[Jets zonaux en expériences de laboratoire]
Les courants ou jets zonaux sont des éléments clés de la dynamique des enveloppes fluides planétaires, depuis les atmosphères et océans jusqu’aux intérieurs liquides profonds. Les expériences de laboratoires permettent de reproduire plusieurs mécanismes à l’origine des jets zonaux dans un environnement contrôlé, et ont ainsi joué un rôle déterminant dans notre compréhension de la physique des jets. Après avoir introduit les concepts fondamentaux à l’émergence et la persistance de jets zonaux dans des écoulements tournants et/ou stratifiés, nous faisons une synthèse des dispositifs expérimentaux ayant permis de tester ou valider certains mécanismes à l’origine des jets dans les écoulements géophysiques, en particulier du point de vue des interactions entre fluctuations (ondes, tourbillons) et écoulement moyen (jets). Les expériences de mécanique des fluides ont un rôle central à jouer afin de tendre vers une compréhension quantitative de la dynamique jets zonaux au sein des systèmes fluides planétaires, et de leur interaction avec les autres composantes de la circulation.
Compléments :
Des compléments sont fournis pour cet article dans le fichier séparé :
Zonal jets are a ubiquitous feature of the circulation of planetary atmospheres, oceans and interiors. Many of the dynamical mechanisms that lead to the formation and evolution of such jets can be reproduced and studied in laboratory experiments, which have proved to be important sources of insight for understanding the nature of planetary jets. Here we introduce some of the key concepts underlying the production and maintenance of patterns of zonal jets in rotating and/or stratified flows. We then review a broad range of laboratory experiments that have helped to test and verify many of the dynamical mechanisms proposed to interpret geophysical jets involving the interaction of eddies and zonal flows. Laboratory experiments continue to have an important role to play in elucidating a quantitative understanding of zonal jets and their interactions with other aspects of planetary circulation systems.
Supplementary Materials:
Supplementary material for this article is supplied as a separate file:
Révisé le :
Accepté le :
Première publication :
Mots-clés : jets, tourbillons, tensions de Reynolds, interaction onde-écoulement zonal, ondes de Rossby
Peter Read 1 ; Yakov Afanasyev 2 ; Jonathan Aurnou 3 ; Daphné Lemasquerier 4
@article{CRPHYS_2024__25_S3_A17_0, author = {Peter Read and Yakov Afanasyev and Jonathan Aurnou and Daphn\'e Lemasquerier}, title = {Eddy-driven {Zonal} {Jet} {Flows} in the {Laboratory}}, journal = {Comptes Rendus. Physique}, publisher = {Acad\'emie des sciences, Paris}, year = {2024}, doi = {10.5802/crphys.213}, language = {en}, note = {Online first}, }
TY - JOUR AU - Peter Read AU - Yakov Afanasyev AU - Jonathan Aurnou AU - Daphné Lemasquerier TI - Eddy-driven Zonal Jet Flows in the Laboratory JO - Comptes Rendus. Physique PY - 2024 PB - Académie des sciences, Paris N1 - Online first DO - 10.5802/crphys.213 LA - en ID - CRPHYS_2024__25_S3_A17_0 ER -
Peter Read; Yakov Afanasyev; Jonathan Aurnou; Daphné Lemasquerier. Eddy-driven Zonal Jet Flows in the Laboratory. Comptes Rendus. Physique, Online first (2024), pp. 1-51. doi : 10.5802/crphys.213.
[1] Jets, Chaos, Volume 4 (1994), pp. 313-339 | DOI
[2] Oceans, Zonal Jets (B. Galperin; P. L. Read, eds.), Cambridge University Press (2019), pp. 46-71 | DOI
[3] Zonal jets: Phenomenology, genesis, and physics, Cambridge University Press, 2019 | DOI
[4] Atmospheric and Oceanic Fluid Dynamics - Fundamentals and Large-Scale Circulation, Cambridge University Press, 2017 | DOI
[5] High-Latitude Westward Jets in the Earth’s Outer Core Due to Small-Scale Convection, Geophys. Res. Lett., Volume 45 (2018) no. 15, pp. 7454-7461 | DOI
[6] Experimental study of the convection in a rotating tangent cylinder, J. Fluid Mech., Volume 843 (2018), pp. 355-381 | DOI
[7] Experiments on convection in Earth’s core tangent cylinder, Earth Planet. Sci. Lett., Volume 212 (2003) no. 1-2, pp. 119-134 | DOI
[8] Saturn’s deep atmospheric flows revealed by the Cassini grand finale gravity measurements, Geophys. Res. Lett., Volume 46 (2019) no. 2, pp. 616-624 | DOI
[9] Strong resemblance between surface and deep zonal winds inside Jupiter revealed by high-degree gravity moments, Astrophys. J., Volume 959 (2023) no. 2, p. 78 | DOI
[10] et al. Observational evidence for cylindrically oriented zonal flows on Jupiter, Nat. Astron., Volume 7 (2023) no. 12, pp. 1463-1472 | DOI
[11] Subsurface oceans on Europa and Callisto: Constraints from Galileo magnetometer observations, Icarus, Volume 147 (2000) no. 2, pp. 329-347 | DOI
[12] Ocean dynamics of outer solar system satellites, Geophys. Res. Lett., Volume 46 (2019) no. 15, pp. 8700-8710 | DOI
[13] Exploring ocean circulation on icy moons heated from below, J. Geophys. Res. Planets, Volume 127 (2022) no. 3, e2021JE007025 | DOI
[14] Zonostrophic turbulence in the subsurface oceans of the Jovian and Saturnian moons, Icarus, Volume 415 (2024), 116047 | DOI
[15] Mean flow generation by topographic Rossby waves, J. Fluid Mech., Volume 94 (1979) no. 1, pp. 39-64 | DOI
[16] Turbulent convection in rapidly rotating spherical shells: A model for equatorial and high latitude jets on Jupiter and Saturn, Icarus, Volume 187 (2007), pp. 540-557 | DOI
[17] Transitions between blocked and zonal flows in a rotating annulus with topography, Science, Volume 278 (1997) no. 5343, pp. 1598-1601 | DOI
[18] Stationary and time dependent convection in the rotating cylindrical annulus with modulated height, Phys. Fluids, Volume 10 (1998) no. 7, pp. 1611-1620 | DOI | Zbl
[19] The effects of boundary topography on convection in Earth’s core, Geophys. J. Int., Volume 189 (2012) no. 2, pp. 799-814 | DOI
[20] Simultaneous PIV and thermography measurements of partially blocked flow in a differentially heated rotating annulus, Exp. Fluids, Volume 52 (2012), pp. 1077-1087 | DOI
[21] Motion in the atmospheres and interiors of Jupiter and Saturn: scale analysis, anelastic equations, barotropic stability criterion, Icarus, Volume 52 (1982), pp. 62-80 | DOI
[22] Baroclinic waves in a container with sloping endwalls, Philos. Trans. R. Soc. Lond., Ser. A, Volume A278 (1975), pp. 397-445 | DOI
[23] Turbulence and heat transfer on a rotating, heated half soap bubble, J. Fluid Mech., Volume 924 (2021), A19 | DOI | Zbl
[24] Hydraulic control of zonal currents on a -plane, J. Fluid Mech., Volume 201 (1989), pp. 357-377 | DOI
[25] Anisotropic turbulence and zonal jets in rotating flows with a -effect, Nonlinear Process. Geophys., Volume 13 (2006) no. 1, pp. 83-98 | DOI
[26] On the Arrest of Inverse Energy Cascade and the Rhines Scale, J. Atmos. Sci., Volume 64 (2007), pp. 3312-3327 | DOI
[27] Waves and turbulence on a beta-plane, J. Fluid Mech., Volume 69 (1975), pp. 417-443 | DOI | Zbl
[28] Generation of Mean Flows and Jets on a Beta Plane and over Topography, J. Phys. Oceanogr., Volume 23 (1993) no. 7, pp. 1346-1362 | DOI
[29] Free-surface effects on the spin-up of fluid in a rotating cylinder, J. Fluid Mech., Volume 232 (1991), pp. 439-453 | DOI | Zbl
[30] Rotating thermal convection in liquid gallium: multi-modal flow, absent steady columns, J. Fluid Mech., Volume 846 (2018), pp. 846-876 | DOI | Zbl
[31] Geophysical flows with anisotropic turbulence and dispersive waves: flows with a -effect, Ocean Dynamics, Volume 60 (2010), pp. 427-441 | DOI
[32] Atmosphere-Ocean Dynamics, Academic Press Inc., 1982
[33] Zonal jets experiments in the gas giants’ zonostrophic regime, Icarus, Volume 390 (2023), 115292 | DOI
[34] Planetary core-style rotating convective flows in paraboloidal laboratory experiments, J. Geophys. Res. Planets, Volume 127 (2022) no. 10, e2022JE007356, 115292 | DOI
[35] Evolution of Jupiter-Style Critical Latitudes: Initial Laboratory Altimetry Results, J. Geophys. Res. Planets, Volume 127 (2022) no. 5, e2021JE007048, e2022JE007356 | DOI
[36] Laboratory model of a planetary eastward jet, Nature, Volume 337 (1989), e2021JE007048, pp. 58-61 | DOI
[37] Energetic constraints on ocean circulations of icy ocean worlds, Planet. Sci. J., Volume 4 (2023) no. 6, 117 | DOI
[38] A laboratory model for deep-seated jets on the gas giants, Nat. Phys., Volume 13 (2017) no. 4, 117, pp. 387-390 | DOI
[39] Zonal jets at the laboratory scale: hysteresis and Rossby waves resonance, J. Fluid Mech., Volume 910 (2021), A18 | DOI | Zbl
[40] Rotating thermal convection: surface turbulence observed with altimetry and thermal radiometry, Geophys. Astrophys. Fluid Dyn., Volume 115 (2021) no. 5-6, A18, pp. 499-522 | DOI | Zbl
[41] Rotating convective turbulence in moderate to high Prandtl number fluids, Geophys. Astrophys. Fluid Dyn., Volume 117 (2023), pp. 397-436 | DOI | Zbl
[42] Acoustic spectra of a gas-filled rotating spheroid, Eur. J. Mech. B Fluids, Volume 84 (2020), pp. 302-310 | DOI | Zbl
[43] Oscillatory thermal–inertial flows in liquid metal rotating convection, J. Fluid Mech., Volume 911 (2021), p. A5 | DOI | Zbl
[44] Turbulence in Fluids, Kluwer Academic Publishers, 1997 | DOI
[45] Planetary waves in horizontal and vertical shear: the generalized Eliassen–Palm relation and the mean zonal acceleration, J. Atmos. Sci., Volume 33 (1976), pp. 2031-2048 | DOI
[46] Generalized Eliassen–Palm and Charney–Drazin Theorems for Waves on Axisymmetric Mean Flows in Compressible Atmospheres, J. Atmos. Sci., Volume 35 (1978), pp. 175-185
[47] Physics of Negative Viscosity Phenomena, McGraw Hill: New York, 1968
[48] A model for eastward and westward jets in laboratory experiments and planetary atmospheres, Phys. Fluids, Volume 10 (1998) no. 6, pp. 1474-1489 | DOI
[49] Observations of zonal flow created by potential vorticity mixing in a rotating fluid, Geophys. Res. Lett., Volume 29 (2002) no. 18, p. 23-1–23-4 | DOI
[50] Laboratory simulation of thermal convection in rotating planets and stars, Science, Volume 191 (1976) no. 4222, pp. 81-83 | DOI
[51] Mean flow generated by circulation on a -plane: An analogy with the moving flame experiment, Tellus, Volume 27 (1975), pp. 358-364 | DOI
[52] et al. Turbulence and jet-driven zonal flows: Secondary circulation in rotating fluids due to asymmetric forcing, Phys. Rev. E, Volume 99 (2019) no. 2, 023108 | DOI
[53] et al. Dynamics of convectively driven banded jets in the laboratory, J. Atmos. Sci., Volume 64 (2007), 023108, p. 4035-–4056 | DOI
[54] On the origin of jets in the ocean, Geophys. Astrophys. Fluid Dyn., Volume 106 (2012), pp. 113-137 | DOI | Zbl
[55] Multiple Zonal Jets in a Differentially Heated Rotating Annulus, J. Phys. Oceanogr., Volume 44 (2014), pp. 2273-2291 | DOI
[56] Anisotropic turbulence and Rossby waves in an easterly jet: An experimental study, Geophys. Res. Lett., Volume 41 (2014) no. 17, pp. 6237-6243 | DOI
[57] The instability of a forced standing wave in a viscous stratified fluid: A laboratory analogue of the quasi-biennial oscillation, J. Atmos. Sci., Volume 35 (1978), pp. 1827-1839 | DOI
[58] Flows driven by libration, precession, and tides, Ann. Rev. Fluid Mech., Volume 47 (2015), pp. 163-193 | DOI
[59] Particle image velocimetry: A practical guide, Springer, 2018 | DOI
[60] Particle Image Velocimetry for MATLAB: Accuracy and enhanced algorithms in PIVlab, J. Open Res. Softw., Volume 9 (2021) no. 1, 12 | DOI
[61] Experimental and numerical study of Jupiter’s dynamics: jets, vortices and zonostrophic turbulence, Ph. D. Thesis, Aix-Marseille Université, Marseille, France (2021), 12
[62] Optical altimetry: A new method for observing rotating fluids with application to Rossby waves on a polar beta-plane, J. Fluid Mech., Volume 572 (2007), pp. 389-412 | DOI | Zbl
[63] Velocity and potential vorticity fields measured by altimetric imaging velocimetry in the rotating fluid, Exp. Fluids, Volume 47 (2009), pp. 913-926 | DOI
[64] Altimetry in a GFD laboratory and flows on the polar -plane, Modelling Atmospheric and Oceanic Flows: Insights from Laboratory Experiments and Numerical Simulations (T. von Larcher; P. Williams, eds.), American Geophysical Union, 2014, pp. 101-117 | DOI
[65] Zonal jets in equilibrating baroclinic instability on the polar beta-plane: Experiments with altimetry, J. Geophys. Res. Oceans, Volume 120 (2015) no. 9, pp. 6130-6144 | DOI
[66] Low-cost table-top experiments for teaching multi-scale geophysical fluid dynamics, Front. Mar. Sci., Volume 10 (2023), 1192056 | DOI
[67] The Moving Flame experiment, Tellus, Volume 11 (1959) no. 2, 1192056, pp. 175-179 | DOI
[68] Moving Flame Experiment with Liquid Mercury : Possible Implications for the Venus Atmosphere, Science, Volume 163 (1969) no. 3862, pp. 71-72 | DOI
[69] Observations of rapid mean flow produced in mercury by a moving heater, Geophys. Astrophys. Fluid Dyn., Volume 3 (1972) no. 1, pp. 161-180 | DOI
[70] Motion due to a moving internal heat source, J. Fluid Mech., Volume 54 (1972) no. 3, pp. 469-480 | DOI
[71] et al. The general circulation of the Venus atmosphere: an assessment, Venus II: Geology, Geophysics, Atmosphere and Solar Wind Environment (S. W. Bougher; D. M. Hunten; R. J. Philips, eds.), University of Arizona Press (1997), pp. 459-502
[72] Atmospheric circulation and dynamics, Towards Understanding the Climate of Venus: Applications of Terrestrial Models to Our Sister Planet (L. Bengtsson; R.-M. Bonnet; D. Grinspoon; S. Koumoutsaris; S. Lebonnois; D. Titov, eds.), Springer (2013), pp. 55-70 | DOI
[73] Mean flows driven by weak eddies in rotating systems, J. Fluid Mech., Volume 99 (1980) no. 3, pp. 656-672 | DOI | Zbl
[74] Is the South Pacific helium-3 plume dynamically active?, Earth Planet. Sci. Lett., Volume 61 (1982), pp. 63-67 | DOI
[75] Flows produced by discrete sources of buoyancy, J. Phys. Oceanogr., Volume 19 (1989), pp. 1279-1290 | DOI
[76] -Plume mechanism of zonal jet creation by a spatially localized forcing, Zonal jets: Phenomenology, genesis, and physics (B. Galperin; P. L. Read, eds.), Cambridge University Press, 2019, pp. 266-283
[77] Buoyancy storms in a zonal stream on the polar beta-plane: experiments with altimetry, Phys. Fluids, Volume 25 (2013), 066604 | DOI
[78] Multiple zonal jets on the polar beta plane, Phys. Fluids, Volume 24 (2012), 066604, pp. 113-137 | DOI
[79] Jets in planetary atmospheres, Oxford Research Encyclopedia of Planetary Science (2019) | DOI
[80] Generation of a mean flow by an internal wave, Phys. Fluids, Volume 28 (2016), 096601 | DOI
[81] et al. The Quasi-Biennial Oscillation, Rev. Geophys., Volume 39 (2001), 096601, pp. 179-229 | DOI
[82] A theory of the quasi-biennial oscillation, J. Atmos. Sci., Volume 25 (1968), pp. 1095-1107 | DOI
[83] An updated theory for the quasi-biennial cycle of the tropical stratosphere, J. Atmos. Sci., Volume 29 (1972), pp. 1076-1080 | DOI
[84] The interaction of thermally excited gravity waves with mean flows, Geophys. Fluid Dyn., Volume 6 (1974), pp. 149-191 | DOI
[85] The interaction of two internal waves with the mean flow: Implications for the theory of the quasi-biennial oscillation, J. Atmos. Sci., Volume 34 (1977), pp. 1847-1858 | DOI
[86] Visualization and WKB analysis of the internal gravity wave in the QBO experiment, Nagare: Japan Soc. Fluid Mech., Volume 17 (1998) no. 3
[87] Experimental observation of a strong mean flow induced by internal gravity waves, Phys. Fluids, Volume 24 (2012), 086602 | DOI
[88] Nonlinear saturation of the large scale flow in a laboratory model of the quasibiennial oscillation, Phys. Rev. Lett., Volume 121 (2018), 086602, p. 134502 | DOI
[89] Quasi-biennial oscillation: laboratory experiments, Comptes Rendus. Phys. (2024), pp. 1-25 | DOI
[90] Fluid dynamics experiments for planetary interiors, Surv. Geophys., Volume 43 (2022) no. 1, pp. 229-261 | DOI
[91] Zonal Wind Driven by Inertial Modes, Phys. Rev. Lett., Volume 99 (2007) no. 19, 194501 | DOI
[92] Experimental evidence of inertial waves in a precessing spheroidal cavity, Geophys. Res. Lett., Volume 28 (2001), 194501, pp. 3785-3788 | DOI
[93] Experimental evidence of non-linear resonance effects between retrograde precession and the tilt-over mode within a spheroid, Geophys. J. Int., Volume 154 (2003) no. 2, pp. 407-416 | DOI
[94] Experimental study of the flows in a non-axisymmetric ellipsoid under precession, J. Fluid Mech., Volume 932 (2022), A24 | DOI
[95] Flows driven by librations in latitude in triaxial ellipsoids, Ph. D. Thesis, ETH Zurich, Switzerland (2018), A24
[96] Experimental and numerical study of mean zonal flows generated by librations of a rotating spherical cavity, J. Fluid Mech., Volume 662 (2010), pp. 260-268 | DOI | Zbl
[97] Experimental study of libration-driven zonal flows in a straight cylinder, Phys. Earth Planet. Inter., Volume 182 (2010) no. 1-2, pp. 98-106 | DOI
[98] Experimental study of global-scale turbulence in a librating ellipsoid, Phys. Fluids, Volume 26 (2014) no. 12, 126601 | DOI
[99] Libration-driven flows in ellipsoidal shells, J. Geophys. Res. Planets, Volume 122 (2017) no. 9, 126601, pp. 1926-1950 | DOI
[100] Experimental Determination of Zonal Winds Driven by Tides, Phys. Rev. Lett., Volume 104 (2010) no. 21, p. 214501 | DOI
[101] Tidally forced turbulence in planetary interiors, Geophys. J. Int., Volume 208 (2017) no. 3, pp. 1690-1703 | DOI
[102] Libration-driven inertial waves and mean zonal flows in spherical shells, Geophys. Astrophys. Fluid Dyn., Volume 115 (2021) no. 3, pp. 258-279 | DOI | Zbl
[103] et al. Zonal Jets in the Laboratory. Experiments with Electromagnetically Forced Flows, Zonal Jets. Phenomenology, Genesis, and Physics, Cambridge University Press, 2019, pp. 167-177 | DOI
[104] Experiments on vortices and Rossby waves in eastward and westward jets, Nonlinear Topics in Ocean Physics (A. R. Osborne, ed.), North-Holland: Amsterdam, 1991, pp. 227-269
[105] Zonal Jet Flows in the Laboratory: An Introduction, Zonal Jets: Phenomenology, Genesis, and Physics (B. Galperin; P. L. Read, eds.), Cambridge University Press, 2019, pp. 119–-134 | DOI
[106] Using particle tracking to measure flow instabilities in an undergraduate laboratory experiment, Am. J. Phys., Volume 79 (2011) no. 3, pp. 267-273 | DOI
[107] Universal spectrum of two-dimensional turbulence on a rotating sphere and some basic features of atmospheric circulation on giant planets, Phys. Rev. Lett., Volume 89 (2002) no. 12), 124501 | DOI
[108] The structure of zonal jets in geostrophic turbulence, J. Fluid Mech., Volume 711 (2012), 124501, pp. 576-598 | DOI | Zbl
[109] Rare event algorithm links transitions in turbulent flows with activated nucleations, Phys. Rev. Lett., Volume 122 (2019) no. 7, 074502 | DOI
[110] Multistability and rare spontaneous transitions in barotropic -plane turbulence, J. Atmos. Sci., Volume 78 (2021) no. 6, 074502, pp. 1889-1911 | DOI
[111] Large-scale flow generation in turbulent convection, Proc. Natl. Acad. Sci. USA, Volume 78 (1981) no. 4, pp. 1981-1985 | DOI
[112] Rotations and cessations of the large-scale circulation in turbulent Rayleigh–Bénard convection, J. Fluid Mech., Volume 568 (2006), pp. 351-386 | DOI | Zbl
[113] Jump rope vortex in liquid metal convection, Proc. Natl. Acad. Sci. USA, Volume 115 (2018) no. 50, pp. 12674-12679 | DOI
[114] A theoretical and experimental study of cellular convection in rotating fluids, Tellus, Volume 7 (1955) no. 1, pp. 2-21 | DOI
[115] Experimental study of convective structures in rotating fluids, J. Fluid Mech., Volume 167 (1986), pp. 503-531 | DOI
[116] Effects of rotation on convective turbulence, J. Fluid Mech., Volume 228 (1991), pp. 513-547 | DOI
[117] Rotating Rayleigh–Bénard convection : asymmetric modes and vortex states, J. Fluid Mech., Volume 249 (1993), pp. 135-159 | DOI
[118] Unsteady deep convection in a homogeneous rotating fluid, with Oceanographic Applications, J. Phys. Oceanogr., Volume 24 (1994), pp. 865-887 | DOI
[119] On convective turbulence and the influence of rotation, Dyn. Atmos. Oceans, Volume 25 (1997), pp. 217-232 | DOI
[120] The horizontal scale of rotating convection in the geostrophic regime, J. Fluid Mech., Volume 333 (1997), pp. 85-95 | DOI | Zbl
[121] et al. Rotating convective turbulence in Earth and planetary cores, Phys. Earth Planet. Inter., Volume 246 (2015), pp. 52-71 | DOI
[122] Laboratory-numerical models of rapidly rotating convection in planetary cores, Geophys. J. Int., Volume 201 (2015) no. 1, pp. 1-17 | DOI
[123] Regimes of Coriolis-centrifugal convection, Phys. Rev. Lett., Volume 120 (2018) no. 20, 204502 | DOI
[124] Laboratory exploration of heat transfer regimes in rapidly rotating turbulent convection, Phys. Rev. Fluids, Volume 5 (2020) no. 11, 113501, 204502 | DOI
[125] Experimental evidence for the boundary zonal flow in rotating Rayleigh–Bénard convection, J. Fluid Mech., Volume 939 (2022), A14, 113501 | DOI
[126] Radial Earth models revisited, Geophys. J. Int., Volume 222 (2020) no. 3, A14, pp. 2189-2204 | DOI
[127] et al. An experimental study of multiple zonal jet formation in rotating, thermally driven convective flows on a topographic beta-plane, Phys. Fluids, Volume 27 (2015), 085111 | DOI
[128] Convectively Driven Turbulence, Rossby Waves and Zonal Jets: Experiments on the Coriolis Platform, Zonal jets: Phenomenology, genesis, and physics (B. Galperin; P. L. Read, eds.), Cambridge University Press, 2019, 085111, pp. 135-151 | DOI
[129] A convective model for the zonal jets in the atmospheres of Jupiter and Saturn, Nature, Volume 367 (1994), pp. 711-713 | DOI
[130] Topographic Hadley cells, J. Fluid Mech., Volume 280 (1994), pp. 349-368 | DOI
[131] The effect of small-scale forcing on large-scale structures in two-dimensional flows, Phys. D: Nonlinear Phenom., Volume 98 (1996), pp. 321-334 | DOI | Zbl
[132] A simple model of convection in the Jovian atmosphere, Icarus, Volume 29 (1976) no. 2, pp. 255-260 | DOI
[133] A model of mean zonal flows in the major planets, Geophys. Astrophys. Fluid Dyn., Volume 23 (1983), pp. 153-174 | DOI | Zbl
[134] Spiralling columnar convection in rapidly rotating spherical fluid shells, J. Fluid Mech., Volume 236 (1992), pp. 535-556 | DOI | Zbl
[135] Differential rotation driven by convection in a rapidly rotating annulus, Geophys. Astrophys. Fluid Dyn., Volume 21 (1982) no. 1-2, pp. 59-74 | DOI | Zbl
[136] An experimental and theoretical investigation of the onset of convection in rotating spherical shells, J. Fluid Mech., Volume 126 (1983), pp. 287-305 | DOI | Zbl
[137] Experiments on thermal convection in rotating systems motivated by planetary problems, Dyn. Atmos. Oceans, Volume 27 (1997), pp. 161-174 | DOI
[138] Chaotic thermal convection in a rapidly rotating spherical shell: Consequences for flow in the outer core, Phys. Earth Planet. Inter., Volume 82 (1994), pp. 235-259 | DOI
[139] Banded Convection in Rotating Fluid Spheres and the Circulation of the Jovian Atmosphere, Icarus, Volume 250 (1996), pp. 242-250 | DOI
[140] A systematic experimental study of rapidly rotating spherical convection in water and liquid gallium, Phys. Earth Planet. Inter., Volume 128 (2001) no. 1-4, pp. 51-74 | DOI
[141] Experimental and numerical studies of convection in a rapidly rotating spherical shell, J. Fluid Mech., Volume 580 (2007), pp. 83-121 | DOI | Zbl
[142] Complex environmental -plane turbulence: laboratory experiments with altimetric imaging velocimetry, Nonlinear Process. Geophys., Volume 23 (2016) no. 1, pp. 21-29 | DOI
[143] Baroclinic turbulence on the polar beta-plane in the rotating tank: Down to submesoscale, Ocean Model., Volume 107 (2016), pp. 151-160 | DOI
[144] Evolution of Jupiter-Style Critical Latitudes: Initial Laboratory Altimetry Results, J. Geophys. Res. Planets, Volume 127 (2022) no. 5, e2021JE007048 | DOI
[145] The Dynamics of Geophysical and Astrophysical Turbulence, Ph. D. Thesis, University of Cambridge, Cambridge, United Kingdom (2020), e2021JE007048 | DOI
[146] Convection in a rotating cylindrical annulus: thermal Rossby waves, J. Fluid Mech., Volume 166 (1986), pp. 173-187 | DOI | Zbl
[147] Sloping convection in a rotating fluid, Adv. Phys., Volume 24 (1975), pp. 47-99 | DOI
[148] General circulation of planetary atmospheres: Insights from the rotating annulus and related experiments, Modelling Atmospheric and Oceanic flows: insights from laboratory experiments and numerical simulations (T. von Larcher; P. D Williams, eds.), American Geophysical Union, 2014, pp. 7-44 | DOI
[149] Stability of the Rossby–Haurwitz wave, Q. J. R. Meteorol. Soc., Volume 99 (1973), pp. 723-745 | DOI
[150] The stability of planetary waves on a sphere, J. Fluid Mech., Volume 73 (1976), pp. 193-213 | DOI
[151] A comparison of laboratory measurements and numerical simulations of baroclinic wave flows in a rotating cylindrical annulus, Q. J. R. Meteorol. Soc., Volume 111 (1985), pp. 131-154 | DOI
[152] Finite amplitude, steady Rossby waves and mean flows: analytical illustrations of the Charney-Drazin non-acceleration theorem, Q. J. R. Meteorol. Soc., Volume 112 (1986), pp. 749-773 | DOI
[153] A laboratory study of baroclinic waves and turbulence in an internally heated rotating fluid annulus with sloping endwalls, J. Fluid Mech., Volume 339 (1997), pp. 173-198 | DOI
[154] Experiments on the structure of baroclinic waves and zonal jets in an internally heated rotating cylinder of fluid, Phys. Fluids, Volume 10 (1998), pp. 374-389 | DOI
[155] Turbulence, waves and jets in a differentially heated rotating annulus experiment, Phys. Fluids, Volume 20 (2008), 126602 | DOI | Zbl
[156] A climatology of atmospheric wave number spectra of wind and temperature observed by commercial aircraft, J. Atmos. Sci., Volume 42 (1985), 126602, pp. 950-960 | DOI
[157] Quasinormal scale elimination theory of the anisotropic energy spectra of atmospheric and oceanic turbulence, Phys. Rev. Fluids, Volume 5 (2020), 063803 | DOI
Cité par Sources :
Commentaires - Politique