Comptes Rendus
Research article
Teaching ideal quantum measurement, from dynamics to interpretation
Comptes Rendus. Physique, Volume 25 (2024), pp. 251-287.

We present a graduate course on ideal measurements, analyzed as dynamical processes of interaction between the tested system S and an apparatus A, described by quantum statistical mechanics. The apparatus A = M + B involves a macroscopic measuring device M and a bath B. The requirements for ideality of the measurement allow us to specify the Hamiltonian of the isolated compound system S + M + B. The resulting dynamical equations may be solved for simple models. Conservation laws are shown to entail two independent relaxation mechanisms: truncation and registration. Approximations, justified by the large size of M and of B, are needed. The final density matrix 𝒟 ^(tf) of S + A has an equilibrium form. It describes globally the outcome of a large set of runs of the measurement. The measurement problem, i.e., extracting physical properties of individual runs from 𝒟 ^(tf), then arises due to the ambiguity of its splitting into parts associated with subsets of runs. To deal with this ambiguity, we postulate that each run ends up with a distinct pointer value Ai of the macroscopic M. This is compatible with the principles of quantum mechanics. Born’s rule then arises from the conservation law for the tested observable; it expresses the frequency of occurrence of the final indications Ai of M in terms of the initial state of S. Von Neumann’s reduction amounts to updating of information due to selection of Ai. We advocate the terms q-probabilities and q-correlations when analyzing measurements of non-commuting observables. These ideas may be adapted to different types of courses.

On présente un cours doctoral sur les mesures idéales, processus dynamiques couplant le système testé S et un appareil A analysés en mécanique statistique quantique. Cet appareil A = M + B comprend un dispositif de mesure macroscopique M et un bain B. Les conditions requises pour l’idéalité de la mesure impliquent une forme spécifique du Hamiltonien du système composite isolé S + M + B. Les equations dynamiques résultantes sont solubles pour des modèles simples. Les lois de conservation engendrent deux mécanismes de relaxation indépendants, la troncature et l’enregistrement. Des approximations, justifiées par la grande taille de M et de B, sont nécessaires. La matrice densité finale 𝒟 ^(tf) de S + A a une forme d’équilibre. Elle décrit globalement l’issue d’un large ensemble de processus similaires. Le problème de la mesure, extraire de 𝒟 ^(tf) des propriétés physiques de processus individuels, provient ici de l’impossibilité de le scinder sans ambiguïté en parties décrivant des sous-ensembles de processus. On lève cette ambiguïté en postulant que chaque mesure individuelle aboutit à une valeur distincte Ai du pointeur macroscopique. Ceci est compatible avec les principes de la mécanique quantique. La règle de Born résulte alors de la loi de conservation de l’observable mesurée ; elle exprime la fréquence de chaque indication finale Ai de M en termes de l’état initial de S. La réduction de von Neumann apparaît comme une mise à jour de l’information résultant de la sélection d’un résultat Ai. On préconise l’emploi des termes q-probabilités ou q-corrélations lors de l’analyse de mesures d’observables non-commutatives. Ces idées peuvent être adaptées à divers types de cours.

Received:
Revised:
Accepted:
Published online:
DOI: 10.5802/crphys.180
Keywords: ideal quantum measurements, q-probability, system-apparatus dynamics, measurement problem, Born rule, von Neumann reduction, minimalist interpretation, contextuality
Mot clés : mesures quantiques idéales, q-probabilités, dynamique système-appareil, problème de la mesure, règle de Born, réduction de von Neumann, interprétation minimaliste, contextualité

Armen E. Allahverdyan 1; Roger Balian 2; Theo M. Nieuwenhuizen 3

1 Yerevan Physics Institute, Alikhanian Brothers Street 2, Yerevan 375036, Armenia
2 Institut de Physique Théorique, CEA Saclay, 91191 Gif-sur-Yvette cedex, France
3 Institute for Theoretical Physics, Science Park 904, 1098 XH Amsterdam, The Netherlands
License: CC-BY 4.0
Copyrights: The authors retain unrestricted copyrights and publishing rights
@article{CRPHYS_2024__25_G1_251_0,
     author = {Armen E. Allahverdyan and Roger Balian and Theo M. Nieuwenhuizen},
     title = {Teaching ideal quantum measurement, from dynamics to interpretation},
     journal = {Comptes Rendus. Physique},
     pages = {251--287},
     publisher = {Acad\'emie des sciences, Paris},
     volume = {25},
     year = {2024},
     doi = {10.5802/crphys.180},
     language = {en},
}
TY  - JOUR
AU  - Armen E. Allahverdyan
AU  - Roger Balian
AU  - Theo M. Nieuwenhuizen
TI  - Teaching ideal quantum measurement, from dynamics to interpretation
JO  - Comptes Rendus. Physique
PY  - 2024
SP  - 251
EP  - 287
VL  - 25
PB  - Académie des sciences, Paris
DO  - 10.5802/crphys.180
LA  - en
ID  - CRPHYS_2024__25_G1_251_0
ER  - 
%0 Journal Article
%A Armen E. Allahverdyan
%A Roger Balian
%A Theo M. Nieuwenhuizen
%T Teaching ideal quantum measurement, from dynamics to interpretation
%J Comptes Rendus. Physique
%D 2024
%P 251-287
%V 25
%I Académie des sciences, Paris
%R 10.5802/crphys.180
%G en
%F CRPHYS_2024__25_G1_251_0
Armen E. Allahverdyan; Roger Balian; Theo M. Nieuwenhuizen. Teaching ideal quantum measurement, from dynamics to interpretation. Comptes Rendus. Physique, Volume 25 (2024), pp. 251-287. doi : 10.5802/crphys.180. https://comptes-rendus.academie-sciences.fr/physique/articles/10.5802/crphys.180/

[1] S. M. Carroll Addressing the quantum measurement problem, Phys. Today, Volume 75 (2022) no. 7, pp. 62-63 | DOI

[2] N. D. Mermin There is no quantum measurement problem, Phys. Today, Volume 75 (2022) no. 6, pp. 62-63 | DOI

[3] J. A. Wheeler; W. H. Zurek Quantum Theory and Measurement, Princeton Series in Physics, 81, Princeton University Press, 2014

[4] P. Busch; P. J. Lahti; P. Mittelstaedt The quantum theory of measurement, Lecture Notes in Physics Monographs, 2, Springer, 1996 | DOI

[5] A. Peres Quantum theory: concepts and methods, Fundamental Theories of Physics, 57, Springer, 1997 | DOI

[6] N. G. Van Kampen Ten theorems about quantum mechanical measurements, Phys. A: Stat. Mech. Appl., Volume 153 (1988) no. 1, pp. 97-113 | DOI

[7] D. F. Styer; M. S. Balkin; K. M. Becker; M. R. Burns; C. E. Dudley; S. T. Forth; J. S. Gaumer; M. A. Kramer; D. C. Oertel; L. H. Park; M. T. Rinkoski; C. T. Smith; T. D. Wotherspoon Nine formulations of quantum mechanics, Am. J. Phys., Volume 70 (2002) no. 3, pp. 288-297 | DOI

[8] W. M. de Muynck Foundations of quantum mechanics, an empiricist approach, Fundamental Theories of Physics, 127, Springer, 2006

[9] F. Laloë Do we really understand quantum mechanics?, Cambridge University Press, 2019

[10] H. M. Wiseman; G. J. Milburn Quantum measurement and control, Cambridge University Press, 2009

[11] J. von Neumann Mathematical foundations of quantum mechanics: New edition, Princeton Landmarks in Mathematics and Physics, 53, Princeton University Press, Princeton, 2018

[12] A. E. Allahverdyan; R. Balian; T. M. Nieuwenhuizen Curie–Weiss model of the quantum measurement process, Europhys. Lett., Volume 61 (2003) no. 4, pp. 452-458 | DOI

[13] A. E. Allahverdyan; R. Balian; T. M. Nieuwenhuizen Understanding quantum measurement from the solution of dynamical models, Phys. Rep., Volume 525 (2013) no. 1, pp. 1-166 | DOI

[14] A. A. Clerk; M. H. Devoret; S. M. Girvin; F. Marquardt; R. J. Schoelkopf Introduction to quantum noise, measurement, and amplification, Rev. Mod. Phys., Volume 82 (2010), pp. 1155-1208 | DOI

[15] V. B. Braginsky; F. Y. Khalili Quantum nondemolition measurements: the route from toys to tools, Rev. Mod. Phys., Volume 68 (1996), pp. 1-11 | DOI

[16] B. E. Y. Svensson Pedagogical review of quantum measurement theory with an emphasis on weak measurements, Quanta, Volume 2 (2013) no. 1, pp. 18-49 | DOI

[17] J. Bell ‘Physics’, (Long Island City, NY) 1, 195 (1964), Speakable and Unspeakable in Quantum Mechanics. Collected papers on quantum philosophy, Cambridge University Press (1987)

[18] J. Bell Against ‘measurement’, Physics World, Volume 3 (1989) no. 8, p. 33 (In 62 Years of Uncertainty: Erice 5-14 august 1989) | DOI

[19] M. G. A. Paris The modern tools of quantum mechanics: a tutorial on quantum states, measurements, and operations, Eur. Phys. J.: Spec. Top., Volume 203 (2012), pp. 61-86 | DOI

[20] A. Neumaier Coherent quantum physics. A Reinterpretation of the Tradition, Walter de Gruyter, 2019 | DOI

[21] F. David The formalisms of quantum mechanics. An Introduction, Lecture Notes in Physics, 893, Springer, Switzerland, 2015 | DOI

[22] O. Darrigol Why some physical theories should never die, Évora studies in the philosophy and history of science. In memoriam Hermínio Martins, Caleidoscópio, Casal de Cambra, 2015, pp. 319-368

[23] R. von Mises Probability, Truth and Statistics, Macmillan, London, 1957

[24] A. Pais Niels Bohr’s times: In physics, philosophy, and polity, Oxford University Press, 1991

[25] A. Plotnitsky Reading Bohr: physics and philosophy, Fundamental Theories of Physics, 152, Springer, 2006

[26] J. S. Bell On the problem of hidden variables in quantum mechanics, Rev. Mod. Phys., Volume 38 (1966) no. 3, pp. 447-452 | DOI

[27] A. Aspect; P. Grangier; G. Roger Experimental realization of Einstein–Podolsky–Rosen–Bohm Gedankenexperiment: a new violation of Bell’s inequalities, Phys. Rev. Lett., Volume 49 (1982) no. 2, pp. 91-94 | DOI

[28] A. Aspect; J. Dalibard; G. Roger Experimental test of Bell’s inequalities using time-varying analyzers, Phys. Rev. Lett., Volume 49 (1982) no. 25, pp. 1804-1807 | DOI

[29] D. M. Greenberger; M. A. Horne; A. Zeilinger Going beyond Bell’s theorem, Bell’s Theorem, Quantum Theory and Conceptions of the Universe (Fundamental Theories of Physics), Volume 37, Springer, 1989, pp. 69-72 | DOI

[30] R. Balian Information in statistical physics, Stud. Hist. Philos. Sci. B, Volume 36 (2005) no. 2, pp. 323-353 | DOI

[31] W. M. Elsasser On quantum measurements and the role of the uncertainty relations in statistical mechanics, Phys. Rev., Volume 52 (1937) no. 9, pp. 987-999 | DOI

[32] E. T. Jaynes Information theory and statistical mechanics. I and II, Phys. Rev., Volume 106 (1957), pp. 620-630 | DOI

[33] R. Balian From Microphysics to Macrophysics: Methods and Applications of Statistical Physics. Volumes 1 and 2, Springer, 2007

[34] R. Balian; N. L. Balazs Equiprobability, inference, and entropy in quantum theory, Ann. Phys., Volume 179 (1987) no. 1, pp. 97-144 | DOI

[35] T. M. Nieuwenhuizen Models for quantum measurement of particles with higher spin, Entropy, Volume 24 (2022) no. 12, 1746 | DOI

[36] A. E. Allahverdyan; R. Balian; T. M. Nieuwenhuizen A sub-ensemble theory of ideal quantum measurement processes, Ann. Phys., Volume 376 (2017), pp. 324-352 | DOI

[37] E. P. Wigner; M. M. Yanase Analysis of the quantum mechanical measurement process, Annals of the Japan Association for Philosophy of Science, Volume 4 (1973) no. 3, pp. 171-186 | DOI

[38] H. C. Donker; H. De Raedt; M. I. Katsnelson Quantum dynamics of a small symmetry breaking measurement device, Ann. Phys., Volume 396 (2018), pp. 137-146 | DOI

[39] J. L. Park Nature of quantum states, Am. J. Phys., Volume 36 (1968), pp. 211-226 | DOI

[40] G. Lüders Concerning the state-change due to the measurement process, Ann. Phys. (Berlin), Volume 15 (2006) no. 9, pp. 663-670 | Zbl

[41] A. Auffèves; P. Grangier Contexts, systems and modalities: a new ontology for quantum mechanics, Found. Phys., Volume 46 (2016), pp. 121-137 | DOI

[42] A. Auffèves; P. Grangier Deriving Born’s rule from an inference to the best explanation, Found. Phys., Volume 50 (2020), pp. 1781-1793 | DOI

[43] A. E. Allahverdyan; R. Balian; T. M. Nieuwenhuizen Simultaneous measurement of non-commuting observables, Physica, Volume 42 (2010) no. 3, pp. 339-342 | DOI

[44] M. Perarnau-Llobet; T. M. Nieuwenhuizen Simultaneous measurement of two noncommuting quantum variables: Solution of a dynamical model, Phys. Rev. A, Volume 95 (2017) no. 5, 052129 | DOI

[45] J. F. Clauser; M. A. Horne; A. Shimony; R. A. Holt Proposed experiment to test local hidden-variable theories, Phys. Rev. Lett., Volume 23 (1969) no. 15, pp. 880-884 | DOI

[46] A. Fine Hidden variables, joint probability, and the Bell inequalities, Phys. Rev., Volume 48 (1982) no. 5, pp. 291-295 | DOI

[47] T. M. Nieuwenhuizen Is the contextuality loophole fatal for the derivation of Bell inequalities?, Found. Phys., Volume 41 (2011), pp. 580-591 | DOI

[48] A. Khrennikov Ubiquitous quantum structure. From Psychology to Finance, Springer, 2010 | DOI

[49] A. Khrennikov Quantum-like model of unconscious–conscious dynamics, Front. Psychol., Volume 6 (2015), 997 | DOI

[50] J. K. Korbicz Roads to objectivity: quantum Darwinism, spectrum broadcast structures, and strong quantum Darwinism–a review, Quantum, Volume 5 (2021), 571 | DOI

Cited by Sources:

Comments - Policy