Comptes Rendus
Historical foreword: Jean Dalibard, the magneto-optical trap, and the ascent of physics with cold atomic gases
Comptes Rendus. Physique, Volume 24 (2023) no. S3, pp. 5-13.

I present my personal perspective on the importance of the invention by Jean Dalibard of the magneto-optical trap (MOT), which has for many years been the “workhorse” of the field of laser cooling and cold atomic gases. I recount some of the history related to the MOT and argue that its invention enabled cold atomic gases to become the dominant part of Atomic, Molecular, and Optical (AMO) physics that it is today.

Je présente mon point de vue personnel sur l’importance qu’a eu l’invention par Jean Dalibard du piège magnéto-optique (PMO), qui a été pendant de nombreuses années la « cheville ouvrière » du domaine du refroidissement laser et des gaz d’atomes froids. Je raconte une partie de l’histoire liée au PMO et je soutiens la thèse selon laquelle son invention a permis aux gaz d’atomes froids d’accéder à la place dominante en physique atomique, moléculaire et optique qu’ils occupent aujourd’hui.

Received:
Accepted:
Online First:
Published online:
DOI: 10.5802/crphys.172
Keywords: Jean Dalibard, magneto-optical trap, MOT, laser cooling and trapping, radiation pressure trap, optical Earnshaw theorem
Mot clés : Jean Dalibard, piège magnéto-optique, PMO, refroidissement et piégeage par laser, piège à pression de radiation, théorème d’Earnshaw optique

William Phillips 1

1 Joint Quantum Institute, University of Maryland and National Institute of Standards and Technology, Gaithersburg, Maryland 20899-8424, USA
License: CC-BY 4.0
Copyrights: The authors retain unrestricted copyrights and publishing rights
@article{CRPHYS_2023__24_S3_5_0,
     author = {William Phillips},
     title = {Historical foreword: {Jean} {Dalibard,} the magneto-optical trap, and the ascent of physics with cold atomic gases},
     journal = {Comptes Rendus. Physique},
     pages = {5--13},
     publisher = {Acad\'emie des sciences, Paris},
     volume = {24},
     number = {S3},
     year = {2023},
     doi = {10.5802/crphys.172},
     language = {en},
}
TY  - JOUR
AU  - William Phillips
TI  - Historical foreword: Jean Dalibard, the magneto-optical trap, and the ascent of physics with cold atomic gases
JO  - Comptes Rendus. Physique
PY  - 2023
SP  - 5
EP  - 13
VL  - 24
IS  - S3
PB  - Académie des sciences, Paris
DO  - 10.5802/crphys.172
LA  - en
ID  - CRPHYS_2023__24_S3_5_0
ER  - 
%0 Journal Article
%A William Phillips
%T Historical foreword: Jean Dalibard, the magneto-optical trap, and the ascent of physics with cold atomic gases
%J Comptes Rendus. Physique
%D 2023
%P 5-13
%V 24
%N S3
%I Académie des sciences, Paris
%R 10.5802/crphys.172
%G en
%F CRPHYS_2023__24_S3_5_0
William Phillips. Historical foreword: Jean Dalibard, the magneto-optical trap, and the ascent of physics with cold atomic gases. Comptes Rendus. Physique, Volume 24 (2023) no. S3, pp. 5-13. doi : 10.5802/crphys.172. https://comptes-rendus.academie-sciences.fr/physique/articles/10.5802/crphys.172/

[1] A. Ashkin Trapping of Atoms by Resonance Radiation Pressure, Phys. Rev. Lett., Volume 40 (1978), pp. 729-732 | DOI

[2] J. Dalibard; C. Cohen-Tannoudji Dressed atom approach to atomic motion in laser light: The dipole force revisited, J. Opt. Soc. B, Volume 2 (1985), pp. 1707-1720 | DOI

[3] P. L. Gould; P. D. Lett; P. S. Julienne; W. D. Phillips Observation of Associative Ionization of Ultracold Laser-Trapped Sodium Atoms, Phys. Rev. Lett., Volume 60 (1988), pp. 788-792 | DOI

[4] V. G. Minogin Theory of a radiative atomic trap, Sov. J. Quantum Electron., Volume 12 (1982), pp. 299-303 | DOI

[5] V. G. Minogin; J. Javanainen A tetrahedral light pressure trap for atoms, Opt. Comm., Volume 43 (1982), pp. 119-122 | DOI

[6] W. D. Phillips; H. Metcalf Laser Deceleration of an Atomic Beam, Phys. Rev. Lett., Volume 48 (1982), pp. 596-599 | DOI

[7] A. Ashkin; J. P. Gordon Stability of radiation-pressure particle traps: an optical Earnshaw theorem, Opt. Lett., Volume 8 (1983), pp. 511-513 | DOI

[8] J. Dalibard; W. Phillips Stability and Damping of Radiation Pressure Traps, Bull. Am. Phys. Soc., Volume 30 (1985), p. 748

[9] W. Phillips; J. Prodan; H. Metcalf Laser cooling and electromagnetic trapping of neutral atoms, J. Opt. Soc. Am. B, Volume 2 (1985), pp. 1751-1767 | DOI

[10] S. Chu; L. Hollberg; J. Bjorkholm; A. Cable; A. Ashkin Three-Dimensional Viscous Confinement and Cooling of Atoms by Resonance Radiation Pressure, Phys. Rev. Lett., Volume 55 (1985), pp. 48-51 | DOI

[11] D. Pritchard; E. Raab; V. Bagnato; C. Wieman; R. Watts Light Traps Using Spontaneous Forces, Phys. Rev. Lett., Volume 57 (1986), pp. 310-313 | DOI

[12] P. Bouyer; P. Lemonde; M. Ben Dahan; A. Michaud; C. Salomon; J. Dalibard An Atom Trap Relying on Optical Pumping, Eur. Phys. Lett., Volume 27 (1994), pp. 569-574 | DOI

[13] E. Raab; M. Prentiss; A. Cable; S. Chu; D. Pritchard Trapping of Neutral Sodium Atoms with Radiation Pressure, Phys. Rev. Lett., Volume 59 (1987), pp. 2631-2634

[14] H. Metcalf; P. van der Straten Laser Cooling and Trapping, Graduate texts in contemporary physics, Springer, 1999 (see Section 11.4) | DOI

[15] W. Phillips Laser cooling and trapping of neutral atoms, Laser Manipulation of Atoms and Ions (E. Arimondo; W. D. Phillips; F. Strumia, eds.), North-Holland, Amsterdam, 1992, pp. 317-325 (International School of Physics “Enrico Fermi”)

[16] A. Migdall; J. Prodan; W. Phillips; T. Bergeman; H. Metcalf First Observation of Magnetically Trapped Neutral Atoms, Phys. Rev. Lett., Volume 54 (1985), pp. 2596-2599 | DOI

[17] T. Hänsch; A. Schawlow Cooling of gases by laser radiation, Opt. Commun., Volume 13 (1975), pp. 68-69 | DOI

[18] D. Wineland; H. Dehmelt Proposed 10 14 Δν<ν laser fluorescence spectroscopy on TI+ mono-ion oscillator III, Bull. Am. Phys. Soc., Volume 20 (1975), p. 637

[19] P. Lett; R. Watts; C. Westbrook; W. Phillips; P. Gould; H. Metcalf Observation of Atoms Laser Cooled below the Doppler Limit, Phys. Rev. Lett., Volume 61 (1988), pp. 169-172 | DOI

[20] C. Salomon; J. Dalibard; W. Phillips; A. Clairon; S. Guellati Laser cooling of cesium atoms below 3 microkelvin, Eur. Phys. Lett., Volume 12 (1990), pp. 683-688 | DOI

[21] J. Dalibard; C. Cohen-Tannoudji Laser cooling below the Doppler limit by polarization gradients: simple theoretical models, J. Opt. Soc. B, Volume 6 (1989), pp. 2023-2045 | DOI

Cited by Sources:

Comments - Policy