simultaneous detection of water, methane, and carbon monoxide in the atmosphere of exoplanet HR8799b, Astrophys. J., Volume 804 (2015) no. 1, 61 | DOI

[50] Gravity Collaboration; M. Nowak; S. Lacour; P. Mollière et al. Peering into the formation history of β Pictoris b with VLTI/GRAVITY long-baseline interferometry, Astron. Astrophys., Volume 633 (2020), A110 | DOI

[51] P. Mollière; T. Stolker; S. Lacour et al. Retrieving scattering clouds and disequilibrium chemistry in the atmosphere of HR 8799e, Astron. Astrophys., Volume 640 (2020), A131 | DOI

[52] S. Petrus; M. Bonnefoy; G. Chauvin et al. Medium-resolution spectrum of the exoplanet HIP 65426 b, Astron. Astrophys., Volume 648 (2021), A59 | DOI

[53] Y. Zhang; I. A. G. Snellen; A. J. Bohn et al. The 13 CO-rich atmosphere of a young accreting super-Jupiter, Nature, Volume 595 (2021) no. 7867, pp. 370-372 | DOI

[54] P. Mollière; T. Molyarova; B. Bitsch et al. Interpreting the atmospheric composition of exoplanets: sensitivity to planet formation assumptions, 2022 (preprint) | arXiv

[55] M. Samland; P. Mollière; M. Bonnefoy et al. Spectral and atmospheric characterization of 51 Eridani b using VLT/SPHERE, Astron. Astrophys., Volume 603 (2017), A57 | DOI

[56] A. Rajan; J. Rameau; R. J. De Rosa et al. Characterizing 51 Eri b from 1 to 5 μm: A partly cloudy exoplanet, Astron. J., Volume 154 (2017) no. 1, 10 | DOI

[57] G. Chauvin; A.-M. Lagrange; H. Beust et al. Orbital characterization of the β Pictoris b giant planet, Astron. Astrophys., Volume 542 (2012), A41 | DOI

[58] Q. M. Konopacky; C. Marois; B. A. Macintosh et al. Astrometric monitoring of the HR 8799 Planets: orbit constraints from self-consistent measurements, Astron. J., Volume 152 (2016) no. 2, 28 | DOI

[59] A.-L. Maire; M. Langlois; P. Delorme et al. Lessons learned from SPHERE for the astrometric strategy of the next generation of exoplanet imaging instruments, J. Astron. Telesc. Instrum. Syst., Volume 7 (2021), 035004 | DOI

[60] I. A. G. Snellen; B. R. Brandl; R. J. de Kok et al. Fast spin of the young extrasolar planet β Pictoris b, Nature, Volume 509 (2014) no. 7498, pp. 63-65 | DOI

[61] M. L. Bryan; E. Chiang; C. V. Morley; G. N. Mace; B. P. Bowler Obliquity constraints on the planetary-mass companion HD 106906 b, Astron. J., Volume 162 (2021) no. 5, 217 | DOI

[62] J. J. Wang; J.-B. Ruffio; E. Morris et al. Detection and bulk properties of the HR 8799 planets with high-resolution spectroscopy, Astron. J., Volume 162 (2021) no. 4, 148 | DOI

[63] M. Booth; A. Jordán; S. Casassus et al. Resolving the planetesimal belt of HR 8799 with ALMA, Mon. Not. R. Astron. Soc., Volume 460 (2016) no. 1, p. L10-L14 | DOI

[64] A. Zurlo; K. Goździewski; C. Lazzoni et al. Orbital and dynamical analysis of the system around HR 8799. New astrometric epochs from VLT/SPHERE and LBT/LUCI, Astron. Astrophys., Volume 666 (2022), A133 | DOI

[65] A.-M. Lagrange; A. Boccaletti; J. Milli et al. The position of β Pictoris b position relative to the debris disk, Astron. Astrophys., Volume 542 (2012), A40 | DOI

[66] A. Lecavelier des Etangs; L. Cros; G. Hébrard et al. Exocomets size distribution in the β? Pictoris planetary system, Sci. Rep., Volume 12 (2022), 5855 | DOI

[67] G. Chauvin; R. Gratton; M. Bonnefoy et al. Investigating the young solar system analog HD 95086. A combined HARPS and SPHERE exploration, Astron. Astrophys., Volume 617 (2018), A76 | DOI

[68] L. Pueyo; R. Soummer; J. Hoffmann et al. Reconnaissance of the HR 8799 exosolar system. II. Astrometry and orbital motion, Astrophys. J., Volume 803 (2015) no. 1, 31 | DOI

[69] J. Bae; Z. Zhu; C. Baruteau et al. An ideal testbed for planet-disk interaction: two giant protoplanets in resonance shaping the PDS 70 protoplanetary disk, Astrophys. J. Lett., Volume 884 (2019) no. 2, L41 | DOI

[70] S. N. Raymond; P. J. Armitage; A. Moro-Martín et al. Debris disks as signposts of terrestrial planet formation, Astron. Astrophys., Volume 530 (2011), A62 | DOI

[71] S. N. Raymond; P. J. Armitage; A. Moro-Martín et al. Debris disks as signposts of terrestrial planet formation. II. Dependence of exoplanet architectures on giant planet and disk properties, Astron. Astrophys., Volume 541 (2012), A11 | DOI

[72] B. P. Bowler; S. C. Blunt; E. L. Nielsen Population-level eccentricity distributions of imaged exoplanets and brown dwarf companions: dynamical evidence for distinct formation channels, Astron. J., Volume 159 (2020) no. 2, 63 | DOI

[73] D. Lafrenière; R. Doyon; C. Marois et al. The gemini deep planet survey, Astrophys. J., Volume 670 (2007), pp. 1367-1390 | DOI

[74] E. L. Nielsen; L. M. Close; B. A. Biller; E. Masciadri; R. Lenzen Constraints on extrasolar planet populations from VLT NACO/SDI and MMT SDI and direct adaptive optics imaging surveys: giant planets are rare at large separations, Astrophys. J., Volume 674 (2008), pp. 466-481 | DOI

[75] G. Chauvin; A.-M. Lagrange; M. Bonavita et al. Deep imaging survey of young, nearby austral stars. VLT/NACO near-infrared Lyot-coronographic observations, Astron. Astrophys., Volume 509 (2010), A52 | DOI

[76] J. Lannier; P. Delorme; A. M. Lagrange et al. MASSIVE: A Bayesian analysis of giant planet populations around low-mass stars, Astron. Astrophys., Volume 596 (2016), A83 | DOI

[77] B. P. Bowler Imaging extrasolar giant planets, Publ. Astron. Soc. Pac., Volume 128 (2016) no. 968, 102001 | DOI

[78] R. B. Fernandes; G. D. Mulders; I. Pascucci; C. Mordasini; A. Emsenhuber Hints for a turnover at the snow line in the giant planet occurrence rate, Astrophys. J., Volume 874 (2019) no. 1, 81 | DOI

[79] E. L. Nielsen; R. J. De Rosa; B. Macintosh et al. The gemini planet imager exoplanet survey: giant planet and brown dwarf demographics from 10 to 100 au, Astron. J., Volume 158 (2019) no. 1, 13 | DOI

[80] M. Mayor; D. Queloz A jupiter-mass companion to a solar-type star, Nature, Volume 378 (1995), pp. 355-359 | DOI

[81] A. Boccaletti; G. Chauvin; D. Mouillet et al. SPHERE+: Imaging young Jupiters down to the snowline, 2020 (preprint) | arXiv

[82] J. Chilcote; Q. Konopacky; R. J. De Rosa et al. GPI 2.0: upgrading the gemini planet imager, Ground-based and Airborne Instrumentation for Astronomy VIII (Society of Photo-Optical Instrumentation Engineers (SPIE) Conference Series), Volume 11447, SPIE, 2020, p. 114471S | DOI

[83] P. Kervella; F. Arenou; F. Thévenin Stellar and substellar companions from Gaia EDR3. Proper-motion anomaly and resolved common proper-motion pairs, Astron. Astrophys., Volume 657 (2022), A7 | DOI

[84] P. Patapis; E. Nasedkin; G. Cugno et al. Direct emission spectroscopy of exoplanets with the medium resolution imaging spectrometer on board JWST MIRI. I. Molecular mapping and sensitivity to instrumental effects, Astron. Astrophys., Volume 658 (2022), A72 | DOI

[85] S. Shectman; M. Johns GMT overview, Ground-based and Airborne Telescopes III (L. M. Stepp; R. Gilmozzi; H. J. Hall, eds.) (Society of Photo-Optical Instrumentation Engineers (SPIE) Conference Series), Volume 7733, SPIE, 2010, p. 77331Y | DOI

[86] L. Simard; D. Crampton; B. Ellerbroek; C. Boyer The TMT instrumentation program, Ground-based and Airborne Instrumentation for Astronomy III (I. S. McLean; S. K. Ramsay; H. Takami, eds.) (Society of Photo-Optical Instrumentation Engineers (SPIE) Conference Series), Volume 7735, SPIE, 2010, p. 773523 | DOI

[87] A. McPherson; J. Spyromilio; M. Kissler-Patig et al. E-ELT update of project and effect of change to 39m design, Ground-based and Airborne Telescopes IV (L. M. Stepp; R. Gilmozzi; H. J. Hall, eds.) (Society of Photo-Optical Instrumentation Engineers (SPIE) Conference Series), Volume 8444, SPIE, 2012, p. 84441F | DOI

[88] C. Perrot; P. Baudoz; A. Boccaletti et al. Design study and first performance simulation of the ELT/MICADO focal plane coronagraphs, 2018 (preprint) | arXiv

[89] M. Houllé; A. Vigan; A. Carlotti et al. Direct imaging and spectroscopy of exoplanets with the ELT/HARMONI high-contrast module, Astron. Astrophys., Volume 652 (2021), A67 | DOI

[90] L. Kaltenegger How to characterize habitable worlds and signs of life, Annu. Rev. Astron. Astrophys., Volume 55 (2017) no. 1, pp. 433-485 | DOI

Cité par Sources :

Commentaires - Politique


Ces articles pourraient vous intéresser

Gaia astrometry and exoplanetary science: DR2, (E)DR3, and beyond

Alessandro Sozzetti

C. R. Phys (2023)


Exoplanets: Foreword

Anne-Marie Lagrange; Daniel Rouan

C. R. Phys (2023)


Hunting for Cold Exoplanets via Microlensing

Jean-Philippe Beaulieu

C. R. Phys (2023)