We present a graduate course on ideal measurements, analyzed as dynamical processes of interaction between the tested system S and an apparatus A, described by quantum statistical mechanics. The apparatus A = M + B involves a macroscopic measuring device M and a bath B. The requirements for ideality of the measurement allow us to specify the Hamiltonian of the isolated compound system S + M + B. The resulting dynamical equations may be solved for simple models. Conservation laws are shown to entail two independent relaxation mechanisms: truncation and registration. Approximations, justified by the large size of M and of B, are needed. The final density matrix (tf) of S + A has an equilibrium form. It describes globally the outcome of a large set of runs of the measurement. The measurement problem, i.e., extracting physical properties of individual runs from (tf), then arises due to the ambiguity of its splitting into parts associated with subsets of runs. To deal with this ambiguity, we postulate that each run ends up with a distinct pointer value Ai of the macroscopic M. This is compatible with the principles of quantum mechanics. Born’s rule then arises from the conservation law for the tested observable; it expresses the frequency of occurrence of the final indications Ai of M in terms of the initial state of S. Von Neumann’s reduction amounts to updating of information due to selection of Ai. We advocate the terms q-probabilities and q-correlations when analyzing measurements of non-commuting observables. These ideas may be adapted to different types of courses.
On présente un cours doctoral sur les mesures idéales, processus dynamiques couplant le système testé S et un appareil A analysés en mécanique statistique quantique. Cet appareil A = M + B comprend un dispositif de mesure macroscopique M et un bain B. Les conditions requises pour l’idéalité de la mesure impliquent une forme spécifique du Hamiltonien du système composite isolé S + M + B. Les equations dynamiques résultantes sont solubles pour des modèles simples. Les lois de conservation engendrent deux mécanismes de relaxation indépendants, la troncature et l’enregistrement. Des approximations, justifiées par la grande taille de M et de B, sont nécessaires. La matrice densité finale (tf) de S + A a une forme d’équilibre. Elle décrit globalement l’issue d’un large ensemble de processus similaires. Le problème de la mesure, extraire de (tf) des propriétés physiques de processus individuels, provient ici de l’impossibilité de le scinder sans ambiguïté en parties décrivant des sous-ensembles de processus. On lève cette ambiguïté en postulant que chaque mesure individuelle aboutit à une valeur distincte Ai du pointeur macroscopique. Ceci est compatible avec les principes de la mécanique quantique. La règle de Born résulte alors de la loi de conservation de l’observable mesurée ; elle exprime la fréquence de chaque indication finale Ai de M en termes de l’état initial de S. La réduction de von Neumann apparaît comme une mise à jour de l’information résultant de la sélection d’un résultat Ai. On préconise l’emploi des termes q-probabilités ou q-corrélations lors de l’analyse de mesures d’observables non-commutatives. Ces idées peuvent être adaptées à divers types de cours.
Revised:
Accepted:
Published online:
Mot clés : mesures quantiques idéales, q-probabilités, dynamique système-appareil, problème de la mesure, règle de Born, réduction de von Neumann, interprétation minimaliste, contextualité
Armen E. Allahverdyan 1; Roger Balian 2; Theo M. Nieuwenhuizen 3
@article{CRPHYS_2024__25_G1_251_0, author = {Armen E. Allahverdyan and Roger Balian and Theo M. Nieuwenhuizen}, title = {Teaching ideal quantum measurement, from dynamics to interpretation}, journal = {Comptes Rendus. Physique}, pages = {251--287}, publisher = {Acad\'emie des sciences, Paris}, volume = {25}, year = {2024}, doi = {10.5802/crphys.180}, language = {en}, }
TY - JOUR AU - Armen E. Allahverdyan AU - Roger Balian AU - Theo M. Nieuwenhuizen TI - Teaching ideal quantum measurement, from dynamics to interpretation JO - Comptes Rendus. Physique PY - 2024 SP - 251 EP - 287 VL - 25 PB - Académie des sciences, Paris DO - 10.5802/crphys.180 LA - en ID - CRPHYS_2024__25_G1_251_0 ER -
Armen E. Allahverdyan; Roger Balian; Theo M. Nieuwenhuizen. Teaching ideal quantum measurement, from dynamics to interpretation. Comptes Rendus. Physique, Volume 25 (2024), pp. 251-287. doi : 10.5802/crphys.180. https://comptes-rendus.academie-sciences.fr/physique/articles/10.5802/crphys.180/
[1] Addressing the quantum measurement problem, Phys. Today, Volume 75 (2022) no. 7, pp. 62-63 | DOI
[2] There is no quantum measurement problem, Phys. Today, Volume 75 (2022) no. 6, pp. 62-63 | DOI
[3] Quantum Theory and Measurement, Princeton Series in Physics, 81, Princeton University Press, 2014
[4] The quantum theory of measurement, Lecture Notes in Physics Monographs, 2, Springer, 1996 | DOI
[5] Quantum theory: concepts and methods, Fundamental Theories of Physics, 57, Springer, 1997 | DOI
[6] Ten theorems about quantum mechanical measurements, Phys. A: Stat. Mech. Appl., Volume 153 (1988) no. 1, pp. 97-113 | DOI
[7] Nine formulations of quantum mechanics, Am. J. Phys., Volume 70 (2002) no. 3, pp. 288-297 | DOI
[8] Foundations of quantum mechanics, an empiricist approach, Fundamental Theories of Physics, 127, Springer, 2006
[9] Do we really understand quantum mechanics?, Cambridge University Press, 2019
[10] Quantum measurement and control, Cambridge University Press, 2009
[11] Mathematical foundations of quantum mechanics: New edition, Princeton Landmarks in Mathematics and Physics, 53, Princeton University Press, Princeton, 2018
[12] Curie–Weiss model of the quantum measurement process, Europhys. Lett., Volume 61 (2003) no. 4, pp. 452-458 | DOI
[13] Understanding quantum measurement from the solution of dynamical models, Phys. Rep., Volume 525 (2013) no. 1, pp. 1-166 | DOI
[14] Introduction to quantum noise, measurement, and amplification, Rev. Mod. Phys., Volume 82 (2010), pp. 1155-1208 | DOI
[15] Quantum nondemolition measurements: the route from toys to tools, Rev. Mod. Phys., Volume 68 (1996), pp. 1-11 | DOI
[16] Pedagogical review of quantum measurement theory with an emphasis on weak measurements, Quanta, Volume 2 (2013) no. 1, pp. 18-49 | DOI
[17] ‘Physics’, (Long Island City, NY) 1, 195 (1964), Speakable and Unspeakable in Quantum Mechanics. Collected papers on quantum philosophy, Cambridge University Press (1987)
[18] Against ‘measurement’, Physics World, Volume 3 (1989) no. 8, p. 33 (In 62 Years of Uncertainty: Erice 5-14 august 1989) | DOI
[19] The modern tools of quantum mechanics: a tutorial on quantum states, measurements, and operations, Eur. Phys. J.: Spec. Top., Volume 203 (2012), pp. 61-86 | DOI
[20] Coherent quantum physics. A Reinterpretation of the Tradition, Walter de Gruyter, 2019 | DOI
[21] The formalisms of quantum mechanics. An Introduction, Lecture Notes in Physics, 893, Springer, Switzerland, 2015 | DOI
[22] Why some physical theories should never die, Évora studies in the philosophy and history of science. In memoriam Hermínio Martins, Caleidoscópio, Casal de Cambra, 2015, pp. 319-368
[23] Probability, Truth and Statistics, Macmillan, London, 1957
[24] Niels Bohr’s times: In physics, philosophy, and polity, Oxford University Press, 1991
[25] Reading Bohr: physics and philosophy, Fundamental Theories of Physics, 152, Springer, 2006
[26] On the problem of hidden variables in quantum mechanics, Rev. Mod. Phys., Volume 38 (1966) no. 3, pp. 447-452 | DOI
[27] Experimental realization of Einstein–Podolsky–Rosen–Bohm Gedankenexperiment: a new violation of Bell’s inequalities, Phys. Rev. Lett., Volume 49 (1982) no. 2, pp. 91-94 | DOI
[28] Experimental test of Bell’s inequalities using time-varying analyzers, Phys. Rev. Lett., Volume 49 (1982) no. 25, pp. 1804-1807 | DOI
[29] Going beyond Bell’s theorem, Bell’s Theorem, Quantum Theory and Conceptions of the Universe (Fundamental Theories of Physics), Volume 37, Springer, 1989, pp. 69-72 | DOI
[30] Information in statistical physics, Stud. Hist. Philos. Sci. B, Volume 36 (2005) no. 2, pp. 323-353 | DOI
[31] On quantum measurements and the role of the uncertainty relations in statistical mechanics, Phys. Rev., Volume 52 (1937) no. 9, pp. 987-999 | DOI
[32] Information theory and statistical mechanics. I and II, Phys. Rev., Volume 106 (1957), pp. 620-630 | DOI
[33] From Microphysics to Macrophysics: Methods and Applications of Statistical Physics. Volumes 1 and 2, Springer, 2007
[34] Equiprobability, inference, and entropy in quantum theory, Ann. Phys., Volume 179 (1987) no. 1, pp. 97-144 | DOI
[35] Models for quantum measurement of particles with higher spin, Entropy, Volume 24 (2022) no. 12, 1746 | DOI
[36] A sub-ensemble theory of ideal quantum measurement processes, Ann. Phys., Volume 376 (2017), pp. 324-352 | DOI
[37] Analysis of the quantum mechanical measurement process, Annals of the Japan Association for Philosophy of Science, Volume 4 (1973) no. 3, pp. 171-186 | DOI
[38] Quantum dynamics of a small symmetry breaking measurement device, Ann. Phys., Volume 396 (2018), pp. 137-146 | DOI
[39] Nature of quantum states, Am. J. Phys., Volume 36 (1968), pp. 211-226 | DOI
[40] Concerning the state-change due to the measurement process, Ann. Phys. (Berlin), Volume 15 (2006) no. 9, pp. 663-670 | Zbl
[41] Contexts, systems and modalities: a new ontology for quantum mechanics, Found. Phys., Volume 46 (2016), pp. 121-137 | DOI
[42] Deriving Born’s rule from an inference to the best explanation, Found. Phys., Volume 50 (2020), pp. 1781-1793 | DOI
[43] Simultaneous measurement of non-commuting observables, Physica, Volume 42 (2010) no. 3, pp. 339-342 | DOI
[44] Simultaneous measurement of two noncommuting quantum variables: Solution of a dynamical model, Phys. Rev. A, Volume 95 (2017) no. 5, 052129 | DOI
[45] Proposed experiment to test local hidden-variable theories, Phys. Rev. Lett., Volume 23 (1969) no. 15, pp. 880-884 | DOI
[47] Is the contextuality loophole fatal for the derivation of Bell inequalities?, Found. Phys., Volume 41 (2011), pp. 580-591 | DOI
[48] Ubiquitous quantum structure. From Psychology to Finance, Springer, 2010 | DOI
[49] Quantum-like model of unconscious–conscious dynamics, Front. Psychol., Volume 6 (2015), 997 | DOI
[50] Roads to objectivity: quantum Darwinism, spectrum broadcast structures, and strong quantum Darwinism–a review, Quantum, Volume 5 (2021), 571 | DOI
Cited by Sources:
Comments - Policy