Comptes Rendus
Article de synthèse
Quasi-biennial oscillation: laboratory experiments
[Oscillation quasi-biennale : expériences de laboratoire]
Comptes Rendus. Physique, Online first (2024), pp. 1-25.

L’oscillation quasi-biennale (QBO) est une oscillation du vent dans la stratosphère équatoriale. Ce vent est un écoulement moyen engendré par des ondes atmosphériques, notamment des ondes internes de gravité, ce qui explique que la période (28 mois) n’est liée à aucun forçage astrophysique. Cette oscillation n’a été reproduite qu’à 3 reprises par des expériences analogues de laboratoire, et ces 3 expériences ont été réalisées dans la même géométrie. Nous présentons en détail notre dispositif expérimental, et en particulier les améliorations qui nous ont permis d’obtenir des mesures quantitatives sur de longues durées. Nous montrons expérimentalement la rétroaction du l’écoulement moyen sur les ondes, qui est l’un des ingrédients clés de la QBO. Nous donnons les détails de la résolution analytique du modèle 1D de Plumb et McEwan. Nous comparons les résultats expérimentaux à ceux obtenus analytiquement et numériquement, et nous montrons qu’ils sont en accord qualitatif. La période de l’écoulement moyen diminue lorsque le forçage augmente, et l’amplitude d’écoulement moyen en fonction de la hauteur n’est pas monotone et présente au voisinage du seuil deux maxima locaux. La bifurcation est toujours une bifurcation de Hopf, mais elle peut être sous-critique ou supercritique en fonction du mécanisme dominant de dissipation de l’écoulement moyen, qui peut être changé expérimentalement en modifiant la fréquence de Brunt-Väisälä. Nous concluons en expliquant qu’une étude de la bifurcation dans les modèles de circulation générale (GCM) serait intéressante pour mieux comprendre l’évolution de la QBO liée au changement climatique.

The quasi-biennial oscillation (QBO) is an oscillation of the wind in the equatorial stratosphere. This wind is a mean flow induced by atmospheric waves, including internal gravity waves, which explain that the period (28 month) is not linked to any astrophysical forcing. This oscillation has only been reproduced in 3 laboratory experiments, which share a similar geometry. We present the details of our experimental set-up, and we explain which improvements allowed us to obtain quantitative measurements during long times. We show experimentally the feedback of the mean flow on the waves, which is one of the key ingredient of the oscillation. The details of the analytical resolution of the 1D model of Plumb and McEwan are given. We compare experimental results to analytical and numerical results, and found a qualitative agreement. The period decreases when the forcing increases, and the amplitude of the mean flow is not monotonic with respect to height and displays two local maxima as a function of height close to the threshold. The bifurcation is always a Hopf one, but can be subcritical or supercritical depending on the dominant dissipation mechanism of the mean flow which can be tuned experimentally by changing the Brunt–Väisälä frequency. We argue that an investigation of the bifurcation in general circulation models (GCM) is of interest to better understand the evolution of the QBO due to climate change.

Reçu le :
Révisé le :
Accepté le :
Première publication :
DOI : 10.5802/crphys.195
Keywords: Fluid mechanics, internal gravity waves, wave-mean flow interaction, instability, non-linear physics
Mot clés : Mécanique des fluides, ondes internes de gravité, interaction ondes-écoulement moyen, instabilité, physique non-linéaire

Benoît Semin 1 ; François Pétrelis 2

1 PMMH, CNRS, ESPCI Paris, PSL University, Sorbonne Université, Université Paris-Cité, F-75005, Paris, France
2 LPENS, CNRS, ENS Paris, PSL University, Sorbonne Université, Université Paris-Cité, F-75005, Paris, France
Licence : CC-BY 4.0
Droits d'auteur : Les auteurs conservent leurs droits
@article{CRPHYS_2024__25_S3_A6_0,
     author = {Beno{\^\i}t Semin and Fran\c{c}ois P\'etrelis},
     title = {Quasi-biennial oscillation: laboratory experiments},
     journal = {Comptes Rendus. Physique},
     publisher = {Acad\'emie des sciences, Paris},
     year = {2024},
     doi = {10.5802/crphys.195},
     language = {en},
     note = {Online first},
}
TY  - JOUR
AU  - Benoît Semin
AU  - François Pétrelis
TI  - Quasi-biennial oscillation: laboratory experiments
JO  - Comptes Rendus. Physique
PY  - 2024
PB  - Académie des sciences, Paris
N1  - Online first
DO  - 10.5802/crphys.195
LA  - en
ID  - CRPHYS_2024__25_S3_A6_0
ER  - 
%0 Journal Article
%A Benoît Semin
%A François Pétrelis
%T Quasi-biennial oscillation: laboratory experiments
%J Comptes Rendus. Physique
%D 2024
%I Académie des sciences, Paris
%Z Online first
%R 10.5802/crphys.195
%G en
%F CRPHYS_2024__25_S3_A6_0
Benoît Semin; François Pétrelis. Quasi-biennial oscillation: laboratory experiments. Comptes Rendus. Physique, Online first (2024), pp. 1-25. doi : 10.5802/crphys.195.

[1] M. P. Baldwin; L. J. Gray; T. J. Dunkerton et al. The quasi-biennial oscillation, Rev. Geophys., Volume 39 (2001), pp. 179-229 | DOI

[2] T. Fouchet; S. Guerlet; D. F. Strobel; A. A. Simon-Miller; B. Bézard; F. M. Flasar An equatorial oscillation in Saturn’s middle atmosphere, Nature, Volume 453 (2008), pp. 200-202 | DOI

[3] X. Li; P. L. Read A mechanistic model of the quasi-quadrennial oscillation in Jupiter’s stratosphere, Planet. Space Sci., Volume 48 (2000) no. 7-8, pp. 637-669 | DOI

[4] A. P. Showman; X. Tan; X. Zhang Atmospheric Circulation of Brown Dwarfs and Jupiter- and Saturn-like Planets: Zonal Jets, Long-term Variability, and QBO-type Oscillations, Astrophys. J., Volume 883 (2019) no. 1, 4 | DOI

[5] E.-J. Kim; K. B. MacGregor Gravity Wave-driven Flows in the Solar Tachocline, Astrophys. J., Volume 556 (2001) no. 2, p. L117-L120 | DOI

[6] C. Pinçon; K. Belkacem; M.-J. Goupil Implications of the generation of internal gravity waves by penetrative convection for the internal rotation evolution of low-mass stars, EPJ Web Conf., Volume 160 (2017), 02002 | DOI

[7] J. A. Anstey; S. M. Osprey; J. Alexander et al. Impacts, processes and projections of the quasi-biennial oscillation, Nat. Rev. Earth Environ., Volume 3 (2022) no. 9, pp. 588-603 | DOI

[8] Y. Wang; J. Rao; Y. Lu; Z. Ju; J. Yang; J. Luo A revisit and comparison of the quasi-biennial oscillation (QBO) disruption events in 2015/16 and 2019/20, Atmos. Res., Volume 294 (2023), 106970 | DOI

[9] N. Butchart The stratosphere: a review of the dynamics and variability, Weather Clim. Dynam., Volume 3 (2022) no. 4, pp. 1237-1272 | DOI

[10] C. C. Collimore; D. W. Martin; M. H. Hitchman; A. Huesmann; D. E. Waliser On The Relationship between the QBO and Tropical Deep Convection, J. Climate, Volume 16 (2003) no. 15, pp. 2552-2568 | DOI

[11] K. P. Bowman Global Patterns of the Quasi-biennial Oscillation in Total Ozone, J. Atmos. Sci., Volume 46 (1989) no. 21, pp. 3328-3343 | DOI

[12] A. G. Marshall; A. A. Scaife Impact of the QBO on surface winter climate, J. Geophys. Res., Volume 114 (2009), D18110 | DOI

[13] Z. Martin; S.-W. Son; A. Butler; H. Hendon; H. Kim; A. Sobel; S. Yoden; C. Zhang The influence of the quasi-biennial oscillation on the Madden–Julian oscillation, Nat. Rev. Earth Environ., Volume 2 (2021) no. 7, pp. 477-489 | DOI

[14] L. L. Hood; C. A. Hoopes Arctic Sea Ice Loss, Long-Term Trends in Extratropical Wave Forcing, and the Observed Strengthening of the QBO-MJO Connection, J. Geophys. Res. Atmos., Volume 128 (2023) no. 24, e2023JD039501 | DOI

[15] M. Takahashi Simulation of the Quasi-Biennial Oscillation in a general circulation model, Geophys. Res. Lett., Volume 26 (1999) no. 9, pp. 1307-1310 | DOI

[16] N. Butchart; J. A. Anstey; K. Hamilton et al. Overview of experiment design and comparison of models participating in phase 1 of the SPARC Quasi-Biennial Oscillation initiative (QBOi), Geosci. Model Dev., Volume 11 (2018) no. 3, pp. 1009-1032 | DOI

[17] F. Lott; L. Guez A stochastic parameterization of the gravity waves due to convection and its impact on the equatorial stratosphere, J. Geophys. Res. Atmos., Volume 118 (2013), pp. 8897-8909 | DOI

[18] U. Achatz; M. J. Alexander; E. Becker et al. Atmospheric Gravity Waves: Processes and Parameterization, J. Atmos. Sci., Volume 81 (2024) no. 2, pp. 237-262 | DOI

[19] R. S. Lindzen; J. R. Holton A theory of the Quasi-biennial Oscillation, J. Atmos. Sci., Volume 25 (1968), pp. 1095-1107 | DOI

[20] R. A. Plumb The interaction of two internal waves with the mean flow: implications for the theory of the quasi-biennial oscillations, J. Atmos. Sci., Volume 34 (1977), pp. 1847-1858 | DOI

[21] R. A. Plumb; A. D. McEwan The instability of a Forced Standing Wave in a Viscous Stratified Fluid : A Laboratory Analogue of the Quasi-Biennial Oscillation, J. Atmos. Sci., Volume 35 (1978), pp. 1827-1839 | DOI

[22] A. Renaud; L.-P. Nadeau; A. Venaille Periodicity Disruption of a Model Quasibiennial Oscillation of Equatorial Winds, Phys. Rev. Lett., Volume 122 (2019) no. 21, 214504 | DOI

[23] A. Renaud; A. Venaille On the Holton–-Lindzen–-Plumb model for mean flow reversals in stratified fluids, Q. J. R. Meteorol. Soc., Volume 146 (2020) no. 732, pp. 2981-2997 | DOI

[24] P. Léard; D. Lecoanet; M. Le Bars Multimodal Excitation to Model the Quasibiennial Oscillation, Phys. Rev. Lett., Volume 125 (2020) no. 23, 234501 | DOI

[25] L.-A. Couston; D. Lecoanet; B. Favier; M. Le Bars Order Out of Chaos: Slowly Reversing Mean Flows Emerge from Turbulently Generated Internal Waves, Phys. Rev. Lett., Volume 120 (2018) no. 24, 244505 | DOI

[26] H.-H. Bui; E. Nishimoto; S. Yoden Downward Influence of QBO-Like Oscillation on Moist Convection in a Two-Dimensional Minimal Model Framework, J. Atmos. Sci., Volume 74 (2017) no. 11, pp. 3635-3655 | DOI

[27] N. P. Wedi; P. K. Smolarkiewicz Direct numerical simulations of the Plumb-McEwan laboratory analog of the QBO, J. Atmos. Sci., Volume 63 (2006), pp. 3226-3252 | DOI

[28] N. Otobe; S. Sakai; S. Yoden; M. Shiotani Visualization and WKB analysis of the internal gravity wave in the QBO experiment, Nagare multimedia, Volume 17 (1998) (preprint, https://www2.nagare.or.jp/mm/98/otobe/index.htm)

[29] B. Semin; N. Garroum; F. Pétrélis; S. Fauve Nonlinear saturation of the large scale flow in a laboratory model of the quasibiennial oscillation, Phys. Rev. Lett., Volume 121 (2018) no. 13, 134502 | DOI

[30] P. Léard; B. Favier; P. Le Gal; M. Le Bars Coupled convection and internal gravity waves excited in water around its density maximum at 4C, Phys. Rev. Fluids, Volume 5 (2020), 024801 | DOI

[31] M. Le Bars; L.-A. Couston; B. Favier; P. Léard; D. Lecoanet; P. Le Gal Fluid dynamics of a mixed convective/stably stratified system—A review of some recent works, Comptes Rendus. Physique, Volume 21 (2020) no. 2, pp. 151-164 | DOI

[32] P. Léard; L. Margaillan; T. Raymond; M. Rouby; M. Le Bars Large-scale flow driven by turbulently generated internal gravity waves, Phys. Rev. Fluids, Volume 6 (2021) no. 8, 084801 | DOI

[33] B. King; H. P. Zhang; H. L. Swinney Tidal flow over three-dimensional topography in a stratified fluid, Phys. Fluids, Volume 21 (2009), 116601 | DOI

[34] G. Bordes; A. Venaille; S. Joubaud; P. Odier; T. Dauxois Experimental observation of a strong mean flow induced by internal gravity waves, Phys. Fluids, Volume 24 (2012), 086602 | DOI

[35] B. Semin; G. Facchini; F. Pétrélis; S. Fauve Generation of a mean flow by an internal wave, Phys. Fluids, Volume 28 (2016), 096601 | DOI

[36] H. Ben-Gida; R. Gurka; A. Liberzon OpenPIV-MATLAB – An open-source software for particle image velocimetry; test case: Birds’ aerodynamics, SoftwareX, Volume 12 (2020), 100585 | DOI

[37] H. Cai Bessel Function of Complex Order and Argument (MATLAB Central File Exchange, accessed: 2024-02-26, https://math.stackexchange.com/questions/585240/bessel-function-with-complex-argument)

[38] S. Yoden; J. Holton A new look at equatorial quasi-biennial oscillation Models, J. Atmos. Sci., Volume 45 (1988), pp. 2703-2717 | DOI

[39] T. Dauxois; S. Joubaud; P. Odier; A. Venaille Instabilities of Internal Gravity Wave Beams, Ann. Rev. Fluid Mech., Volume 50 (2018) no. 1, pp. 131-156 | DOI | Zbl

[40] R. Godoy-Diana; J.-M. Chomaz; C. Donnadieu Internal gravity waves in a dipolar wind: a wave–vortex interaction experiment in a stratified fluid, J. Fluid Mech., Volume 548 (2006), pp. 281–-308 | DOI

[41] K. Hamilton Dynamics of the Tropical Middle Atmosphere: A Tutorial Review, Atmosphere-Ocean, Volume 36 (1998) no. 4, pp. 319-354 | DOI

[42] X. Chartrand; Louis-P. Nadeau; A. Venaille Recovering Quasi-Biennial Oscillations from Chaos, J. Atmos. Sci., Volume 81 (2024), pp. 1213-1224 | DOI

[43] S. Bathiany; M. Scheffer; E. H. Van Nes; M. S. Williamson; T. M. Lenton Abrupt climate change in an oscillating world, Sci. Rep., Volume 8 (2018) no. 1, 5040 | DOI

[44] N. Wunderling; A. von der Heydt; Y. Aksenov et al. Climate tipping point interactions and cascades: A review, Earth Syst. Dyn., Volume 15 (2024), pp. 41-74 | DOI

[45] Intergovernmental Panel on Climate Change (IPCC) Climate Change 2021 – The Physical Science Basis: Working Group I Contribution to the Sixth Assessment Report of the Intergovernmental Panel on Climate Change, Cambridge University Press, 2023 | DOI

Cité par Sources :

Commentaires - Politique