Comptes Rendus
Research article
Three-body contact for fermions. I. General relations
Comptes Rendus. Physique, Volume 25 (2024), pp. 179-218.

We consider the resonant Fermi gas, that is, two-component fermions in three dimensions interacting by a short-range potential of large scattering length. We introduce a quantity, the three-body contact, that determines several observables. Within the zero-range model, the number of nearby fermion triplets, the large-momentum tail of the center-of-mass momentum distribution of nearby fermion pairs, as well as the large-momentum tail of the two-particle momentum distribution, are expressed in terms of the three-body contact. For a small finite interaction range, the formation rate of deeply bound dimers by three-body recombination, as well as the three-body contribution to the finite-range correction to the energy, are expressed in terms of the three-body contact and of a three-body parameter. This three-body parameter, which vanishes in the zero-range limit, is defined through the asymptotic behavior of the zero-energy scattering state at distances intermediate between the range and the two-body scattering length. In general, the three-body contact has different contributions labeled by spin and angular momentum indices, and the three-body parameter can depend on those indices. We also include the generalization to unequal masses for and particles. With respect to the relation between three-body loss rate and number of nearby triplets stated in [Petrov, Salomon and Shlyapnikov, PRL 93, 090404 (2004)], the present work adds a derivation, expresses the proportionality factor in terms of the three-body parameter, and includes the general case where there are several contributions to the three-body contact and several three-body parameters.

Nous considérons le gaz de Fermi résonnant, à savoir des fermions avec deux états internes à trois dimensions avec des interactions à courte portée de grande longueur de diffusion. Nous introduisons une quantité, le contact à trois corps, qui détermine plusieurs observables. Pour le modèle de portée nulle, le nombre de triplets de fermions proches, la queue de la distribution selon l’impulsion du centre de masse des paires de fermions proches, ainsi que la queue de la distribution en impulsion à deux particules, sont exprimées en termes du contact à trois corps. Pour une portée non nulle, le taux de formation de dimères fortement liés par recombinaison à trois corps, ainsi que la contribution à trois corps à la correction de portée finie à l’énergie, sont exprimées en termes du contact à trois corps et d’un paramètre à trois corps. Ce paramètre à trois corps, qui tend vers zéro dans la limite de portée nulle, est défini via le comportement asymptotique de l’état de diffusion d’énergie nulle à des distances intermédiaires entre la portée et la longueur de diffusion à deux corps. En général, le contact à trois corps a différentes contributions repérées par des indices de spin et de moment cinétique, et le paramètre à trois corps peut dépendre de ces indices. Nous incluons aussi la généralisation à des masses différentes pour les particules et . Par rapport à la relation donnée dans [Petrov, Salomon et Shlyapnikov, PRL 93, 090404 (2004)] entre taux de pertes à trois corps et nombre de triplets de fermions proches, le présent travail ajoute une dérivation, exprime le facteur de proportionnalité en termes du paramètre à trois corps, et inclut le cas général où il y a plusieurs contributions au contact à trois corps et plusieurs paramètres à trois corps.

Received:
Revised:
Accepted:
Published online:
DOI: 10.5802/crphys.181
Keywords: Unitary gas, fermions, cold atoms
Mot clés : Gaz unitaire, fermions, atomes froids

Félix Werner 1; Xavier Leyronas 2

1 Laboratoire Kastler Brossel, Ecole Normale Supérieure - Université PSL, CNRS, Collège de France, Sorbonne Université, 75005 Paris, France
2 Laboratoire de Physique de l’Ecole Normale Supérieure, ENS - Université PSL, Sorbonne Université, Université Paris Cité, CNRS, 75005 Paris, France
License: CC-BY 4.0
Copyrights: The authors retain unrestricted copyrights and publishing rights
@article{CRPHYS_2024__25_G1_179_0,
     author = {F\'elix Werner and Xavier Leyronas},
     title = {Three-body contact for fermions.  {I.} {General} relations},
     journal = {Comptes Rendus. Physique},
     pages = {179--218},
     publisher = {Acad\'emie des sciences, Paris},
     volume = {25},
     year = {2024},
     doi = {10.5802/crphys.181},
     language = {en},
}
TY  - JOUR
AU  - Félix Werner
AU  - Xavier Leyronas
TI  - Three-body contact for fermions.  I. General relations
JO  - Comptes Rendus. Physique
PY  - 2024
SP  - 179
EP  - 218
VL  - 25
PB  - Académie des sciences, Paris
DO  - 10.5802/crphys.181
LA  - en
ID  - CRPHYS_2024__25_G1_179_0
ER  - 
%0 Journal Article
%A Félix Werner
%A Xavier Leyronas
%T Three-body contact for fermions.  I. General relations
%J Comptes Rendus. Physique
%D 2024
%P 179-218
%V 25
%I Académie des sciences, Paris
%R 10.5802/crphys.181
%G en
%F CRPHYS_2024__25_G1_179_0
Félix Werner; Xavier Leyronas. Three-body contact for fermions.  I. General relations. Comptes Rendus. Physique, Volume 25 (2024), pp. 179-218. doi : 10.5802/crphys.181. https://comptes-rendus.academie-sciences.fr/physique/articles/10.5802/crphys.181/

[1] G. E. Astrakharchik; J. Boronat; J. Casulleras; S. Giorgini Equation of State of a Fermi Gas in the BEC-BCS Crossover: A Quantum Monte Carlo Study, Phys. Rev. Lett., Volume 93 (2004), 200404 | DOI

[2] F. Attanasio; L. Rammelmüller; J. E. Drut; J. Braun Pairing patterns in polarized unitary Fermi gases above the superfluid transition, Phys. Rev. A, Volume 105 (2022), 063317 | DOI

[3] A. Altmeyer; S. Riedl; C. Kohstall; M. J. Wright; R. Geursen; M. Bartenstein; C. Chin; J. Hecker Denschlag; R. Grimm Precision Measurements of Collective Oscillations in the BEC-BCS Crossover, Phys. Rev. Lett., Volume 98 (2007) no. 4, 040401 | DOI

[4] M. Bartenstein; A. Altmeyer; S. Riedl; S. Jochim; C. Chin; J. Hecker Denschlag; R. Grimm Crossover from a Molecular Bose–Einstein Condensate to a Degenerate Fermi Gas, Phys. Rev. Lett., Volume 92 (2004) no. 12, 120401 | DOI

[5] B. Bazak Mass-imbalanced fermionic mixture in a harmonic trap, Phys. Rev. A, Volume 96 (2017), 022708 | DOI

[6] D. Blume; K. M. Daily Universal relations for a trapped four-fermion system with arbitrary s-wave scattering length, Phys. Rev. A, Volume 80 (2009), 053626 | DOI

[7] D. Blume; K. M. Daily Universal relations for a trapped four-fermion system with arbitrary s-wave scattering length, Phys. Rev. A, Volume 80 (2009), 053626 | DOI

[8] D. Blume; K. M. Daily Breakdown of Universality for Unequal-Mass Fermi Gases with Infinite Scattering Length, Phys. Rev. Lett., Volume 105 (2010), 170403 | DOI

[9] D. Blume; K. M. Daily Few-body resonances of unequal-mass systems with infinite interspecies two-body s-wave scattering length, Phys. Rev. A, Volume 82 (2010), 063612 | DOI

[10] D. Blume; K. M. Daily Trapped two-component Fermi gases with up to six particles: Energetics, structural properties, and molecular condensate fraction, C. R. Phys., Volume 12 (2011), pp. 86-109 | DOI

[11] A. Bulgac; J. E. Drut; P. Magierski Spin 1/2 Fermions in the Unitary Regime: A Superfluid of a New Type, Phys. Rev. Lett., Volume 96 (2006), 090404 | DOI

[12] A. Bulgac; J. E. Drut; P. Magierski Thermodynamics of a Trapped Unitary Fermi Gas, Phys. Rev. Lett., Volume 99 (2007), 120401 | DOI

[13] A. Bulgac; J. E. Drut; P. Magierski Quantum Monte Carlo simulations of the BCS-BEC crossover at finite temperature, Phys. Rev. A, Volume 78 (2008), 023625 | DOI

[14] I. Boettcher; S. Diehl; J. M. Pawlowski; C. Wetterich Tan contact and universal high momentum behavior of the fermion propagator in the BCS-BEC crossover, Phys. Rev. A, Volume 87 (2013) no. 2, 023606 | DOI

[15] E. Braaten; H.-W. Hammer Universality in few-body systems with large scattering length, Phys. Rept., Volume 428 (2006), pp. 259-390 | DOI

[16] E. Braaten; H.-W. Hammer Efimov Physics in Cold Atoms, Ann. Phys., Volume 322 (2007), pp. 120-163 | DOI

[17] E. Braaten; H.-W. Hammer; M. Kusunoki Universal equation for Efimov states, Phys. Rev. A, Volume 67 (2003), 022505 | DOI

[18] E. Braaten; H.-W. Hammer; G. P. Lepage Lindblad equation for the inelastic loss of ultracold atoms, Phys. Rev. A, Volume 95 (2017), 012708 | DOI

[19] T. Bourdel; L. Khaykovich; J. Cubizolles; J. Zhang; F. Chevy; M. Teichmann; L. Tarruell; S. J. J. M. F. Kokkelmans; C. Salomon Experimental Study of the BEC-BCS Crossover Region in Lithium 6, Phys. Rev. Lett., Volume 93 (2004) no. 5, 050401 | DOI

[20] E. Burovski; E. Kozik; N. Prokof’ev; B. Svistunov; M. Troyer Critical Temperature Curve in BEC-BCS Crossover, Phys. Rev. Lett., Volume 101 (2008), 090402 | DOI

[21] E. Braaten; D. Kang; L. Platter Universal relations for a strongly interacting Fermi gas near a Feshbach resonance, Phys. Rev. A, Volume 78 (2008), 053606 | DOI

[22] E. Braaten; D. Kang; L. Platter Universal Relations for Identical Bosons from Three-Body Physics, Phys. Rev. Lett., Volume 106 (2011), 153005 | DOI

[23] D. Blume Few-body physics with ultracold atomic and molecular systems in traps, Rep. Prog. Phys., Volume 75 (2012), p. 046401 | DOI

[24] E. Braaten; L. Platter Exact Relations for a Strongly Interacting Fermi Gas from the Operator Product Expansion, Phys. Rev. Lett., Volume 100 (2008) no. 20, 205301 | DOI

[25] B. Bazak; D. S. Petrov Five-Body Efimov Effect and Universal Pentamer in Fermionic Mixtures, Phys. Rev. Lett., Volume 118 (2017), 083002 | DOI

[26] E. Burovski; N. Prokof’ev; B. Svistunov; M. Troyer Critical Temperature and Thermodynamics of Attractive Fermions at Unitarity, Phys. Rev. Lett., Volume 96 (2006), 160402 | DOI

[27] E. Burovski; N. Prokof’ev; B. Svistunov; M. Troyer The Fermi–Hubbard model at unitarity, New J. Phys., Volume 8 (2006), 153 | DOI

[28] G. Baym; C. J. Pethick; Z. Yu; M. W. Zwierlein Coherence and Clock Shifts in Ultracold Fermi Gases with Resonant Interactions, Phys. Rev. Lett., Volume 99 (2007) no. 19, 190407 | DOI

[29] E. Braaten Universal Relations for Fermions with Large Scattering Length, The BCS-BEC Crossover and the Unitary Fermi Gas (Lecture Notes in Physics), Volume 836, Springer, 2011, pp. 193-231 | DOI

[30] H. Biss; L. Sobirey; N. Luick; M. Bohlen; J. J. Kinnunen; G. M. Bruun; T. Lompe; H. Moritz Excitation Spectrum and Superfluid Gap of an Ultracold Fermi Gas, Phys. Rev. Lett., Volume 128 (2022), 100401 | DOI

[31] B. Bazak; M. Valiente; N. Barnea Universal short-range correlations in bosonic helium clusters, Phys. Rev. A, Volume 101 (2020), 010501 | DOI

[32] J. M. Blatt; V. F. Weisskopf Theoretical Nuclear Physics, John Wiley & Sons, New York, 1952 | Zbl

[33] M. Barth; W. Zwerger Tan relations in one dimension, Ann. Phys., Volume 326 (2011) no. 10, pp. 2544-2565 | DOI

[34] R. Combescot; F. Alzetto; X. Leyronas Particle distribution tail and related energy formula, Phys. Rev. A, Volume 79 (2009) no. 5, 053640 | DOI

[35] Y. Castin Exact scaling transform for a unitary quantum gas in a time dependent harmonic potential, C. R. Phys., Volume 5 (2004), pp. 407-410 | DOI

[36] H. Cayla; S. Butera; C. Carcy; A. Tenart; G. Hercé; M. Mancini; A. Aspect; I. Carusotto; D. Clément Hanbury Brown and Twiss Bunching of Phonons and of the Quantum Depletion in an Interacting Bose Gas, Phys. Rev. Lett., Volume 125 (2020), 165301 | DOI

[37] M. Correggi; G. Dell’Antonio; D. Finco; A. Michelangeli; A. Teta A Class of Hamiltonians for a Three-Particle Fermionic System at Unitarity, Math. Phys. Anal. Geom., Volume 18 (2015) no. 1, 32 | DOI

[38] A. Ciamei; S. Finelli; A. Trenkwalder; M. Inguscio; A. Simoni; M. Zaccanti Exploring Ultracold Collisions in 6 Li- 53 Cr Fermi Mixtures: Feshbach Resonances and Scattering Properties of a Novel Alkali-Transition Metal System, Phys. Rev. Lett., Volume 129 (2022), 093402 | DOI

[39] M. Correggi; D. Finco; A. Teta Energy lower bound for the unitary N+1 fermionic model, Eur. Phys. Lett., Volume 111 (2015), 10003 | DOI

[40] R. Chin; P. Grimm; P. Julienne; E. Tiesinga Feshbach resonances in ultracold gases, Rev. Mod. Phys., Volume 82 (2010), pp. 1225-1286 | DOI

[41] J. Carlson; S. Gandolfi; K. E. Schmidt; S. Zhang Auxiliary Field quantum Monte Carlo for Strongly Paired Fermions, Phys. Rev. A, Volume 84 (2011), 061602 | DOI

[42] C. Carcy; S. Hoinka; M. G. Lingham; P. Dyke; C. C. N. Kuhn; H. Hu; C. J. Vale Contact and Sum Rules in a Near-Uniform Fermi Gas at Unitarity, Phys. Rev. Lett., Volume 122 (2019), 203401 | DOI

[43] M. Cetina; M. Jag; R. S. Lous et al. Ultrafast many-body interferometry of impurities coupled to a Fermi sea, Science, Volume 354 (2016) no. 6308, pp. 96-99 | DOI

[44] Y. Castin; C. Mora; L. Pricoupenko Four-Body Efimov Effect for Three Fermions and a Lighter Particle, Phys. Rev. Lett., Volume 105 (2010), 223201 | DOI

[45] Y. Castin; E. Tignone Trimers in the resonant (2+1)-fermion problem on a narrow Feshbach resonance: Crossover from Efimovian to hydrogenoid spectrum, Phys. Rev. A, Volume 84 (2011), 062704 | DOI

[46] R. Cruz-Torres; D. Lonardoni; R. Weiss Many-body factorization and position-momentum equivalence of nuclear short-range correlations, Nat. Phys., Volume 17 (2021), pp. 306-310 | DOI

[47] Y. Castin; F. Werner Single-Particle Momentum Distribution of an Efimov trimer, Phys. Rev. A, Volume 83 (2011), 063614 | DOI

[48] Y. Castin; F. Werner The Unitary Gas and its Symmetry Properties, The BCS-BEC Crossover and the Unitary Fermi Gas (Lecture Notes in Physics), Volume 836, Springer, 2012, pp. 127-191 | DOI

[49] R. Chapurin; X. Xie; M. J. Van de Graaff; J. S. Popowski; J. P. D’Incao; P. S. Julienne; J. Ye; E. A. Cornell Precision Test of the Limits to Universality in Few-Body Physics, Phys. Rev. Lett., Volume 123 (2019), 233402 | DOI

[50] K. M. Daily; D. Blume Energy spectrum of harmonically trapped two-component Fermi gases: Three- and four-particle problem, Phys. Rev. A, Volume 81 (2010), 053615 | DOI

[51] J. E. Drut; T. A. Lähde; T. Ten Momentum Distribution and Contact of the Unitary Fermi Gas, Phys. Rev. Lett., Volume 106 (2011), 205302 | DOI

[52] X. Du; Y. Zhang; J. E. Thomas Inelastic Collisions of a Fermi Gas in the BEC-BCS Crossover, Phys. Rev. Lett., Volume 102 (2009), 250402 | DOI

[53] S. Endo; Y. Castin Absence of a four-body Efimov effect in the 2+2 fermionic problem, Phys. Rev. A, Volume 92 (2015), 053624 | DOI

[54] V. N. Efimov Weakly-bound states of three resonantly interating particles, Yad. Fiz., Volume 12 (1970), pp. 1080-1091 also published by [Sov. J. Nucl. Phys. 12, no. 589 (1971)]

[55] V. N. Efimov Energy levels of three resonantly interacting particles, Nucl. Phys. A, Volume 210 (1973), pp. 157-188 | DOI

[56] T. Enss; R. Haussmann; W. Zwerger Viscosity and scale invariance in the unitary Fermi gas, Ann. Phys., Volume 326 (2011) no. 3, pp. 770-796 | DOI

[57] M. G. Endres; D. B. Kaplan; J.-W. Lee; A. N. Nicholson Lattice Monte Carlo calculations for unitary fermions in a harmonic trap, Phys. Rev. A, Volume 84 (2011), 043644 | DOI

[58] M. G. Endres; D. B. Kaplan; J.-W. Lee; A. N. Nicholson Lattice Monte Carlo calculations for unitary fermions in a finite box, Phys. Rev. A, Volume 87 (2013), 023615 | DOI

[59] M. M. Forbes; S. Gandolfi; A. Gezerlis Resonantly Interacting Fermions in a Box, Phys. Rev. Lett., Volume 106 (2011), 235303 | DOI

[60] R. J. Fletcher; R. Lopes; J. Man; N. Navon; R. P. Smith; M. W. Zwierlein; Z. Hadzibabic Two- and three-body contacts in the unitary Bose gas, Science, Volume 355 (2017), pp. 377-380 | DOI

[61] G. Gamow Zur Quantentheorie des Atomkernes, Z. Phys., Volume 51 (1928), pp. 204-212 | DOI

[62] S. Gandolfi Quantum Monte Carlo study of strongly interacting Fermi gases, J. Phys., Conf. Ser., Volume 529 (2014), 012011 | DOI

[63] S. Gandolfi; J. Carlson Heavy-Light Few Fermion Clusters at Unitarity (2010) (preprint, arXiv:1006.5186) | DOI

[64] C. Gao; S. Endo; Y. Castin The third virial coefficient of a two-component unitary Fermi gas across an Efimov-effect threshold, Eur. Phys. Lett., Volume 109 (2015), 16003 | DOI

[65] S. Giorgini; L. P. Pitaevskii; S. Stringari Theory of ultracold Fermi gases, Rev. Mod. Phys., Volume 80 (2008) no. 4, pp. 1215-1274 | DOI

[66] M. Greiner; C. A. Regal; J. T. Stewart; D. S. Jin Probing Pair-Correlated Fermionic Atoms through Correlations in Atom Shot Noise, Phys. Rev. Lett., Volume 94 (2005), 110401 | DOI

[67] S. Gandolfi; K. E. Schmidt; J. Carlson BEC-BCS crossover and universal relations in unitary Fermi gases, Phys. Rev. A, Volume 83 (2011), 041601 | DOI

[68] O. Goulko; M. Wingate Numerical study of the unitary Fermi gas across the superfluid transition, Phys. Rev. A, Volume 93 (2016), 053604 | DOI

[69] R. Haussmann Crossover from BCS superconductivity to Bose–Einstein condensation: a self-consistent theory, Z. Phys., B, Volume 91 (1993), pp. 291-308 | DOI

[70] R. Haussmann Properties of a Fermi liquid at the superfluid transition in the crossover region between BCS superconductivity and Bose–Einstein condensation, Phys. Rev. B, Volume 49 (1994) no. 18, pp. 12975-12983 | DOI

[71] M. Holten; L. Bayha; K. Subramanian; S. Brandstetter; C. Heintze; P. Lunt; P. M. Preiss; S. Jochim Observation of Cooper pairs in a mesoscopic two-dimensional Fermi gas, Nature, Volume 606 (2022) no. 7913, pp. 287-291 | DOI

[72] G. Hercé; J.-P. Bureik; A. Ténart; A. Aspect; A. Dareau; D. Clément Full counting statistics of interacting lattice gases after an expansion: The role of condensate depletion in many-body coherence, Phys. Rev. Res., Volume 5 (2023), L012037 | DOI

[73] S. Hoinka; P. Dyke; M. G. Lingham; J. J. Kinnunen; G. M. Bruun; C. J. Vale Goldstone mode and pair-breaking excitations in atomic Fermi superfluids, Nature Phys., Volume 13 (2017), pp. 943-946 | DOI

[74] H. Hu; X.-J. Liu; P. D. Drummond Universal contact of strongly interacting fermions at finite temperatures, New J. Phys., Volume 13 (2011), 035007 | DOI

[75] S. Hoinka; M. Lingham; K. Fenech; H. Hu; C. J. Vale; J. E. Drut; S. Gandolfi Precise Determination of the Structure Factor and Contact in a Unitary Fermi Gas, Phys. Rev. Lett., Volume 110 (2013) no. 5, 055305 | DOI

[76] D. Husmann; M. Lebrat; S. Häusler; J.-P. Brantut; L. Corman; T. Esslinger Breakdown of the Wiedemann–Franz law in a unitary Fermi gas, Proc. Natl. Acad. Sci. USA, Volume 115 (2018), pp. 8563-8568 | DOI

[77] R. He; N. Li; B.-N. Lu; D. Lee Superfluid condensate fraction and pairing wave function of the unitary Fermi gas, Phys. Rev. A, Volume 101 (2020), 063615 | DOI

[78] J. Hofmann Quantum Anomaly, Universal Relations, and Breathing Mode of a Two-Dimensional Fermi Gas, Phys. Rev. Lett., Volume 108 (2012), 185303 | DOI

[79] R. Haussmann; M. Punk; W. Zwerger Spectral functions and rf response of ultracold fermionic atoms, Phys. Rev. A, Volume 80 (2009), 063612 | DOI

[80] J. Hofmann; W. Zwerger Universal relations for dipolar quantum gases, Phys. Rev. Res., Volume 3 (2021), 013088 | DOI

[81] M. He; S. Zhang; H. M. Chan; Q. Zhou Spectrum, Concept of a Contact and Its Applications in Atomic Quantum Hall States, Phys. Rev. Lett., Volume 116 (2016), 045301 | DOI

[82] S. Jensen; C. N. Gilbreth; Y. Alhassid Contact in the Unitary Fermi Gas across the Superfluid Phase Transition, Phys. Rev. Lett., Volume 125 (2020), 043402 | DOI

[83] S. Jensen; C. N. Gilbreth; Y. Alhassid Pairing Correlations across the Superfluid Phase Transition in the Unitary Fermi Gas, Phys. Rev. Lett., Volume 124 (2020), 090604 | DOI

[85] C. Körber; E. Berkowitz; T. Luu Renormalization of a Contact Interaction on a Lattice (2020) (preprint, arXiv:1912.04425) | DOI

[86] E. D. Kuhnle; S. Hoinka; P. Dyke; H. Hu; P. Hannaford; C. J. Vale Temperature Dependence of the Universal Contact Parameter in a Unitary Fermi Gas, Phys. Rev. Lett., Volume 106 (2011), 170402 | DOI

[87] E. D. Kuhnle; H. Hu; X.-J. Liu; P. Dyke; M. Mark; P. D. Drummond; P. Hannaford; C. J. Vale Universal Behavior of Pair Correlations in a Strongly Interacting Fermi Gas, Phys. Rev. Lett., Volume 105 (2010) no. 7, 070402 | DOI

[88] O. I. Kartavtsev; A. V. Malykh Universal description of three two-component fermions, Eur. Phys. Lett., Volume 115 (2016), 36005 | DOI

[89] M. J. H. Ku; A. Sommer; L. W. Cheuk; M. W. Zwierlein Revealing the Superfluid Lambda Transition in the Universal Thermodynamics of a Unitary Fermi Gas, Science, Volume 335 (2012), pp. 563-567 | DOI

[90] C. Langmack; M. Barth; W. Zwerger; E. Braaten Shift in a Strongly Interacting Two-Dimensional Fermi Gas, Phys. Rev. Lett., Volume 108 (2012), 060402 | DOI

[91] A. J. Leggett Diatomic Molecules and Cooper Pairs, Modern Trends in the Theory of Condensed Matter (A. Pekalski; J. A. Przystawa, eds.) (Lecture Notes in Physics), Volume 115, Springer, 1980, pp. 13-27 | DOI

[92] L. D. Landau; E. M. Lifschitz Quantum Mechanics, Pergamon Press, 1977

[93] S. Laurent; M. Pierce; M. Delehaye; T. Yefsah; F. Chevy; C. Salomon Connecting Few-Body Inelastic Decay to Quantum Correlations in a Many-Body System: A Weakly Coupled Impurity in a Resonant Fermi Gas, Phys. Rev. Lett., Volume 118 (2017), 103403 | DOI

[94] C. Luciuk; S. Trotzky; S. Smale; Z. Yu; S. Zhang; J. H. Thywissen Evidence for universal relations describing a gas with p-wave interactions, Nature Phys., Volume 12 (2016), pp. 599-605 | DOI

[95] A. J. Leggett; S. Zhang The BEC-BCS Crossover: Some History and Some General Observations, The BCS-BEC Crossover and the Unitary Fermi Gas (Lecture Notes in Physics), Volume 836, Springer, 2012, pp. 33-47 | DOI

[96] C. Mora; Y. Castin; L. Pricoupenko Integral equations for the four-body problem, C. R. Phys., Volume 12 (2011), pp. 71-85 | DOI

[97] T. Mehen Nonrelativistic conformal field theory and trapped atoms: Virial theorems and the state-operator correspondence in three dimensions, Phys. Rev. A, Volume 78 (2008), 013614 | DOI

[98] A. Messiah Quantum Mechanics. Vol. I, 1961, North-Holland, 1961 (Chap. X, §16) | Zbl

[99] R. A. Minlos A system of three quantum particles with point-like interactions, Russ. Math. Surv., Volume 69 (2014), 539 | DOI

[100] R. Minlos On the point interaction of three particles, Applications of Self-Adjoint Extensions in Quantum Physics (Lecture Notes in Physics), Volume 324, Springer, 1989, pp. 138-145 | DOI

[101] A. Michelangeli; P. Pfeiffer Stability of the (2+2)-fermionic system with zero-range interaction, J. Phys. A. Math. Theor., Volume 49 (2016) no. 10, 105301 | DOI

[102] N. Michel; M. Ploszajczak Gamow Shell Model: The Unified Theory of Nuclear Structure and Reactions, Lecture Notes in Physics, 983, Springer, 2021, p. 978-3 | DOI

[103] B. Mukherjee; P. B. Patel; Z. Yan; R. J. Fletcher; J. Struck; M. W. Zwierlein Spectral Response and Contact of the Unitary Fermi Gas, Phys. Rev. Lett., Volume 122 (2019), 203402 | DOI

[104] T. Moser; R. Seiringer Stability of a Fermionic N + 1 Particle System with Point Interactions, Commun. Math. Phys., Volume 356 (2017) no. 1, pp. 329-355 | DOI

[105] T. Moser; R. Seiringer Stability of the 2+2 Fermionic System with Point Interactions, Math. Phys. Anal. Geom., Volume 21 (2018) no. 3, 19 | DOI

[106] R. A. Minlos; M. K. Shermatov Point interaction of three particles, Mosc. Univ. Math. Bull., Volume 44 (1989), pp. 7-15 translation from Vestn. Mosk. Univ., Ser. I 1989, No. 6, p. 7-14 (1989).

[107] P. Magierski; G. Wlazłowski; A. Bulgac Onset of a Pseudogap Regime in Ultracold Fermi Gases, Phys. Rev. Lett., Volume 107 (2011), 145304 | DOI

[108] P. Magierski; G. Wlazłowski; A. Bulgac; J. E. Drut Finite-Temperature Pairing Gap of a Unitary Fermi Gas by Quantum Monte Carlo Calculations, Phys. Rev. Lett., Volume 103 (2009), 210403 | DOI

[109] N. Navon; S. Nascimbène; F. Chevy; C. Salomon The Equation of State of a Low-Temperature Fermi Gas with Tunable Interactions, Science, Volume 328 (2010) no. 5979, pp. 729-732 | DOI

[110] S. Nascimbène; N. Navon; K. J. Jiang; F. Chevy; C. Salomon Exploring the thermodynamics of a universal Fermi gas, Nature, Volume 463 (2010), pp. 1057-1060 | DOI

[111] Y. Nishida; D. T. Son Nonrelativistic conformal field theories, Phys. Rev. D, Volume 76 (2007), 086004 | DOI

[112] Y. Nishida; D. T. Son Unitary Fermi Gas, ϵ Expansion, and Nonrelativistic Conformal Field Theories, The BCS-BEC Crossover and the Unitary Fermi Gas (Lecture Notes in Physics), Volume 836, Springer, 2012, pp. 233-275 | DOI

[113] G. Ness; C. Shkedrov; Y. Florshaim; O. K. Diessel; J. von Milczewski; R. Schmidt; Y. Sagi Observation of a Smooth Polaron-Molecule Transition in a Degenerate Fermi Gas, Phys. Rev. X, Volume 10 (2020) no. 4, 041019 | DOI

[114] Y. Nishida; D. T. Son; S. Tan Universal Fermi Gas with Two- and Three-Body Resonances, Phys. Rev. Lett., Volume 100 (2008), 090405 | DOI

[115] M. Olshanii; V. Dunjko Short-Distance Correlation Properties of the Lieb–Liniger System and Momentum Distributions of Trapped One-Dimensional Atomic Gases, Phys. Rev. Lett., Volume 91 (2003), 090401 | DOI

[116] K. M. O’Hara; S. L. Hemmer; M. E. Gehm; S. R. Granade; J. E. Thomas Observation of a Strongly Interacting Degenerate Fermi Gas of Atoms, Science, Volume 298 (2002) no. 5601, pp. 2179-2182 | DOI

[117] L. Pricoupenko; Y. Castin Three fermions in a box at the unitary limit: universality in a lattice model, J. Phys. A. Math. Theor., Volume 40 (2007), 12863 | DOI

[118] D. S. Petrov Three-body problem in Fermi gases with short-range interparticle interaction, Phys. Rev. A, Volume 67 (2003), 010703 | DOI

[119] D. S. Petrov Few-atom problem, Many-Body Physics with Ultracold Gases: Proceedings of the Les Houches Summer Schools, Session 94, Oxford University Press, 2012, pp. 109-160 | DOI

[120] S.-G. Peng; X.-J. Liu; H. Hu Large-momentum distribution of a polarized Fermi gas and p-wave contacts, Phys. Rev. A, Volume 94 (2016), 063651 | DOI

[121] F. Palestini; A. Perali; P. Pieri; G. C. Strinati Temperature and coupling dependence of the universal contact intensity for an ultracold Fermi gas, Phys. Rev. A, Volume 82 (2010) no. 2, 021605 | DOI

[122] L. Pricoupenko Universality of isolated N-body resonances at large scattering length, Phys. Rev. A, Volume 108 (2023), 013315 | DOI

[123] G. B. Partridge; K. E. Strecker; R. I. Kamar; M. W. Jack; R. G. Hulet Molecular Probe of Pairing in the BEC-BCS Crossover, Phys. Rev. Lett., Volume 95 (2005), 020404 | DOI

[124] D. S. Petrov; C. Salomon; G. V. Shlyapnikov Weakly Bound Dimers of Fermionic Atoms, Phys. Rev. Lett., Volume 93 (2004), 090404 | DOI

[125] D. S. Petrov; C. Salomon; G. V. Shlyapnikov Diatomic molecules in ultracold Fermi gases - Novel composite bosons, J. Phys. B. At. Mol. Opt. Phys. (2005), p. S645-S660 | DOI

[126] D. S. Petrov; C. Salomon; G. V. Shlyapnikov Scattering properties of weakly bound dimers of fermionic atoms, Phys. Rev. A, Volume 71 (2005), 012708 | DOI

[127] P. B. Patel; Z. Yan; B. Mukherjee; R. J. Fletcher; J. Struck; M. W. Zwierlein Universal sound diffusion in a strongly interacting Fermi gas, Science, Volume 370 (2020), pp. 1222-1226 | DOI

[128] M. Punk; W. Zwerger Theory of rf-Spectroscopy of Strongly Interacting Fermions, Phys. Rev. Lett., Volume 99 (2007), 170404 | DOI

[129] C. A. Regal; M. Greiner; D. S. Jin Lifetime of Molecule-Atom Mixtures near a Feshbach Resonance in 40 K, Phys. Rev. Lett., Volume 92 (2004), 083201 | DOI

[130] C. A. Regal; M. Greiner; D. S. Jin Observation of Resonance Condensation of Fermionic Atom Pairs, Phys. Rev. Lett., Volume 92 (2004) no. 4, 040403 | DOI

[131] R. Rossi; T. Ohgoe; E. Kozik; N. Prokof’ev; B. Svistunov; K. Van Houcke; F. Werner Contact and Momentum Distribution of the Unitary Fermi Gas, Phys. Rev. Lett., Volume 121 (2018) no. 13, 130406 | DOI

[132] R. Rossi; T. Ohgoe; K. Van Houcke; F. Werner Resummation of diagrammatic series with zero convergence radius for strongly correlated fermions, Phys. Rev. Lett., Volume 121 (2018), 130405 | DOI

[133] C. Ravensbergen; E. Soave; V. Corre; M. Kreyer; B. Huang; E. Kirilov; R. Grimm Resonantly Interacting Fermi-Fermi Mixture of 161 Dy and 40 K, Phys. Rev. Lett., Volume 124 (2020), 203402 | DOI

[134] L. A. Reynolds; E. Schwartz; U. Ebling; M. Weyland; J. Brand; M. F. Andersen Direct Measurements of Collisional Dynamics in Cold Atom Triads, Phys. Rev. Lett., Volume 124 (2020), 073401 | DOI

[135] M. Randeria; W. Zwerger; M. W. Zwierlein The BCS-BEC Crossover and the Unitary Fermi Gas, The BCS-BEC Crossover and the Unitary Fermi Gas (W. Zwerger, ed.) (Lecture Notes in Physics), Volume 836, Springer, 2012, pp. 1-32 | DOI

[136] T. Secker; D. J. M. Ahmed-Braun; P. M. A. Mestrom; S. J. J. M. F. Kokkelmans Multichannel effects in the Efimov regime from broad to narrow Feshbach resonances, Phys. Rev. A, Volume 103 (2021), 052805 | DOI

[137] L. M. Schonenberg; G. J. Conduit Effective-range dependence of resonant Fermi gases, Phys. Rev. A, Volume 95 (2017), 013633 | DOI

[138] Y. Sagi; T. E. Drake; R. Paudel; D. S. Jin Measurement of the Homogeneous Contact of a Unitary Fermi gas, Phys. Rev. Lett., Volume 109 (2012), 220402 | DOI

[139] C. Shkedrov; Y. Florshaim; G. Ness; A. Gandman; Y. Sagi High-Sensitivity rf Spectroscopy of a Strongly Interacting Fermi Gas, Phys. Rev. Lett., Volume 121 (2018), 093402 | DOI

[140] J. T. Stewart; J. P. Gaebler; T. E. Drake; D. S. Jin Verification of Universal Relations in a Strongly Interacting Fermi Gas, Phys. Rev. Lett., Volume 104 (2010) no. 23, 235301 | DOI

[141] M. Sun; X. Leyronas High-temperature expansion for interacting fermions, Phys. Rev. A, Volume 92 (2015), 053611 | DOI

[142] Y. Sekino; Y. Nishida Field-theoretical aspects of one-dimensional Bose and Fermi gases with contact interactions, Phys. Rev. A, Volume 103 (2021), 043307 | DOI

[143] A. Safavi-Naini; S. T. Rittenhouse; D. Blume; H. R. Sadeghpour Nonuniversal bound states of two identical heavy fermions and one light particle, Phys. Rev. A, Volume 87 (2013), 032713 | DOI

[144] A. Schmidt; J. R. Pybus; R. Weiss Probing the core of the strong nuclear interaction, Nature, Volume 578 (2020), pp. 540-544 | DOI

[145] W. Schneider; M. Randeria Universal short-distance structure of the single-particle spectral function of dilute Fermi gases, Phys. Rev. A, Volume 81 (2010), 021601 | DOI

[146] W. Schneider; V. B. Shenoy; M. Randeria Theory of Radio Frequency Spectroscopy of Polarized Fermi Gases (2009) (preprint, arXiv:0903.3006) | DOI

[147] Y. Shin; C. H. Schunck; A. Schirotzek; W. Ketterle Phase diagram of a two-component Fermi gas with resonant interactions, Nature, Volume 451 (2008), pp. 689-693 | DOI

[148] D. T. Son; M. Stephanov; H.-U. Yee Fate of multiparticle resonances: From Q-balls to 3 He droplets, Phys. Rev. A, Volume 106 (2022), L050801 | DOI

[149] Y. Sekino; S. Tan; Y. Nishida Comparative study of one-dimensional Bose and Fermi gases with contact interactions from the viewpoint of universal relations for correlation functions, Phys. Rev. A, Volume 97 (2018), 013621 | DOI

[150] F. Scazza; G. Valtolina; P. Massignan; A. Recati; A. Amico; A. Burchianti; C. Fort; M. Inguscio; M. Zaccanti; G. Roati Repulsive Fermi Polarons in a Resonant Mixture of Ultracold 6 Li Atoms, Phys. Rev. Lett., Volume 118 (2017), 083602 | DOI

[151] F. Serwane; G. Zürn; T. Lompe; T. B. Ottenstein; A. N. Wenz; S. Jochim Deterministic Preparation of a Tunable Few-Fermion System, Science, Volume 332 (2011), pp. 336-338 | DOI

[152] The CLAS Collaboration 12 C(e,e’pN) measurements of short range correlations in the tensor-to-scalar interaction transition region, Phys. Lett. B, Volume 820 (2021), 136523 | DOI

[153] S. Tan Short Range Scaling Laws of Quantum Gases With Contact Interactions (2005) (preprint, arXiv:cond-mat/0412764) | DOI

[154] S. Tan Energetics of a strongly correlated Fermi gas, Ann. Phys., Volume 323 (2008) no. 12, pp. 2952-2970 | DOI

[155] S. Tan Generalized virial theorem and pressure relation for a strongly correlated Fermi gas, Ann. Phys., Volume 323 (2008) no. 12, pp. 2987-2990 | DOI

[156] S. Tan Large momentum part of a strongly correlated Fermi gas, Ann. Phys., Volume 323 (2008) no. 12, pp. 2971-2986 | DOI

[157] S. Tan Three-boson problem at low energy and implications for dilute Bose–Einstein condensates, Phys. Rev. A, Volume 78 (2008), 01363 | DOI

[158] S. Tan Universal Energy Functional for Trapped Fermi Gases with Short Range Interactions, Phys. Rev. Lett., Volume 107 (2011), 145302 | DOI

[159] J. R. Taylor Scattering theory, John Wiley & Sons, New York, 1972

[160] A. Tenart; G. Hercé; J.-P. Bureik; A. Dareau; D. Clément Observation of pairs of atoms at opposite momenta in an equilibrium interacting Bose gas, Nature Phys., Volume 17 (2021) no. 12, pp. 1364-1368 | DOI

[161] C. Ticknor; C. A. Regal; D. S. Jin; J. L. Bohn Multiplet structure of Feshbach resonances in nonzero partial waves, Phys. Rev. A, Volume 69 (2004), 042712 | DOI

[162] K. Van Houcke; F. Werner; E. Kozik Feynman diagrams versus Fermi-gas Feynman emulator, Nature Phys., Volume 8 (2012), pp. 366-370 | DOI

[163] M. Valiente; N. T. Zinner; K. Mølmer Universal relations for the two-dimensional spin-1/2 Fermi gas with contact interactions, Phys. Rev. A, Volume 84 (2011), 063626 | DOI

[164] M. Valiente; N. T. Zinner; K. Mølmer Universal properties of Fermi gases in arbitrary dimensions, Phys. Rev. A, Volume 86 (2012), 043616 | DOI

[165] R. Weiss; B. Bazak; N. Barnea Generalized nuclear contacts and momentum distributions, Phys. Rev. C, Volume 92 (2015), 054311 | DOI

[166] R. Weiss; B. Bazak; N. Barnea Nuclear Neutron-Proton Contact and the Photoabsorption Cross Section, Phys. Rev. Lett., Volume 114 (2015), 012501 | DOI

[167] F. Werner; Y. Castin Unitary gas in an isotropic harmonic trap: Symmetry properties and applications, Phys. Rev. A, Volume 74 (2006) no. 5, 053604 | DOI

[168] F. Werner; Y. Castin Unitary Quantum Three-Body Problem in a Harmonic Trap, Phys. Rev. Lett., Volume 97 (2006), 150401 | DOI

[169] F. Werner; Y. Castin General relations for quantum gases in two and three dimensions. II. Bosons and mixtures, Phys. Rev. A, Volume 86 (2012), 053633 | DOI

[170] F. Werner; Y. Castin General relations for quantum gases in two and three dimensions. Two-component fermions, Phys. Rev. A, Volume 86 (2012), 013626 | DOI

[171] F. Werner; Y. Castin Exact relations for quantum-mechanical few-body and many-body problems with short-range interactions in two and three dimensions (2018) (preprint, arXiv:1001.0774) | DOI

[172] R. Weiss; R. Cruz-Torres; N. Barnea; E. Piasetzky; O. Hen The nuclear contacts and short range correlations in nuclei, Phys. Lett. B, Volume 780 (2018), pp. 211-215 | DOI

[173] F. Werner Atomes froids piégés en intéraction résonnante: gaz unitaire et problème à trois corps, Ph. D. Thesis, Université Paris VI, France (2008) (http://tel.archives-ouvertes.fr/tel-00285587)

[174] F. Werner Virial theorems for trapped cold atoms, Phys. Rev. A, Volume 78 (2008), 025601 | DOI

[175] R. Weiss; S. Gandolfi Nuclear three-body short-range correlations in coordinate space, Phys. Rev. C, Volume 108 (2023), L021301 | DOI

[176] Y. Wang; P. S. Julienne Universal van der Waals physics for three cold atoms near Feshbach resonances, Nature Phys., Volume 10 (2014) no. 10, pp. 768-773 | DOI

[177] G. Wlazłowski; P. Magierski; A. Bulgac; K. J. Roche Temperature evolution of the shear viscosity in a unitary Fermi gas, Phys. Rev. A, Volume 88 (2013), 013639 | DOI

[178] G. Wlazłowski; P. Magierski; J. E. Drut; A. Bulgac; K. J. Roche Cooper Pairing Above the Critical Temperature in a Unitary Fermi Gas, Phys. Rev. Lett., Volume 110 (2013), 090401 | DOI

[179] R. J. Wild; P. Makotyn; J. M. Pino; E. A. Cornell; D. S. Jin Measurements of Tan’s Contact in an Atomic Bose–Einstein Condensate, Phys. Rev. Lett., Volume 108 (2012), 145305 | DOI

[180] R. Weiss; E. Pazy; N. Barnea Short Range Correlations: The Important Role of Few-Body Dynamics in Many-Body Systems, Few-Body Syst., Volume 58 (2016) no. 1, 9 | DOI

[181] Z. Wang; S. Tan Scattering hypervolume of spin-polarized fermions, Phys. Rev. A, Volume 104 (2021), 043319 | DOI

[182] Z. Wang; S. Tan Three-body scattering hypervolume of particles with unequal masses, Phys. Rev. A, Volume 103 (2021), 063315 | DOI

[183] Z. Wang; S. Tan Scattering hypervolume of fermions in two dimensions, Phys. Rev. A, Volume 106 (2022), 023310 | DOI

[184] Z. Wang; S. Tan The three-body scattering hypervolume of identical fermions in one dimension (2023) (arXiv:2302.13685) | DOI

[185] F. Werner; L. Tarruell; Y. Castin Number of closed-channel molecules in the BEC-BCS crossover, Eur. Phys. J. B, Condens. Matter Complex Syst., Volume 68 (2009), pp. 401-415 | DOI

[186] A. N. Wenz; G. Zürn; S. Murmann; I. Brouzos; T. Lompe; S. Jochim Direct Measurements of Collisional Dynamics in Cold Atom Triads, Science, Volume 342 (2013), pp. 457-460 | DOI

[187] Y. Xu; S. Kuang; S. Peng; J. Li; L. Luo Scaling law for three-body collisions near a narrow s-wave Feshbach resonance (2023) (preprint, arXiv:2212.08257) | DOI

[188] Z. Yu; G. M. Bruun; G. Baym Short-range correlations and entropy in ultracold-atom Fermi gases, Phys. Rev. A, Volume 80 (2009), 023615 | DOI

[189] Z. Yan; P. B. Patel; B. Mukherjee; R. J. Fletcher; J. Struck; M. W. Zwierlein Boiling a Unitary Fermi Liquid, Phys. Rev. Lett., Volume 122 (2019), 093401 | DOI

[190] Z. Yu; J. H. Thywissen; S. Zhang Universal Relations for a Fermi Gas Close to a p-Wave Interaction Resonance, Phys. Rev. Lett., Volume 115 (2015), 135304 | DOI

[191] S. M. Yoshida; M. Ueda Universal High-Momentum Asymptote and Thermodynamic Relations in a Spinless Fermi Gas with a Resonant p-Wave Interaction, Phys. Rev. Lett., Volume 115 (2015), 135303 | DOI

[192] Y.-Q. Zou; B. Bakkali-Hassani; C. Maury; É. Le Cerf; S. Nascimbene; J. Dalibard; J. Beugnon Tan’s two-body contact across the superfluid transition of a planar Bose gas, Nat. Commun., Volume 12 (2021), 760 | DOI

[193] B. Zhu; S. Häfner; B. Tran; M. Gerken; J. Ulmanis; E. Tiemann; M. Weidemüller Spin-rotation coupling in p-wave Feshbach resonances (2011) (preprint, arXiv:1910.12011) | DOI

[194] B. Zhu; S. Häsfner; B. Tran; M. Gerken; J. Ulmanis; E. Tiemann; M. Weidemüller High partial-wave Feshbach resonances in an ultracold 6 Li- 133 Cs mixture (2019) (preprint, arXiv:1912.01264) | DOI

[195] S. Zhang; A. J. Leggett Universal properties of the ultracold Fermi gas, Phys. Rev. A, Volume 79 (2009) no. 2, 023601 | DOI

[196] M. W. Zwierlein; C. A. Stan; C. H. Schunck; S. M. F. Raupach; A. J. Kerman; W. Ketterle Condensation of Pairs of Fermionic Atoms near a Feshbach Resonance, Phys. Rev. Lett., Volume 92 (2004) no. 12, 120403 | DOI

[197] S. Zhu; S. Tan Three-body scattering hypervolumes of particles with short-range interactions (2017) (arXiv:1710.04147) | DOI

[198] The BCS-BEC Crossover and the Unitary Fermi Gas (W. Zwerger, ed.), Lecture Notes in Physics, 836, Springer, 1978 | DOI

[199] G. Zürn; A. N. Wenz; S. Murmann; A. Bergschneider; T. Lompe; S. Jochim Pairing in Few-Fermion Systems with Attractive Interactions, Phys. Rev. Lett., Volume 111 (2013), 175302 | DOI

[200] P. Zhang; Z. Yu Signature of the universal super Efimov effect: Three-body contact in two-dimensional Fermi gases, Phys. Rev. A, Volume 95 (2017), 033611 | DOI

[201] P. Zhang; S. Zhang; Z. Yu Effective theory and universal relations for Fermi gases near a d-wave-interaction resonance, Phys. Rev. A, Volume 95 (2017), 043609 | DOI

Cited by Sources:

Comments - Policy