[Turbulence d’ondes : un problème résoluble appliqué aux équations de Navier–Stokes]
La turbulence d’ondes et la turbulence de tourbillons sont les deux régimes que l’on peut rencontrer dans la nature. L’attention des mécaniciens des fluides étant principalement portée sur l’hydrodynamique incompressible, c’est généralement le second régime qui est traité dans les livres, alors que les ondes sont souvent présentes en géophysique et en astrophysique. Dans cette revue, je présente la théorie de la turbulence d’ondes qui est exempte du problème de fermeture rencontré dans le cas classique. Fondamentalement, l’amplitude de l’onde est introduite dans une méthode à échelles de temps multiples comme un petit paramètre pour trouver les équations dites cinétiques à partir desquelles des résultats exacts peuvent être obtenus (spectres en loi de puissance, direction de la cascade, constante de Kolmogorov) et comparés avec les données. Deux applications hydrodynamiques sont considérées avec des ondes capillaires et des ondes inertielles, la première conduisant à une turbulence isotrope et la seconde à une turbulence anisotrope.
Wave turbulence and eddy turbulence are the two regimes that we may encounter in nature. The attention of fluid mechanics being mainly focused on incompressible hydrodynamics, it is usually the second regime that is treated in books, whereas waves are often present in geophysics and astrophysics. In this review, I present the theory of wave turbulence which is free from the closure problem encountered in eddy turbulence. Basically, the wave amplitude is introduced in a multiple time scale method as a small parameter to derive the so-called kinetic equations from which exact results can be obtained (power-law spectra, direction of the cascade, Kolmogorov’s constant) and compared with the data. Two hydrodynamic applications are considered with capillary waves and inertial waves, the first leading to isotropic turbulence and the second to anisotropic turbulence.
Accepté le :
Publié le :
Mots-clés : Hydrodynamique, Onde, Turbulence
Sébastien Galtier 1
@article{CRPHYS_2024__25_G1_433_0, author = {S\'ebastien Galtier}, title = {Wave turbulence: a solvable problem applied to the {Navier{\textendash}Stokes} equations}, journal = {Comptes Rendus. Physique}, pages = {433--455}, publisher = {Acad\'emie des sciences, Paris}, volume = {25}, year = {2024}, doi = {10.5802/crphys.221}, language = {en}, }
Sébastien Galtier. Wave turbulence: a solvable problem applied to the Navier–Stokes equations. Comptes Rendus. Physique, Volume 25 (2024), pp. 433-455. doi : 10.5802/crphys.221. https://comptes-rendus.academie-sciences.fr/physique/articles/10.5802/crphys.221/
[1] Physics of Wave Turbulence, Cambridge University Press, Cambridge, 2023
[2] Nonlinear interactions of random waves in a dispersive medium, Proc. R. Soc. Lond. A, Volume 289 (1966) no. 1418, pp. 301-320 | DOI
[3] Wave interactions—The evolution of an idea, J. Fluid Mech., Volume 106 (1981), pp. 215-227 | DOI
[4] On the theory of oscillatory waves, Trans. Camb. Philos. Soc., Volume 8 (1847), pp. 441-455
[5] Zur kinetischen Theorie der Wärmeleitung in Kristallen, Ann. Phys., Volume 395 (1929) no. 8, pp. 1055-1101 | DOI | Zbl
[6] On the kinetic method in the new statistics and its application in the electron theory of conductivity, Proc. R. Soc. Lond. Series A, Volume 119 (1928) no. 783, pp. 689-698 | DOI | Zbl
[7] On the dynamics of unsteady gravity waves of finite amplitude. Part 1. The elementary interactions, J. Fluid Mech., Volume 9 (1960), pp. 193-217 | DOI | Zbl
[8] Resonant interactions between two trains of gravity waves, J. Fluid Mech., Volume 12 (1962), pp. 321-332 | DOI | Zbl
[9] On the non-linear energy transfer in a gravity-wave spectrum. Part 1. General theory, J. Fluid Mech., Volume 12 (1962), pp. 481-500 | DOI | Zbl
[10] The equilibrium range in the spectrum of wind-generated waves, J. Fluid Mech., Volume 4 (1958), pp. 426-434 | DOI | Zbl
[11] An experiment on third-order resonant wave interactions, J. Fluid Mech., Volume 25 (1966), pp. 417-435 | DOI
[12] Measurements of third-order resonant wave interactions, J. Fluid Mech., Volume 25 (1966), pp. 437-456 | DOI
[13] Non-linear stability of plasma oscillations, Nuclear Fusion Supp., Volume 3 (1962), pp. 1049-1057
[14] David J. Benney: nonlinear wave and instability processes in fluid flows, Ann. Rev. Fluid Mech., Volume 52 (2020) no. 1, pp. 21-36 | DOI | Zbl
[15] Non-linear gravity wave interactions, J. Fluid Mech., Volume 14 (1962), pp. 577-584 | DOI | Zbl
[16] Les méthodes nouvelles de la mécanique céleste, II, Dover publisher, New-York, 1893
[17] Non-Linear effects in electron plasmas, Proc. R. Soc. Lond. A, Volume 242 (1957) no. 1230, pp. 277-299 | DOI | Zbl
[18] Perturbation Methods, Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim, 2004
[19] Asymptotic behavior of nonlinear dispersive waves, J. Math. Phys., Volume 46 (1967) no. 2, pp. 115-132 | DOI | Zbl
[20] Sequential time closures for interacting random waves, J. Math. Phys., Volume 46 (1967) no. 4, pp. 363-392 | DOI | Zbl
[21] Random wave closures, Stud. App. Maths., Volume 48 (1969) no. 1, pp. 29-53 | DOI | Zbl
[22] Lectures on the Non-Linear Theory of Plasma, International Center for Theoretical Physics, Trieste, 1966, pp. 1-161
[23] Theory of a weakly turbulent plasma, Rev. Plasma Phys., Volume 3 (1967), pp. 229-276 | DOI
[24] Weakly turbulent plasma in a magnetic field, JETP, Volume 16 (1963), pp. 1578-1585 | Zbl
[25] Weak turbulence in media with a decay spectrum, J. Appl. Mech. Tech. Phys., Volume 6 (1965), pp. 22-24 | DOI
[26] The energy spectrum for stochastic oscillations of a fluid surface, Doclady Akad. Nauk. SSSR, Volume 170 (1966), pp. 1292-1295
[27] Weak turbulence of capillary waves, J. Appl. Mech. Tech. Phys., Volume 8 (1967) no. 5, pp. 37-40 | DOI
[28] Weak-turbulence spectrum in a plasma without a magnetic field, JETP, Volume 24 (1967), pp. 455-459
[29] Weak turbulence spectrum and second sound in a plasma, JETP, Volume 31 (1970), pp. 316-320 | Zbl
[30] Wave turbulence in shallow water models, Phys. Rev. E, Volume 89 (2014) no. 6, 063025 | DOI
[31] Statistical properties of the sea, Phys. Fluids, Volume 10 (1967) no. 9, p. S281-S290 | DOI | Zbl
[32] Experimental study of the inverse cascade in gravity wave turbulence, EPL (Europhys. Lett.), Volume 96 (2011) no. 3, 34004 | DOI
[33] Numerical investigation of turbulence of surface gravity waves, J. Fluid Mech., Volume 933 (2022), A58 | DOI
[34] Airborne measurements of the wavenumber spectra of ocean surface waves. Part I: spectral slope and dimensionless spectral coefficient, J. Phys. Ocean., Volume 30 (2000) no. 11, pp. 2753-2767 | DOI
[35] Measurements of the directional spectrum across the equilibrium saturation ranges of wind-generated surface waves, J. Phys. Ocean., Volume 47 (2017), pp. 2123-2138 | DOI
[36] Experiments in surface gravity–capillary wave turbulence, Ann. Rev. Fluid Mech., Volume 54 (2022) no. 1, pp. 1-25 | DOI | Zbl
[37] Climate process team on internal wave-driven ocean mixing, Bull. Amer. Meteorol. Soc., Volume 98 (2017) no. 11, pp. 2429-2454 | DOI
[38] Kinetic equations and stationary energy spectra of weakly nonlinear internal gravity waves, Dyn. Atmos. Oceans, Volume 32 (2000) no. 2, pp. 81-112 | DOI
[39] Generation of weakly nonlinear turbulence of internal gravity waves in the Coriolis facility, Phys. Rev. Fluids, Volume 5 (2020) no. 7, 073801 | DOI
[40] Weak inertial-wave turbulence theory, Phys. Rev. E, Volume 68 (2003) no. 1, 015301 | DOI
[41] Quantitative experimental observation of weak inertial-wave turbulence, Phys. Rev. Lett., Volume 125 (2020), 254502 | DOI
[42] Resonant interactions between planetary waves, Proc. R. Soc. Lond. A, Volume 299 (1967) no. 1456, pp. 120-140 | DOI
[43] Nonlocal turbulence of drift waves, JETP, Volume 98 (1990), pp. 446-467
[44] On the nonlocal turbulence of drift type waves, Phys. Lett. A, Volume 146 (1990) no. 4, pp. 217-221 | DOI
[45] A weak turbulence theory for incompressible magnetohydrodynamics, J. Plasma Phys., Volume 63 (2000), pp. 447-488 | DOI
[46] Waves in the presence of magnetic fields, rotation and convection, Dynamos (P. Cardin; L. F. Cugliandolo, eds.) (Les Houches 2007), Volume 88, Elsevier Science, 2008, pp. 403-450 | DOI
[47] Weak turbulence theory for rotating magnetohydrodynamics and planetary flows, J. Fluid Mech., Volume 757 (2014), pp. 114-154 | DOI | Zbl
[48] Inverse cascade of hybrid helicity in MHD turbulence, Phys. Rev. Fluids, Volume 4 (2019) no. 7, 073701 | DOI
[49] Spectrum of acoustic turbulence, Sov. Phys. Dok., Volume 15 (1970), pp. 439-441 | Zbl
[50] Semi-dispersive wave systems, J. Fluid Mech., Volume 49 (1971), pp. 593-609 | DOI | Zbl
[51] Statistical description of acoustic turbulence, Phys. Rev. E, Volume 56 (1997) no. 1, pp. 390-405 | DOI
[52] Fast magneto-acoustic wave turbulence and the Iroshnikov-Krachnan spectrum, J. Fluid Mech., Volume 89 (2023) no. 2, 905890205 | DOI
[53] Elastic turbulence: an experimental view on inertialess random flow, Ann. Rev. Fluid Mech., Volume 53 (2021) no. 1, pp. 27-58 | DOI | Zbl
[54] Weak turbulence for a vibrating plate: can one hear a Kolmogorov spectrum?, Phys. Rev. Lett., Volume 97 (2006) no. 2, 025503 | DOI
[55] Self-similar formation of an inverse cascade in vibrating elastic plates, Phys. Rev. E, Volume 91 (2015) no. 5, 052916 | DOI
[56] Observation of wave turbulence in vibrating plates, Phys. Rev. Lett., Volume 100 (2008) no. 23, 234504 | DOI
[57] Are there waves in elastic wave turbulence?, Phys. Rev. Lett., Volume 100 (2008) no. 23, 234505 | DOI
[58] Space–time resolved wave turbulence in a vibrating plate, Phys. Rev. Lett., Volume 103 (2009) no. 20, 204301 | DOI
[59] Fourier analysis of wave turbulence in a thin elastic plate, Eur. Phys. J. B, Volume 76 (2010) no. 4, pp. 537-545 | DOI | Zbl
[60] Nonlinear Schrödinger Equation: Self-Focusing and Wave Collapse, 139, Springer-Verlag, New-York, 1999
[61] Optical turbulence: weak turbulence, condensates and collapsing filaments in the nonlinear Schrodinger equation, Physica D, Volume 57 (1992), pp. 96-160 | DOI | Zbl
[62] One-dimensional optical wave turbulence: experiment and theory, Phys. Rep., Volume 514 (2012) no. 4, pp. 121-175 | DOI
[63] Self-trapping of partially spatially incoherent light, Phys. Rev. Lett., Volume 77 (1996) no. 3, pp. 490-493 | DOI
[64] Optical wave turbulence: towards a unified nonequilibrium thermodynamic formulation of statistical nonlinear optics, Phys. Rep., Volume 542 (2014) no. 1, pp. 1-132 | DOI
[65] Emergence of turbulence in an oscillating Bose–Einstein condensate, Phys. Rev. Lett., Volume 103 (2009) no. 4, 045301 | DOI
[66] Wave turbulence and vortices in Bose Einstein condensation, Physica D, Volume 219 (2006) no. 1, pp. 1-12 | DOI | Zbl
[67] Freely decaying turbulence and Bose Einstein condensation in Gross Pitaevski model, J. Low Temp. Phys., Volume 146 (2007) no. 1-2, pp. 31-46 | DOI
[68] Quantum turbulence cascades in the Gross-Pitaevskii model, Phys. Rev. A, Volume 80 (2009) no. 5, 051603 | DOI
[69] Sustained turbulence in the three-dimensional Gross-Pitaevskii model, Physica D, Volume 241 (2012) no. 3, pp. 304-314 | DOI | Zbl
[70] Classical character of turbulence in a quantum liquid, Phys. Rev. B, Volume 61 (2000) no. 2, pp. 1410-1420 | DOI
[71] Kelvin waves cascade in superfluid turbulence, Phys. Rev. Lett., Volume 86 (2001) no. 14, pp. 3080-3083 | DOI
[72] Kelvin-wave cascade and decay of superfluid turbulence, Phys. Rev. Lett., Volume 92 (2004) no. 3, 035301 | DOI
[73] Differential approximation for Kelvin Wave Turbulence, JETP Lett., Volume 83 (2006) no. 5, pp. 198-200 | DOI
[74] A plausible model of inflation driven by strong gravitational wave turbulence, Universe, Volume 6 (2020) no. 7, 98 | DOI
[75] Turbulence of weak gravitational waves in the early universe, Phys. Rev. Lett., Volume 119 (2017) no. 22, 221101 | DOI
[76] Direct evidence of a dual cascade in gravitational wave turbulence, Phys. Rev. Lett., Volume 127 (2021) no. 13, 131101 | DOI
[77] Elastic weak turbulence: from the vibrating plate to the drum, Phys. Rev. E, Volume 99 (2019) no. 3, 033002 | DOI
[78] On the derivation of the wave kinetic equation for NLS, Forum Math. Pi, Volume 9 (2021), pp. 1-37 | DOI | Zbl
[79] Full derivation of the wave kinetic equation, Invent. Math., Volume 233 (2023), pp. 543-724 | DOI | Zbl
[80] Discreteness and quasiresonances in weak turbulence of capillary waves, Phys. Rev. E, Volume 63 (2001), 046306 | DOI
[81] Discreteness and resolution effects in rapidly rotating turbulence, Phys. Rev. E, Volume 78 (2008), 056309 | DOI
[82] Wave turbulence: the case of capillary waves, Geophys. Astro. Fluid Dyn., Volume 115 (2021) no. 3, pp. 234-257 | DOI | Zbl
[83] Locality of triadic interaction and Kolmogorov constant in inertial wave turbulence, J. Fluid Mech. Rapids, Volume 955 (2023), R2 | Zbl
[84] Evidence of the Zakharov-Kolmogorov spectrum in numerical simulations of inertial wave turbulence, EPL (Europhysics Letters), Volume 132 (2020) no. 6, 64002 | DOI
[85] Energy-flux vector in anisotropic turbulence: application to rotating turbulence, J. Fluid Mech., Volume 908 (2021), A17 | DOI | Zbl
Cité par Sources :
Commentaires - Politique