Comptes Rendus
Article de synthèse
Wave turbulence: a solvable problem applied to the Navier–Stokes equations
[Turbulence d’ondes : un problème résoluble appliqué aux équations de Navier–Stokes]
Comptes Rendus. Physique, Volume 25 (2024), pp. 433-455.

La turbulence d’ondes et la turbulence de tourbillons sont les deux régimes que l’on peut rencontrer dans la nature. L’attention des mécaniciens des fluides étant principalement portée sur l’hydrodynamique incompressible, c’est généralement le second régime qui est traité dans les livres, alors que les ondes sont souvent présentes en géophysique et en astrophysique. Dans cette revue, je présente la théorie de la turbulence d’ondes qui est exempte du problème de fermeture rencontré dans le cas classique. Fondamentalement, l’amplitude de l’onde est introduite dans une méthode à échelles de temps multiples comme un petit paramètre pour trouver les équations dites cinétiques à partir desquelles des résultats exacts peuvent être obtenus (spectres en loi de puissance, direction de la cascade, constante de Kolmogorov) et comparés avec les données. Deux applications hydrodynamiques sont considérées avec des ondes capillaires et des ondes inertielles, la première conduisant à une turbulence isotrope et la seconde à une turbulence anisotrope.

Wave turbulence and eddy turbulence are the two regimes that we may encounter in nature. The attention of fluid mechanics being mainly focused on incompressible hydrodynamics, it is usually the second regime that is treated in books, whereas waves are often present in geophysics and astrophysics. In this review, I present the theory of wave turbulence which is free from the closure problem encountered in eddy turbulence. Basically, the wave amplitude is introduced in a multiple time scale method as a small parameter to derive the so-called kinetic equations from which exact results can be obtained (power-law spectra, direction of the cascade, Kolmogorov’s constant) and compared with the data. Two hydrodynamic applications are considered with capillary waves and inertial waves, the first leading to isotropic turbulence and the second to anisotropic turbulence.

Reçu le :
Accepté le :
Publié le :
DOI : 10.5802/crphys.221
Keywords: Hydrodynamics, Turbulence, Wave
Mots-clés : Hydrodynamique, Onde, Turbulence

Sébastien Galtier 1

1 Laboratoire de Physique des Plasmas, Université Paris-Saclay, École polytechnique, 91128 Palaiseau, France
Licence : CC-BY 4.0
Droits d'auteur : Les auteurs conservent leurs droits
@article{CRPHYS_2024__25_G1_433_0,
     author = {S\'ebastien Galtier},
     title = {Wave turbulence: a solvable problem applied to the {Navier{\textendash}Stokes} equations},
     journal = {Comptes Rendus. Physique},
     pages = {433--455},
     publisher = {Acad\'emie des sciences, Paris},
     volume = {25},
     year = {2024},
     doi = {10.5802/crphys.221},
     language = {en},
}
TY  - JOUR
AU  - Sébastien Galtier
TI  - Wave turbulence: a solvable problem applied to the Navier–Stokes equations
JO  - Comptes Rendus. Physique
PY  - 2024
SP  - 433
EP  - 455
VL  - 25
PB  - Académie des sciences, Paris
DO  - 10.5802/crphys.221
LA  - en
ID  - CRPHYS_2024__25_G1_433_0
ER  - 
%0 Journal Article
%A Sébastien Galtier
%T Wave turbulence: a solvable problem applied to the Navier–Stokes equations
%J Comptes Rendus. Physique
%D 2024
%P 433-455
%V 25
%I Académie des sciences, Paris
%R 10.5802/crphys.221
%G en
%F CRPHYS_2024__25_G1_433_0
Sébastien Galtier. Wave turbulence: a solvable problem applied to the Navier–Stokes equations. Comptes Rendus. Physique, Volume 25 (2024), pp. 433-455. doi : 10.5802/crphys.221. https://comptes-rendus.academie-sciences.fr/physique/articles/10.5802/crphys.221/

[1] S. Galtier Physics of Wave Turbulence, Cambridge University Press, Cambridge, 2023

[2] D. J. Benney; P. G. Saffman Nonlinear interactions of random waves in a dispersive medium, Proc. R. Soc. Lond. A, Volume 289 (1966) no. 1418, pp. 301-320 | DOI

[3] O. M. Phillips Wave interactions—The evolution of an idea, J. Fluid Mech., Volume 106 (1981), pp. 215-227 | DOI

[4] G. G. Stokes On the theory of oscillatory waves, Trans. Camb. Philos. Soc., Volume 8 (1847), pp. 441-455

[5] R. Peierls Zur kinetischen Theorie der Wärmeleitung in Kristallen, Ann. Phys., Volume 395 (1929) no. 8, pp. 1055-1101 | DOI | Zbl

[6] L. W. Nordheim On the kinetic method in the new statistics and its application in the electron theory of conductivity, Proc. R. Soc. Lond. Series A, Volume 119 (1928) no. 783, pp. 689-698 | DOI | Zbl

[7] O. M. Phillips On the dynamics of unsteady gravity waves of finite amplitude. Part 1. The elementary interactions, J. Fluid Mech., Volume 9 (1960), pp. 193-217 | DOI | Zbl

[8] M. S. Longuet-Higgins Resonant interactions between two trains of gravity waves, J. Fluid Mech., Volume 12 (1962), pp. 321-332 | DOI | Zbl

[9] K. Hasselmann On the non-linear energy transfer in a gravity-wave spectrum. Part 1. General theory, J. Fluid Mech., Volume 12 (1962), pp. 481-500 | DOI | Zbl

[10] O. M. Phillips The equilibrium range in the spectrum of wind-generated waves, J. Fluid Mech., Volume 4 (1958), pp. 426-434 | DOI | Zbl

[11] M. S. Longuet-Higgins; N. D. Smith An experiment on third-order resonant wave interactions, J. Fluid Mech., Volume 25 (1966), pp. 417-435 | DOI

[12] L. F. McGoldrick; O. M. Phillips; N. E. Huang; T. H. Hodgson Measurements of third-order resonant wave interactions, J. Fluid Mech., Volume 25 (1966), pp. 437-456 | DOI

[13] W. E. Drummond; D. Pines Non-linear stability of plasma oscillations, Nuclear Fusion Supp., Volume 3 (1962), pp. 1049-1057

[14] T. R. Akylas David J. Benney: nonlinear wave and instability processes in fluid flows, Ann. Rev. Fluid Mech., Volume 52 (2020) no. 1, pp. 21-36 | DOI | Zbl

[15] D. J. Benney Non-linear gravity wave interactions, J. Fluid Mech., Volume 14 (1962), pp. 577-584 | DOI | Zbl

[16] H. Poincaré Les méthodes nouvelles de la mécanique céleste, II, Dover publisher, New-York, 1893

[17] P. A. Sturrock Non-Linear effects in electron plasmas, Proc. R. Soc. Lond. A, Volume 242 (1957) no. 1230, pp. 277-299 | DOI | Zbl

[18] A. H. Nayfeh Perturbation Methods, Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim, 2004

[19] D. J. Benney Asymptotic behavior of nonlinear dispersive waves, J. Math. Phys., Volume 46 (1967) no. 2, pp. 115-132 | DOI | Zbl

[20] D. J. Benney; A. C. Newell Sequential time closures for interacting random waves, J. Math. Phys., Volume 46 (1967) no. 4, pp. 363-392 | DOI | Zbl

[21] D. J. Benney; A. C. Newell Random wave closures, Stud. App. Maths., Volume 48 (1969) no. 1, pp. 29-53 | DOI | Zbl

[22] R. Z. Sagdeev; A. A. Galeev Lectures on the Non-Linear Theory of Plasma, International Center for Theoretical Physics, Trieste, 1966, pp. 1-161

[23] A. A. Vedenov Theory of a weakly turbulent plasma, Rev. Plasma Phys., Volume 3 (1967), pp. 229-276 | DOI

[24] B. B. Kadomtsev; V. I. Petviashvili Weakly turbulent plasma in a magnetic field, JETP, Volume 16 (1963), pp. 1578-1585 | Zbl

[25] V. E. Zakharov Weak turbulence in media with a decay spectrum, J. Appl. Mech. Tech. Phys., Volume 6 (1965), pp. 22-24 | DOI

[26] V. E. Zakharov; N. N. Filonenko The energy spectrum for stochastic oscillations of a fluid surface, Doclady Akad. Nauk. SSSR, Volume 170 (1966), pp. 1292-1295

[27] V. E. Zakharov; N. N. Filonenko Weak turbulence of capillary waves, J. Appl. Mech. Tech. Phys., Volume 8 (1967) no. 5, pp. 37-40 | DOI

[28] V. E. Zakharov Weak-turbulence spectrum in a plasma without a magnetic field, JETP, Volume 24 (1967), pp. 455-459

[29] É. A. Kaner; V. M. Yakovenko Weak turbulence spectrum and second sound in a plasma, JETP, Volume 31 (1970), pp. 316-320 | Zbl

[30] P. Clark di Leoni; P. J. Cobelli; P. D. Mininni Wave turbulence in shallow water models, Phys. Rev. E, Volume 89 (2014) no. 6, 063025 | DOI

[31] D. J. Benney; A. C. Newell Statistical properties of the sea, Phys. Fluids, Volume 10 (1967) no. 9, p. S281-S290 | DOI | Zbl

[32] L. Deike; C. Laroche; E. Falcon Experimental study of the inverse cascade in gravity wave turbulence, EPL (Europhys. Lett.), Volume 96 (2011) no. 3, 34004 | DOI

[33] Z. Zhang; Y. Pan Numerical investigation of turbulence of surface gravity waves, J. Fluid Mech., Volume 933 (2022), A58 | DOI

[34] P. A. Hwang; D. W. Wang; E. J. Walsh; W. B. Krabill; R. N. Swift Airborne measurements of the wavenumber spectra of ocean surface waves. Part I: spectral slope and dimensionless spectral coefficient, J. Phys. Ocean., Volume 30 (2000) no. 11, pp. 2753-2767 | DOI

[35] L. Lenain; W. K. Melville Measurements of the directional spectrum across the equilibrium saturation ranges of wind-generated surface waves, J. Phys. Ocean., Volume 47 (2017), pp. 2123-2138 | DOI

[36] E. Falcon; N. Mordant Experiments in surface gravity–capillary wave turbulence, Ann. Rev. Fluid Mech., Volume 54 (2022) no. 1, pp. 1-25 | DOI | Zbl

[37] J. MacKinnon, collaborators Climate process team on internal wave-driven ocean mixing, Bull. Amer. Meteorol. Soc., Volume 98 (2017) no. 11, pp. 2429-2454 | DOI

[38] P. Caillol; V. Zeitlin Kinetic equations and stationary energy spectra of weakly nonlinear internal gravity waves, Dyn. Atmos. Oceans, Volume 32 (2000) no. 2, pp. 81-112 | DOI

[39] C. Savaro; A. Campagne; M. C. Linares; P. Augier; J. Sommeria; T. Valran; S. Viboud; N. Mordant Generation of weakly nonlinear turbulence of internal gravity waves in the Coriolis facility, Phys. Rev. Fluids, Volume 5 (2020) no. 7, 073801 | DOI

[40] S. Galtier Weak inertial-wave turbulence theory, Phys. Rev. E, Volume 68 (2003) no. 1, 015301 | DOI

[41] E. Monsalve; M. Brunet; B. Gallet; P.-P. Cortet Quantitative experimental observation of weak inertial-wave turbulence, Phys. Rev. Lett., Volume 125 (2020), 254502 | DOI

[42] M. S. Longuet-Higgins; A. E. Gill Resonant interactions between planetary waves, Proc. R. Soc. Lond. A, Volume 299 (1967) no. 1456, pp. 120-140 | DOI

[43] A. M. Balk; V. E. Zakharov; S. V. Nazarenko Nonlocal turbulence of drift waves, JETP, Volume 98 (1990), pp. 446-467

[44] A. M. Balk; S. V. Nazarenko; V. E. Zakharov On the nonlocal turbulence of drift type waves, Phys. Lett. A, Volume 146 (1990) no. 4, pp. 217-221 | DOI

[45] S. Galtier; S. V. Nazarenko; A. C. Newell; A. Pouquet A weak turbulence theory for incompressible magnetohydrodynamics, J. Plasma Phys., Volume 63 (2000), pp. 447-488 | DOI

[46] C. C. Finlay Waves in the presence of magnetic fields, rotation and convection, Dynamos (P. Cardin; L. F. Cugliandolo, eds.) (Les Houches 2007), Volume 88, Elsevier Science, 2008, pp. 403-450 | DOI

[47] S. Galtier Weak turbulence theory for rotating magnetohydrodynamics and planetary flows, J. Fluid Mech., Volume 757 (2014), pp. 114-154 | DOI | Zbl

[48] M. D. Menu; S. Galtier; L. Petitdemange Inverse cascade of hybrid helicity in B 0 -Ω MHD turbulence, Phys. Rev. Fluids, Volume 4 (2019) no. 7, 073701 | DOI

[49] V. E. Zakharov; R. Z. Sagdeev Spectrum of acoustic turbulence, Sov. Phys. Dok., Volume 15 (1970), pp. 439-441 | Zbl

[50] A. C. Newell; P. J. Aucoin Semi-dispersive wave systems, J. Fluid Mech., Volume 49 (1971), pp. 593-609 | DOI | Zbl

[51] V. S. L’vov; Y. L’vov; A. C. Newell; V. E. Zakharov Statistical description of acoustic turbulence, Phys. Rev. E, Volume 56 (1997) no. 1, pp. 390-405 | DOI

[52] S. Galtier Fast magneto-acoustic wave turbulence and the Iroshnikov-Krachnan spectrum, J. Fluid Mech., Volume 89 (2023) no. 2, 905890205 | DOI

[53] V. Steinberg Elastic turbulence: an experimental view on inertialess random flow, Ann. Rev. Fluid Mech., Volume 53 (2021) no. 1, pp. 27-58 | DOI | Zbl

[54] G. Düring; C. Josserand; S. Rica Weak turbulence for a vibrating plate: can one hear a Kolmogorov spectrum?, Phys. Rev. Lett., Volume 97 (2006) no. 2, 025503 | DOI

[55] G. Düring; C. Josserand; S. Rica Self-similar formation of an inverse cascade in vibrating elastic plates, Phys. Rev. E, Volume 91 (2015) no. 5, 052916 | DOI

[56] A. Boudaoud; O. Cadot; B. Odille; C. Touzé Observation of wave turbulence in vibrating plates, Phys. Rev. Lett., Volume 100 (2008) no. 23, 234504 | DOI

[57] N. Mordant Are there waves in elastic wave turbulence?, Phys. Rev. Lett., Volume 100 (2008) no. 23, 234505 | DOI

[58] P. Cobelli; P. Petitjeans; A. Maurel; V. Pagneux; N. Mordant Space–time resolved wave turbulence in a vibrating plate, Phys. Rev. Lett., Volume 103 (2009) no. 20, 204301 | DOI

[59] N. Mordant Fourier analysis of wave turbulence in a thin elastic plate, Eur. Phys. J. B, Volume 76 (2010) no. 4, pp. 537-545 | DOI | Zbl

[60] C. Sulem; P.-L. Sulem Nonlinear Schrödinger Equation: Self-Focusing and Wave Collapse, 139, Springer-Verlag, New-York, 1999

[61] S. Dyachenko; A. C. Newell; A. Pushkarev; V. E. Zakharov Optical turbulence: weak turbulence, condensates and collapsing filaments in the nonlinear Schrodinger equation, Physica D, Volume 57 (1992), pp. 96-160 | DOI | Zbl

[62] J. Laurie; U. Bortolozzo; S. Nazarenko; S. Residori One-dimensional optical wave turbulence: experiment and theory, Phys. Rep., Volume 514 (2012) no. 4, pp. 121-175 | DOI

[63] M. Mitchell; Z. Chen; M.-F. Shih; M. Segev Self-trapping of partially spatially incoherent light, Phys. Rev. Lett., Volume 77 (1996) no. 3, pp. 490-493 | DOI

[64] A. Picozzi; J. Garnier; T. Hansson; P. Suret; S. Randoux; G. Millot; D. N. Christodoulides Optical wave turbulence: towards a unified nonequilibrium thermodynamic formulation of statistical nonlinear optics, Phys. Rep., Volume 542 (2014) no. 1, pp. 1-132 | DOI

[65] E. A. L. Henn; J. A. Seman; G. Roati; K. M. F. Magalhaes; V. S. Bagnato Emergence of turbulence in an oscillating Bose–Einstein condensate, Phys. Rev. Lett., Volume 103 (2009) no. 4, 045301 | DOI

[66] S. Nazarenko; M. Onorato Wave turbulence and vortices in Bose Einstein condensation, Physica D, Volume 219 (2006) no. 1, pp. 1-12 | DOI | Zbl

[67] S. Nazarenko; M. Onorato Freely decaying turbulence and Bose Einstein condensation in Gross Pitaevski model, J. Low Temp. Phys., Volume 146 (2007) no. 1-2, pp. 31-46 | DOI

[68] D. Proment; S. Nazarenko; M. Onorato Quantum turbulence cascades in the Gross-Pitaevskii model, Phys. Rev. A, Volume 80 (2009) no. 5, 051603 | DOI

[69] D. Proment; S. Nazarenko; M. Onorato Sustained turbulence in the three-dimensional Gross-Pitaevskii model, Physica D, Volume 241 (2012) no. 3, pp. 304-314 | DOI | Zbl

[70] W. F. Vinen Classical character of turbulence in a quantum liquid, Phys. Rev. B, Volume 61 (2000) no. 2, pp. 1410-1420 | DOI

[71] D. Kivotides; J. C. Vassilicos; D. C. Samuels; C. F. Barenghi Kelvin waves cascade in superfluid turbulence, Phys. Rev. Lett., Volume 86 (2001) no. 14, pp. 3080-3083 | DOI

[72] E. Kozik; B. Svistunov Kelvin-wave cascade and decay of superfluid turbulence, Phys. Rev. Lett., Volume 92 (2004) no. 3, 035301 | DOI

[73] S. Nazarenko Differential approximation for Kelvin Wave Turbulence, JETP Lett., Volume 83 (2006) no. 5, pp. 198-200 | DOI

[74] S. Galtier; J. Laurie; S. V. Nazarenko A plausible model of inflation driven by strong gravitational wave turbulence, Universe, Volume 6 (2020) no. 7, 98 | DOI

[75] S. Galtier; S. V. Nazarenko Turbulence of weak gravitational waves in the early universe, Phys. Rev. Lett., Volume 119 (2017) no. 22, 221101 | DOI

[76] S. Galtier; S. V. Nazarenko Direct evidence of a dual cascade in gravitational wave turbulence, Phys. Rev. Lett., Volume 127 (2021) no. 13, 131101 | DOI

[77] R. Hassaini; N. Mordant; B. Miquel; G. Krstulovic; G. Düring Elastic weak turbulence: from the vibrating plate to the drum, Phys. Rev. E, Volume 99 (2019) no. 3, 033002 | DOI

[78] Y. Deng; Z. Hani On the derivation of the wave kinetic equation for NLS, Forum Math. Pi, Volume 9 (2021), pp. 1-37 | DOI | Zbl

[79] Y. Deng; Z. Hani Full derivation of the wave kinetic equation, Invent. Math., Volume 233 (2023), pp. 543-724 | DOI | Zbl

[80] C. Connaughton; S. Nazarenko; A. Pushkarev Discreteness and quasiresonances in weak turbulence of capillary waves, Phys. Rev. E, Volume 63 (2001), 046306 | DOI

[81] L. Bourouiba Discreteness and resolution effects in rapidly rotating turbulence, Phys. Rev. E, Volume 78 (2008), 056309 | DOI

[82] S. Galtier Wave turbulence: the case of capillary waves, Geophys. Astro. Fluid Dyn., Volume 115 (2021) no. 3, pp. 234-257 | DOI | Zbl

[83] V. David; S. Galtier Locality of triadic interaction and Kolmogorov constant in inertial wave turbulence, J. Fluid Mech. Rapids, Volume 955 (2023), R2 | Zbl

[84] T. Le Reun; B. Favier; M. Le Bars Evidence of the Zakharov-Kolmogorov spectrum in numerical simulations of inertial wave turbulence, EPL (Europhysics Letters), Volume 132 (2020) no. 6, 64002 | DOI

[85] N. Yokoyama; M. Takaoka Energy-flux vector in anisotropic turbulence: application to rotating turbulence, J. Fluid Mech., Volume 908 (2021), A17 | DOI | Zbl

Cité par Sources :

Commentaires - Politique