We consider the resonant Fermi gas, that is, two-component fermions in three dimensions interacting by a short-range potential of large scattering length. We introduce a quantity, the three-body contact, that determines several observables. Within the zero-range model, the number of nearby fermion triplets, the large-momentum tail of the center-of-mass momentum distribution of nearby fermion pairs, as well as the large-momentum tail of the two-particle momentum distribution, are expressed in terms of the three-body contact. For a small finite interaction range, the formation rate of deeply bound dimers by three-body recombination, as well as the three-body contribution to the finite-range correction to the energy, are expressed in terms of the three-body contact and of a three-body parameter. This three-body parameter, which vanishes in the zero-range limit, is defined through the asymptotic behavior of the zero-energy scattering state at distances intermediate between the range and the two-body scattering length. In general, the three-body contact has different contributions labeled by spin and angular momentum indices, and the three-body parameter can depend on those indices. We also include the generalization to unequal masses for and particles. With respect to the relation between three-body loss rate and number of nearby triplets stated in [Petrov, Salomon and Shlyapnikov, PRL 93, 090404 (2004)], the present work adds a derivation, expresses the proportionality factor in terms of the three-body parameter, and includes the general case where there are several contributions to the three-body contact and several three-body parameters.
Nous considérons le gaz de Fermi résonnant, à savoir des fermions avec deux états internes à trois dimensions avec des interactions à courte portée de grande longueur de diffusion. Nous introduisons une quantité, le contact à trois corps, qui détermine plusieurs observables. Pour le modèle de portée nulle, le nombre de triplets de fermions proches, la queue de la distribution selon l’impulsion du centre de masse des paires de fermions proches, ainsi que la queue de la distribution en impulsion à deux particules, sont exprimées en termes du contact à trois corps. Pour une portée non nulle, le taux de formation de dimères fortement liés par recombinaison à trois corps, ainsi que la contribution à trois corps à la correction de portée finie à l’énergie, sont exprimées en termes du contact à trois corps et d’un paramètre à trois corps. Ce paramètre à trois corps, qui tend vers zéro dans la limite de portée nulle, est défini via le comportement asymptotique de l’état de diffusion d’énergie nulle à des distances intermédiaires entre la portée et la longueur de diffusion à deux corps. En général, le contact à trois corps a différentes contributions repérées par des indices de spin et de moment cinétique, et le paramètre à trois corps peut dépendre de ces indices. Nous incluons aussi la généralisation à des masses différentes pour les particules et . Par rapport à la relation donnée dans [Petrov, Salomon et Shlyapnikov, PRL 93, 090404 (2004)] entre taux de pertes à trois corps et nombre de triplets de fermions proches, le présent travail ajoute une dérivation, exprime le facteur de proportionnalité en termes du paramètre à trois corps, et inclut le cas général où il y a plusieurs contributions au contact à trois corps et plusieurs paramètres à trois corps.
Revised:
Accepted:
Published online:
Mot clés : Gaz unitaire, fermions, atomes froids
Félix Werner 1; Xavier Leyronas 2
@article{CRPHYS_2024__25_G1_179_0, author = {F\'elix Werner and Xavier Leyronas}, title = {Three-body contact for fermions. {I.} {General} relations}, journal = {Comptes Rendus. Physique}, pages = {179--218}, publisher = {Acad\'emie des sciences, Paris}, volume = {25}, year = {2024}, doi = {10.5802/crphys.181}, language = {en}, }
Félix Werner; Xavier Leyronas. Three-body contact for fermions. I. General relations. Comptes Rendus. Physique, Volume 25 (2024), pp. 179-218. doi : 10.5802/crphys.181. https://comptes-rendus.academie-sciences.fr/physique/articles/10.5802/crphys.181/
[1] Equation of State of a Fermi Gas in the BEC-BCS Crossover: A Quantum Monte Carlo Study, Phys. Rev. Lett., Volume 93 (2004), 200404 | DOI
[2] Pairing patterns in polarized unitary Fermi gases above the superfluid transition, Phys. Rev. A, Volume 105 (2022), 063317 | DOI
[3] Precision Measurements of Collective Oscillations in the BEC-BCS Crossover, Phys. Rev. Lett., Volume 98 (2007) no. 4, 040401 | DOI
[4] Crossover from a Molecular Bose–Einstein Condensate to a Degenerate Fermi Gas, Phys. Rev. Lett., Volume 92 (2004) no. 12, 120401 | DOI
[5] Mass-imbalanced fermionic mixture in a harmonic trap, Phys. Rev. A, Volume 96 (2017), 022708 | DOI
[6] Universal relations for a trapped four-fermion system with arbitrary -wave scattering length, Phys. Rev. A, Volume 80 (2009), 053626 | DOI
[7] Universal relations for a trapped four-fermion system with arbitrary -wave scattering length, Phys. Rev. A, Volume 80 (2009), 053626 | DOI
[8] Breakdown of Universality for Unequal-Mass Fermi Gases with Infinite Scattering Length, Phys. Rev. Lett., Volume 105 (2010), 170403 | DOI
[9] Few-body resonances of unequal-mass systems with infinite interspecies two-body -wave scattering length, Phys. Rev. A, Volume 82 (2010), 063612 | DOI
[10] Trapped two-component Fermi gases with up to six particles: Energetics, structural properties, and molecular condensate fraction, C. R. Phys., Volume 12 (2011), pp. 86-109 | DOI
[11] Spin 1/2 Fermions in the Unitary Regime: A Superfluid of a New Type, Phys. Rev. Lett., Volume 96 (2006), 090404 | DOI
[12] Thermodynamics of a Trapped Unitary Fermi Gas, Phys. Rev. Lett., Volume 99 (2007), 120401 | DOI
[13] Quantum Monte Carlo simulations of the BCS-BEC crossover at finite temperature, Phys. Rev. A, Volume 78 (2008), 023625 | DOI
[14] Tan contact and universal high momentum behavior of the fermion propagator in the BCS-BEC crossover, Phys. Rev. A, Volume 87 (2013) no. 2, 023606 | DOI
[15] Universality in few-body systems with large scattering length, Phys. Rept., Volume 428 (2006), pp. 259-390 | DOI
[16] Efimov Physics in Cold Atoms, Ann. Phys., Volume 322 (2007), pp. 120-163 | DOI
[17] Universal equation for Efimov states, Phys. Rev. A, Volume 67 (2003), 022505 | DOI
[18] Lindblad equation for the inelastic loss of ultracold atoms, Phys. Rev. A, Volume 95 (2017), 012708 | DOI
[19] Experimental Study of the BEC-BCS Crossover Region in Lithium 6, Phys. Rev. Lett., Volume 93 (2004) no. 5, 050401 | DOI
[20] Critical Temperature Curve in BEC-BCS Crossover, Phys. Rev. Lett., Volume 101 (2008), 090402 | DOI
[21] Universal relations for a strongly interacting Fermi gas near a Feshbach resonance, Phys. Rev. A, Volume 78 (2008), 053606 | DOI
[22] Universal Relations for Identical Bosons from Three-Body Physics, Phys. Rev. Lett., Volume 106 (2011), 153005 | DOI
[23] Few-body physics with ultracold atomic and molecular systems in traps, Rep. Prog. Phys., Volume 75 (2012), p. 046401 | DOI
[24] Exact Relations for a Strongly Interacting Fermi Gas from the Operator Product Expansion, Phys. Rev. Lett., Volume 100 (2008) no. 20, 205301 | DOI
[25] Five-Body Efimov Effect and Universal Pentamer in Fermionic Mixtures, Phys. Rev. Lett., Volume 118 (2017), 083002 | DOI
[26] Critical Temperature and Thermodynamics of Attractive Fermions at Unitarity, Phys. Rev. Lett., Volume 96 (2006), 160402 | DOI
[27] The Fermi–Hubbard model at unitarity, New J. Phys., Volume 8 (2006), 153 | DOI
[28] Coherence and Clock Shifts in Ultracold Fermi Gases with Resonant Interactions, Phys. Rev. Lett., Volume 99 (2007) no. 19, 190407 | DOI
[29] Universal Relations for Fermions with Large Scattering Length, The BCS-BEC Crossover and the Unitary Fermi Gas (Lecture Notes in Physics), Volume 836, Springer, 2011, pp. 193-231 | DOI
[30] Excitation Spectrum and Superfluid Gap of an Ultracold Fermi Gas, Phys. Rev. Lett., Volume 128 (2022), 100401 | DOI
[31] Universal short-range correlations in bosonic helium clusters, Phys. Rev. A, Volume 101 (2020), 010501 | DOI
[32] Theoretical Nuclear Physics, John Wiley & Sons, New York, 1952 | Zbl
[33] Tan relations in one dimension, Ann. Phys., Volume 326 (2011) no. 10, pp. 2544-2565 | DOI
[34] Particle distribution tail and related energy formula, Phys. Rev. A, Volume 79 (2009) no. 5, 053640 | DOI
[35] Exact scaling transform for a unitary quantum gas in a time dependent harmonic potential, C. R. Phys., Volume 5 (2004), pp. 407-410 | DOI
[36] Hanbury Brown and Twiss Bunching of Phonons and of the Quantum Depletion in an Interacting Bose Gas, Phys. Rev. Lett., Volume 125 (2020), 165301 | DOI
[37] A Class of Hamiltonians for a Three-Particle Fermionic System at Unitarity, Math. Phys. Anal. Geom., Volume 18 (2015) no. 1, 32 | DOI
[38] Exploring Ultracold Collisions in Fermi Mixtures: Feshbach Resonances and Scattering Properties of a Novel Alkali-Transition Metal System, Phys. Rev. Lett., Volume 129 (2022), 093402 | DOI
[39] Energy lower bound for the unitary N+1 fermionic model, Eur. Phys. Lett., Volume 111 (2015), 10003 | DOI
[40] Feshbach resonances in ultracold gases, Rev. Mod. Phys., Volume 82 (2010), pp. 1225-1286 | DOI
[41] Auxiliary Field quantum Monte Carlo for Strongly Paired Fermions, Phys. Rev. A, Volume 84 (2011), 061602 | DOI
[42] Contact and Sum Rules in a Near-Uniform Fermi Gas at Unitarity, Phys. Rev. Lett., Volume 122 (2019), 203401 | DOI
[43] et al. Ultrafast many-body interferometry of impurities coupled to a Fermi sea, Science, Volume 354 (2016) no. 6308, pp. 96-99 | DOI
[44] Four-Body Efimov Effect for Three Fermions and a Lighter Particle, Phys. Rev. Lett., Volume 105 (2010), 223201 | DOI
[45] Trimers in the resonant -fermion problem on a narrow Feshbach resonance: Crossover from Efimovian to hydrogenoid spectrum, Phys. Rev. A, Volume 84 (2011), 062704 | DOI
[46] Many-body factorization and position-momentum equivalence of nuclear short-range correlations, Nat. Phys., Volume 17 (2021), pp. 306-310 | DOI
[47] Single-Particle Momentum Distribution of an Efimov trimer, Phys. Rev. A, Volume 83 (2011), 063614 | DOI
[48] The Unitary Gas and its Symmetry Properties, The BCS-BEC Crossover and the Unitary Fermi Gas (Lecture Notes in Physics), Volume 836, Springer, 2012, pp. 127-191 | DOI
[49] Precision Test of the Limits to Universality in Few-Body Physics, Phys. Rev. Lett., Volume 123 (2019), 233402 | DOI
[50] Energy spectrum of harmonically trapped two-component Fermi gases: Three- and four-particle problem, Phys. Rev. A, Volume 81 (2010), 053615 | DOI
[51] Momentum Distribution and Contact of the Unitary Fermi Gas, Phys. Rev. Lett., Volume 106 (2011), 205302 | DOI
[52] Inelastic Collisions of a Fermi Gas in the BEC-BCS Crossover, Phys. Rev. Lett., Volume 102 (2009), 250402 | DOI
[53] Absence of a four-body Efimov effect in the fermionic problem, Phys. Rev. A, Volume 92 (2015), 053624 | DOI
[54] Weakly-bound states of three resonantly interating particles, Yad. Fiz., Volume 12 (1970), pp. 1080-1091 also published by [Sov. J. Nucl. Phys. 12, no. 589 (1971)]
[55] Energy levels of three resonantly interacting particles, Nucl. Phys. A, Volume 210 (1973), pp. 157-188 | DOI
[56] Viscosity and scale invariance in the unitary Fermi gas, Ann. Phys., Volume 326 (2011) no. 3, pp. 770-796 | DOI
[57] Lattice Monte Carlo calculations for unitary fermions in a harmonic trap, Phys. Rev. A, Volume 84 (2011), 043644 | DOI
[58] Lattice Monte Carlo calculations for unitary fermions in a finite box, Phys. Rev. A, Volume 87 (2013), 023615 | DOI
[59] Resonantly Interacting Fermions in a Box, Phys. Rev. Lett., Volume 106 (2011), 235303 | DOI
[60] Two- and three-body contacts in the unitary Bose gas, Science, Volume 355 (2017), pp. 377-380 | DOI
[61] Zur Quantentheorie des Atomkernes, Z. Phys., Volume 51 (1928), pp. 204-212 | DOI
[62] Quantum Monte Carlo study of strongly interacting Fermi gases, J. Phys., Conf. Ser., Volume 529 (2014), 012011 | DOI
[63] Heavy-Light Few Fermion Clusters at Unitarity (2010) (preprint, arXiv:1006.5186) | DOI
[64] The third virial coefficient of a two-component unitary Fermi gas across an Efimov-effect threshold, Eur. Phys. Lett., Volume 109 (2015), 16003 | DOI
[65] Theory of ultracold Fermi gases, Rev. Mod. Phys., Volume 80 (2008) no. 4, pp. 1215-1274 | DOI
[66] Probing Pair-Correlated Fermionic Atoms through Correlations in Atom Shot Noise, Phys. Rev. Lett., Volume 94 (2005), 110401 | DOI
[67] BEC-BCS crossover and universal relations in unitary Fermi gases, Phys. Rev. A, Volume 83 (2011), 041601 | DOI
[68] Numerical study of the unitary Fermi gas across the superfluid transition, Phys. Rev. A, Volume 93 (2016), 053604 | DOI
[69] Crossover from BCS superconductivity to Bose–Einstein condensation: a self-consistent theory, Z. Phys., B, Volume 91 (1993), pp. 291-308 | DOI
[70] Properties of a Fermi liquid at the superfluid transition in the crossover region between BCS superconductivity and Bose–Einstein condensation, Phys. Rev. B, Volume 49 (1994) no. 18, pp. 12975-12983 | DOI
[71] Observation of Cooper pairs in a mesoscopic two-dimensional Fermi gas, Nature, Volume 606 (2022) no. 7913, pp. 287-291 | DOI
[72] Full counting statistics of interacting lattice gases after an expansion: The role of condensate depletion in many-body coherence, Phys. Rev. Res., Volume 5 (2023), L012037 | DOI
[73] Goldstone mode and pair-breaking excitations in atomic Fermi superfluids, Nature Phys., Volume 13 (2017), pp. 943-946 | DOI
[74] Universal contact of strongly interacting fermions at finite temperatures, New J. Phys., Volume 13 (2011), 035007 | DOI
[75] Precise Determination of the Structure Factor and Contact in a Unitary Fermi Gas, Phys. Rev. Lett., Volume 110 (2013) no. 5, 055305 | DOI
[76] Breakdown of the Wiedemann–Franz law in a unitary Fermi gas, Proc. Natl. Acad. Sci. USA, Volume 115 (2018), pp. 8563-8568 | DOI
[77] Superfluid condensate fraction and pairing wave function of the unitary Fermi gas, Phys. Rev. A, Volume 101 (2020), 063615 | DOI
[78] Quantum Anomaly, Universal Relations, and Breathing Mode of a Two-Dimensional Fermi Gas, Phys. Rev. Lett., Volume 108 (2012), 185303 | DOI
[79] Spectral functions and rf response of ultracold fermionic atoms, Phys. Rev. A, Volume 80 (2009), 063612 | DOI
[80] Universal relations for dipolar quantum gases, Phys. Rev. Res., Volume 3 (2021), 013088 | DOI
[81] Spectrum, Concept of a Contact and Its Applications in Atomic Quantum Hall States, Phys. Rev. Lett., Volume 116 (2016), 045301 | DOI
[82] Contact in the Unitary Fermi Gas across the Superfluid Phase Transition, Phys. Rev. Lett., Volume 125 (2020), 043402 | DOI
[83] Pairing Correlations across the Superfluid Phase Transition in the Unitary Fermi Gas, Phys. Rev. Lett., Volume 124 (2020), 090604 | DOI
[85] Renormalization of a Contact Interaction on a Lattice (2020) (preprint, arXiv:1912.04425) | DOI
[86] Temperature Dependence of the Universal Contact Parameter in a Unitary Fermi Gas, Phys. Rev. Lett., Volume 106 (2011), 170402 | DOI
[87] Universal Behavior of Pair Correlations in a Strongly Interacting Fermi Gas, Phys. Rev. Lett., Volume 105 (2010) no. 7, 070402 | DOI
[88] Universal description of three two-component fermions, Eur. Phys. Lett., Volume 115 (2016), 36005 | DOI
[89] Revealing the Superfluid Lambda Transition in the Universal Thermodynamics of a Unitary Fermi Gas, Science, Volume 335 (2012), pp. 563-567 | DOI
[90] Shift in a Strongly Interacting Two-Dimensional Fermi Gas, Phys. Rev. Lett., Volume 108 (2012), 060402 | DOI
[91] Diatomic Molecules and Cooper Pairs, Modern Trends in the Theory of Condensed Matter (A. Pekalski; J. A. Przystawa, eds.) (Lecture Notes in Physics), Volume 115, Springer, 1980, pp. 13-27 | DOI
[92] Quantum Mechanics, Pergamon Press, 1977
[93] Connecting Few-Body Inelastic Decay to Quantum Correlations in a Many-Body System: A Weakly Coupled Impurity in a Resonant Fermi Gas, Phys. Rev. Lett., Volume 118 (2017), 103403 | DOI
[94] Evidence for universal relations describing a gas with p-wave interactions, Nature Phys., Volume 12 (2016), pp. 599-605 | DOI
[95] The BEC-BCS Crossover: Some History and Some General Observations, The BCS-BEC Crossover and the Unitary Fermi Gas (Lecture Notes in Physics), Volume 836, Springer, 2012, pp. 33-47 | DOI
[96] Integral equations for the four-body problem, C. R. Phys., Volume 12 (2011), pp. 71-85 | DOI
[97] Nonrelativistic conformal field theory and trapped atoms: Virial theorems and the state-operator correspondence in three dimensions, Phys. Rev. A, Volume 78 (2008), 013614 | DOI
[98] Quantum Mechanics. Vol. I, 1961, North-Holland, 1961 (Chap. X, §16) | Zbl
[99] A system of three quantum particles with point-like interactions, Russ. Math. Surv., Volume 69 (2014), 539 | DOI
[100] On the point interaction of three particles, Applications of Self-Adjoint Extensions in Quantum Physics (Lecture Notes in Physics), Volume 324, Springer, 1989, pp. 138-145 | DOI
[101] Stability of the -fermionic system with zero-range interaction, J. Phys. A. Math. Theor., Volume 49 (2016) no. 10, 105301 | DOI
[102] Gamow Shell Model: The Unified Theory of Nuclear Structure and Reactions, Lecture Notes in Physics, 983, Springer, 2021, p. 978-3 | DOI
[103] Spectral Response and Contact of the Unitary Fermi Gas, Phys. Rev. Lett., Volume 122 (2019), 203402 | DOI
[104] Stability of a Fermionic N + 1 Particle System with Point Interactions, Commun. Math. Phys., Volume 356 (2017) no. 1, pp. 329-355 | DOI
[105] Stability of the Fermionic System with Point Interactions, Math. Phys. Anal. Geom., Volume 21 (2018) no. 3, 19 | DOI
[106] Point interaction of three particles, Mosc. Univ. Math. Bull., Volume 44 (1989), pp. 7-15 translation from Vestn. Mosk. Univ., Ser. I 1989, No. 6, p. 7-14 (1989).
[107] Onset of a Pseudogap Regime in Ultracold Fermi Gases, Phys. Rev. Lett., Volume 107 (2011), 145304 | DOI
[108] Finite-Temperature Pairing Gap of a Unitary Fermi Gas by Quantum Monte Carlo Calculations, Phys. Rev. Lett., Volume 103 (2009), 210403 | DOI
[109] The Equation of State of a Low-Temperature Fermi Gas with Tunable Interactions, Science, Volume 328 (2010) no. 5979, pp. 729-732 | DOI
[110] Exploring the thermodynamics of a universal Fermi gas, Nature, Volume 463 (2010), pp. 1057-1060 | DOI
[111] Nonrelativistic conformal field theories, Phys. Rev. D, Volume 76 (2007), 086004 | DOI
[112] Unitary Fermi Gas, Expansion, and Nonrelativistic Conformal Field Theories, The BCS-BEC Crossover and the Unitary Fermi Gas (Lecture Notes in Physics), Volume 836, Springer, 2012, pp. 233-275 | DOI
[113] Observation of a Smooth Polaron-Molecule Transition in a Degenerate Fermi Gas, Phys. Rev. X, Volume 10 (2020) no. 4, 041019 | DOI
[114] Universal Fermi Gas with Two- and Three-Body Resonances, Phys. Rev. Lett., Volume 100 (2008), 090405 | DOI
[115] Short-Distance Correlation Properties of the Lieb–Liniger System and Momentum Distributions of Trapped One-Dimensional Atomic Gases, Phys. Rev. Lett., Volume 91 (2003), 090401 | DOI
[116] Observation of a Strongly Interacting Degenerate Fermi Gas of Atoms, Science, Volume 298 (2002) no. 5601, pp. 2179-2182 | DOI
[117] Three fermions in a box at the unitary limit: universality in a lattice model, J. Phys. A. Math. Theor., Volume 40 (2007), 12863 | DOI
[118] Three-body problem in Fermi gases with short-range interparticle interaction, Phys. Rev. A, Volume 67 (2003), 010703 | DOI
[119] Few-atom problem, Many-Body Physics with Ultracold Gases: Proceedings of the Les Houches Summer Schools, Session 94, Oxford University Press, 2012, pp. 109-160 | DOI
[120] Large-momentum distribution of a polarized Fermi gas and -wave contacts, Phys. Rev. A, Volume 94 (2016), 063651 | DOI
[121] Temperature and coupling dependence of the universal contact intensity for an ultracold Fermi gas, Phys. Rev. A, Volume 82 (2010) no. 2, 021605 | DOI
[122] Universality of isolated -body resonances at large scattering length, Phys. Rev. A, Volume 108 (2023), 013315 | DOI
[123] Molecular Probe of Pairing in the BEC-BCS Crossover, Phys. Rev. Lett., Volume 95 (2005), 020404 | DOI
[124] Weakly Bound Dimers of Fermionic Atoms, Phys. Rev. Lett., Volume 93 (2004), 090404 | DOI
[125] Diatomic molecules in ultracold Fermi gases - Novel composite bosons, J. Phys. B. At. Mol. Opt. Phys. (2005), p. S645-S660 | DOI
[126] Scattering properties of weakly bound dimers of fermionic atoms, Phys. Rev. A, Volume 71 (2005), 012708 | DOI
[127] Universal sound diffusion in a strongly interacting Fermi gas, Science, Volume 370 (2020), pp. 1222-1226 | DOI
[128] Theory of rf-Spectroscopy of Strongly Interacting Fermions, Phys. Rev. Lett., Volume 99 (2007), 170404 | DOI
[129] Lifetime of Molecule-Atom Mixtures near a Feshbach Resonance in , Phys. Rev. Lett., Volume 92 (2004), 083201 | DOI
[130] Observation of Resonance Condensation of Fermionic Atom Pairs, Phys. Rev. Lett., Volume 92 (2004) no. 4, 040403 | DOI
[131] Contact and Momentum Distribution of the Unitary Fermi Gas, Phys. Rev. Lett., Volume 121 (2018) no. 13, 130406 | DOI
[132] Resummation of diagrammatic series with zero convergence radius for strongly correlated fermions, Phys. Rev. Lett., Volume 121 (2018), 130405 | DOI
[133] Resonantly Interacting Fermi-Fermi Mixture of and , Phys. Rev. Lett., Volume 124 (2020), 203402 | DOI
[134] Direct Measurements of Collisional Dynamics in Cold Atom Triads, Phys. Rev. Lett., Volume 124 (2020), 073401 | DOI
[135] The BCS-BEC Crossover and the Unitary Fermi Gas, The BCS-BEC Crossover and the Unitary Fermi Gas (W. Zwerger, ed.) (Lecture Notes in Physics), Volume 836, Springer, 2012, pp. 1-32 | DOI
[136] Multichannel effects in the Efimov regime from broad to narrow Feshbach resonances, Phys. Rev. A, Volume 103 (2021), 052805 | DOI
[137] Effective-range dependence of resonant Fermi gases, Phys. Rev. A, Volume 95 (2017), 013633 | DOI
[138] Measurement of the Homogeneous Contact of a Unitary Fermi gas, Phys. Rev. Lett., Volume 109 (2012), 220402 | DOI
[139] High-Sensitivity rf Spectroscopy of a Strongly Interacting Fermi Gas, Phys. Rev. Lett., Volume 121 (2018), 093402 | DOI
[140] Verification of Universal Relations in a Strongly Interacting Fermi Gas, Phys. Rev. Lett., Volume 104 (2010) no. 23, 235301 | DOI
[141] High-temperature expansion for interacting fermions, Phys. Rev. A, Volume 92 (2015), 053611 | DOI
[142] Field-theoretical aspects of one-dimensional Bose and Fermi gases with contact interactions, Phys. Rev. A, Volume 103 (2021), 043307 | DOI
[143] Nonuniversal bound states of two identical heavy fermions and one light particle, Phys. Rev. A, Volume 87 (2013), 032713 | DOI
[144] Probing the core of the strong nuclear interaction, Nature, Volume 578 (2020), pp. 540-544 | DOI
[145] Universal short-distance structure of the single-particle spectral function of dilute Fermi gases, Phys. Rev. A, Volume 81 (2010), 021601 | DOI
[146] Theory of Radio Frequency Spectroscopy of Polarized Fermi Gases (2009) (preprint, arXiv:0903.3006) | DOI
[147] Phase diagram of a two-component Fermi gas with resonant interactions, Nature, Volume 451 (2008), pp. 689-693 | DOI
[148] Fate of multiparticle resonances: From -balls to droplets, Phys. Rev. A, Volume 106 (2022), L050801 | DOI
[149] Comparative study of one-dimensional Bose and Fermi gases with contact interactions from the viewpoint of universal relations for correlation functions, Phys. Rev. A, Volume 97 (2018), 013621 | DOI
[150] Repulsive Fermi Polarons in a Resonant Mixture of Ultracold Atoms, Phys. Rev. Lett., Volume 118 (2017), 083602 | DOI
[151] Deterministic Preparation of a Tunable Few-Fermion System, Science, Volume 332 (2011), pp. 336-338 | DOI
[152] C(e,e’pN) measurements of short range correlations in the tensor-to-scalar interaction transition region, Phys. Lett. B, Volume 820 (2021), 136523 | DOI
[153] Short Range Scaling Laws of Quantum Gases With Contact Interactions (2005) (preprint, arXiv:cond-mat/0412764) | DOI
[154] Energetics of a strongly correlated Fermi gas, Ann. Phys., Volume 323 (2008) no. 12, pp. 2952-2970 | DOI
[155] Generalized virial theorem and pressure relation for a strongly correlated Fermi gas, Ann. Phys., Volume 323 (2008) no. 12, pp. 2987-2990 | DOI
[156] Large momentum part of a strongly correlated Fermi gas, Ann. Phys., Volume 323 (2008) no. 12, pp. 2971-2986 | DOI
[157] Three-boson problem at low energy and implications for dilute Bose–Einstein condensates, Phys. Rev. A, Volume 78 (2008), 01363 | DOI
[158] Universal Energy Functional for Trapped Fermi Gases with Short Range Interactions, Phys. Rev. Lett., Volume 107 (2011), 145302 | DOI
[159] Scattering theory, John Wiley & Sons, New York, 1972
[160] Observation of pairs of atoms at opposite momenta in an equilibrium interacting Bose gas, Nature Phys., Volume 17 (2021) no. 12, pp. 1364-1368 | DOI
[161] Multiplet structure of Feshbach resonances in nonzero partial waves, Phys. Rev. A, Volume 69 (2004), 042712 | DOI
[162] Feynman diagrams versus Fermi-gas Feynman emulator, Nature Phys., Volume 8 (2012), pp. 366-370 | DOI
[163] Universal relations for the two-dimensional spin-1/2 Fermi gas with contact interactions, Phys. Rev. A, Volume 84 (2011), 063626 | DOI
[164] Universal properties of Fermi gases in arbitrary dimensions, Phys. Rev. A, Volume 86 (2012), 043616 | DOI
[165] Generalized nuclear contacts and momentum distributions, Phys. Rev. C, Volume 92 (2015), 054311 | DOI
[166] Nuclear Neutron-Proton Contact and the Photoabsorption Cross Section, Phys. Rev. Lett., Volume 114 (2015), 012501 | DOI
[167] Unitary gas in an isotropic harmonic trap: Symmetry properties and applications, Phys. Rev. A, Volume 74 (2006) no. 5, 053604 | DOI
[168] Unitary Quantum Three-Body Problem in a Harmonic Trap, Phys. Rev. Lett., Volume 97 (2006), 150401 | DOI
[169] General relations for quantum gases in two and three dimensions. II. Bosons and mixtures, Phys. Rev. A, Volume 86 (2012), 053633 | DOI
[170] General relations for quantum gases in two and three dimensions. Two-component fermions, Phys. Rev. A, Volume 86 (2012), 013626 | DOI
[171] Exact relations for quantum-mechanical few-body and many-body problems with short-range interactions in two and three dimensions (2018) (preprint, arXiv:1001.0774) | DOI
[172] The nuclear contacts and short range correlations in nuclei, Phys. Lett. B, Volume 780 (2018), pp. 211-215 | DOI
[173] Atomes froids piégés en intéraction résonnante: gaz unitaire et problème à trois corps, Ph. D. Thesis, Université Paris VI, France (2008) (http://tel.archives-ouvertes.fr/tel-00285587)
[174] Virial theorems for trapped cold atoms, Phys. Rev. A, Volume 78 (2008), 025601 | DOI
[175] Nuclear three-body short-range correlations in coordinate space, Phys. Rev. C, Volume 108 (2023), L021301 | DOI
[176] Universal van der Waals physics for three cold atoms near Feshbach resonances, Nature Phys., Volume 10 (2014) no. 10, pp. 768-773 | DOI
[177] Temperature evolution of the shear viscosity in a unitary Fermi gas, Phys. Rev. A, Volume 88 (2013), 013639 | DOI
[178] Cooper Pairing Above the Critical Temperature in a Unitary Fermi Gas, Phys. Rev. Lett., Volume 110 (2013), 090401 | DOI
[179] Measurements of Tan’s Contact in an Atomic Bose–Einstein Condensate, Phys. Rev. Lett., Volume 108 (2012), 145305 | DOI
[180] Short Range Correlations: The Important Role of Few-Body Dynamics in Many-Body Systems, Few-Body Syst., Volume 58 (2016) no. 1, 9 | DOI
[181] Scattering hypervolume of spin-polarized fermions, Phys. Rev. A, Volume 104 (2021), 043319 | DOI
[182] Three-body scattering hypervolume of particles with unequal masses, Phys. Rev. A, Volume 103 (2021), 063315 | DOI
[183] Scattering hypervolume of fermions in two dimensions, Phys. Rev. A, Volume 106 (2022), 023310 | DOI
[184] The three-body scattering hypervolume of identical fermions in one dimension (2023) (arXiv:2302.13685) | DOI
[185] Number of closed-channel molecules in the BEC-BCS crossover, Eur. Phys. J. B, Condens. Matter Complex Syst., Volume 68 (2009), pp. 401-415 | DOI
[186] Direct Measurements of Collisional Dynamics in Cold Atom Triads, Science, Volume 342 (2013), pp. 457-460 | DOI
[187] Scaling law for three-body collisions near a narrow s-wave Feshbach resonance (2023) (preprint, arXiv:2212.08257) | DOI
[188] Short-range correlations and entropy in ultracold-atom Fermi gases, Phys. Rev. A, Volume 80 (2009), 023615 | DOI
[189] Boiling a Unitary Fermi Liquid, Phys. Rev. Lett., Volume 122 (2019), 093401 | DOI
[190] Universal Relations for a Fermi Gas Close to a -Wave Interaction Resonance, Phys. Rev. Lett., Volume 115 (2015), 135304 | DOI
[191] Universal High-Momentum Asymptote and Thermodynamic Relations in a Spinless Fermi Gas with a Resonant -Wave Interaction, Phys. Rev. Lett., Volume 115 (2015), 135303 | DOI
[192] Tan’s two-body contact across the superfluid transition of a planar Bose gas, Nat. Commun., Volume 12 (2021), 760 | DOI
[193] Spin-rotation coupling in p-wave Feshbach resonances (2011) (preprint, arXiv:1910.12011) | DOI
[194] High partial-wave Feshbach resonances in an ultracold Cs mixture (2019) (preprint, arXiv:1912.01264) | DOI
[195] Universal properties of the ultracold Fermi gas, Phys. Rev. A, Volume 79 (2009) no. 2, 023601 | DOI
[196] Condensation of Pairs of Fermionic Atoms near a Feshbach Resonance, Phys. Rev. Lett., Volume 92 (2004) no. 12, 120403 | DOI
[197] Three-body scattering hypervolumes of particles with short-range interactions (2017) (arXiv:1710.04147) | DOI
[198] The BCS-BEC Crossover and the Unitary Fermi Gas (W. Zwerger, ed.), Lecture Notes in Physics, 836, Springer, 1978 | DOI
[199] Pairing in Few-Fermion Systems with Attractive Interactions, Phys. Rev. Lett., Volume 111 (2013), 175302 | DOI
[200] Signature of the universal super Efimov effect: Three-body contact in two-dimensional Fermi gases, Phys. Rev. A, Volume 95 (2017), 033611 | DOI
[201] Effective theory and universal relations for Fermi gases near a -wave-interaction resonance, Phys. Rev. A, Volume 95 (2017), 043609 | DOI
Cited by Sources:
Comments - Policy