I present my personal perspective on the importance of the invention by Jean Dalibard of the magneto-optical trap (MOT), which has for many years been the “workhorse” of the field of laser cooling and cold atomic gases. I recount some of the history related to the MOT and argue that its invention enabled cold atomic gases to become the dominant part of Atomic, Molecular, and Optical (AMO) physics that it is today.
Je présente mon point de vue personnel sur l’importance qu’a eu l’invention par Jean Dalibard du piège magnéto-optique (PMO), qui a été pendant de nombreuses années la « cheville ouvrière » du domaine du refroidissement laser et des gaz d’atomes froids. Je raconte une partie de l’histoire liée au PMO et je soutiens la thèse selon laquelle son invention a permis aux gaz d’atomes froids d’accéder à la place dominante en physique atomique, moléculaire et optique qu’ils occupent aujourd’hui.
Accepted:
Online First:
Published online:
Mot clés : Jean Dalibard, piège magnéto-optique, PMO, refroidissement et piégeage par laser, piège à pression de radiation, théorème d’Earnshaw optique
William Phillips 1
@article{CRPHYS_2023__24_S3_5_0, author = {William Phillips}, title = {Historical foreword: {Jean} {Dalibard,} the magneto-optical trap, and the ascent of physics with cold atomic gases}, journal = {Comptes Rendus. Physique}, pages = {5--13}, publisher = {Acad\'emie des sciences, Paris}, volume = {24}, number = {S3}, year = {2023}, doi = {10.5802/crphys.172}, language = {en}, }
TY - JOUR AU - William Phillips TI - Historical foreword: Jean Dalibard, the magneto-optical trap, and the ascent of physics with cold atomic gases JO - Comptes Rendus. Physique PY - 2023 SP - 5 EP - 13 VL - 24 IS - S3 PB - Académie des sciences, Paris DO - 10.5802/crphys.172 LA - en ID - CRPHYS_2023__24_S3_5_0 ER -
William Phillips. Historical foreword: Jean Dalibard, the magneto-optical trap, and the ascent of physics with cold atomic gases. Comptes Rendus. Physique, Volume 24 (2023) no. S3, pp. 5-13. doi : 10.5802/crphys.172. https://comptes-rendus.academie-sciences.fr/physique/articles/10.5802/crphys.172/
[1] Trapping of Atoms by Resonance Radiation Pressure, Phys. Rev. Lett., Volume 40 (1978), pp. 729-732 | DOI
[2] Dressed atom approach to atomic motion in laser light: The dipole force revisited, J. Opt. Soc. B, Volume 2 (1985), pp. 1707-1720 | DOI
[3] Observation of Associative Ionization of Ultracold Laser-Trapped Sodium Atoms, Phys. Rev. Lett., Volume 60 (1988), pp. 788-792 | DOI
[4] Theory of a radiative atomic trap, Sov. J. Quantum Electron., Volume 12 (1982), pp. 299-303 | DOI
[5] A tetrahedral light pressure trap for atoms, Opt. Comm., Volume 43 (1982), pp. 119-122 | DOI
[6] Laser Deceleration of an Atomic Beam, Phys. Rev. Lett., Volume 48 (1982), pp. 596-599 | DOI
[7] Stability of radiation-pressure particle traps: an optical Earnshaw theorem, Opt. Lett., Volume 8 (1983), pp. 511-513 | DOI
[8] Stability and Damping of Radiation Pressure Traps, Bull. Am. Phys. Soc., Volume 30 (1985), p. 748
[9] Laser cooling and electromagnetic trapping of neutral atoms, J. Opt. Soc. Am. B, Volume 2 (1985), pp. 1751-1767 | DOI
[10] Three-Dimensional Viscous Confinement and Cooling of Atoms by Resonance Radiation Pressure, Phys. Rev. Lett., Volume 55 (1985), pp. 48-51 | DOI
[11] Light Traps Using Spontaneous Forces, Phys. Rev. Lett., Volume 57 (1986), pp. 310-313 | DOI
[12] An Atom Trap Relying on Optical Pumping, Eur. Phys. Lett., Volume 27 (1994), pp. 569-574 | DOI
[13] Trapping of Neutral Sodium Atoms with Radiation Pressure, Phys. Rev. Lett., Volume 59 (1987), pp. 2631-2634
[14] Laser Cooling and Trapping, Graduate texts in contemporary physics, Springer, 1999 (see Section 11.4) | DOI
[15] Laser cooling and trapping of neutral atoms, Laser Manipulation of Atoms and Ions (E. Arimondo; W. D. Phillips; F. Strumia, eds.), North-Holland, Amsterdam, 1992, pp. 317-325 (International School of Physics “Enrico Fermi”)
[16] First Observation of Magnetically Trapped Neutral Atoms, Phys. Rev. Lett., Volume 54 (1985), pp. 2596-2599 | DOI
[17] Cooling of gases by laser radiation, Opt. Commun., Volume 13 (1975), pp. 68-69 | DOI
[18] Proposed laser fluorescence spectroscopy on TI+ mono-ion oscillator III, Bull. Am. Phys. Soc., Volume 20 (1975), p. 637
[19] Observation of Atoms Laser Cooled below the Doppler Limit, Phys. Rev. Lett., Volume 61 (1988), pp. 169-172 | DOI
[20] Laser cooling of cesium atoms below 3 microkelvin, Eur. Phys. Lett., Volume 12 (1990), pp. 683-688 | DOI
[21] Laser cooling below the Doppler limit by polarization gradients: simple theoretical models, J. Opt. Soc. B, Volume 6 (1989), pp. 2023-2045 | DOI
Cited by Sources:
Comments - Policy