[Algorithmes classiques et quantiques pour le problème à N corps]
Le problème à N corps est un problème central pour nombre de domaines comme la physique de la matière condensée ou la chimie, mais aussi celui de l’optimisation combinatoire, qui n’est autre qu’un problème à N corps classique. Ce manuscrit, rédigé dans le cadre d’une Habilitation à Diriger des Recherches, présente les différentes approches algorithmiques, qu’elles soient classiques ou quantiques, pour résoudre ce problème. Nous commenàçons par y passer en revue les principales méthodes classiques et quantiques existantes, avec un accent mis sur leurs succès ainsi que leurs limitations actuelles. En particulier, nousc présentons un état de l’art des méthodes quantiques, en distinguant processeurs parfaits et processeurs bruités. Ensuite, nous présentons des travaux récents permettant de combiner algorithmes classiques et quantiques pour surmonter les limitations inhérentes aux deux paradigmes. En particulier, nous commenàçons par montrer comment les réseaux de tenseurs, souvent utilisés comme outils de référence pour jauger de l’intérêt des méthodes quantiques, peuvent aussi être utilisés pour initialiser un calcul quantique, en plus de le simuler de faàçon réaliste. Nous passons ensuite au cas particulier des problèmes fermioniques. Après avoir décrit une méthode à base d’orbitales naturelles permettant de raccourcir, et donc de fiabiliser, des circuits quantiques pour préparer des états fermioniques, nous exposons une méthode à base de spins esclaves permettant d’utiliser une plateforme d’atomes de Rydberg pour simuler des modèles de fermions sur réseau. Nous montrons enfin comment ces mêmes plateformes de Rydberg peuvent être utilisées pour résoudre des problèmes combinatoires, et comment la décoherence influence la qualité des résultats obtenus. Ceci nous amène à la définition d’une nouvelle métrique d’utilité des processeurs quantiques, le Q-score.
The many-body problem is central to many fields, such as condensed-matter physics and chemistry, but also to combinatorial optimization, which is nothing but a classical many-body problem. This manuscript, written as part of an Habilitation à Diriger des Recherches, presents the various algorithmic approaches, both classical and quantum, to solving this problem. We begin by reviewing the main existing classical and quantum methods, focusing on their successes as well as their current limitations. In particular, we present the state-of-the-art in quantum methods, distinguishing between perfect and noisy processors. We then present recent work on combining classical and quantum algorithms to overcome the limitations inherent to both paradigms. In particular, we begin by showing how tensor networks, often used as reference tools to gauge the interest of quantum methods, can also be used to initialize a quantum computation, in addition to simulating it realistically. We then turn to the special case of fermionic problems. After describing a method based on natural orbitals for shortening, and thus making more reliable, quantum circuits to prepare fermionic states, we present a method based on slave spins for using a platform of Rydberg atoms to simulate lattice models of fermions. Finally, we show how these same Rydberg platforms can be used to solve combinatorial problems, and how decoherence influences the quality of the results obtained. This leads to the definition of a new utility metric for quantum processors, the Q-score.
Accepté le :
Publié le :
Mots-clés : Problème à N corps, Informatique quantique, Algorithmes, Physique de la matière condensée, Méthodes numériques
Thomas Ayral 1
![](/physique/static/ptf/img/CC-BY%204.0.png)
@article{CRPHYS_2025__26_G1_25_0, author = {Thomas Ayral}, title = {Classical and quantum algorithms for many-body problems}, journal = {Comptes Rendus. Physique}, pages = {25--89}, publisher = {Acad\'emie des sciences, Paris}, volume = {26}, year = {2025}, doi = {10.5802/crphys.229}, language = {en}, }
Thomas Ayral. Classical and quantum algorithms for many-body problems. Comptes Rendus. Physique, Volume 26 (2025), pp. 25-89. doi : 10.5802/crphys.229. https://comptes-rendus.academie-sciences.fr/physique/articles/10.5802/crphys.229/
[1] Electron correlations in narrow energy bands, Proc. R. Soc. A: Math. Phys. Eng. Sci., Volume 276 (1963) no. 1365, pp. 238-257 | DOI
[2] Frequency-dependent local interactions and low-energy effective models from electronic structure calculations, Phys. Rev. B, Volume 70 (2004) no. 19, 195104 | DOI
[3] Density matrix renormalization group based downfolding of the three-band Hubbard model: Importance of density-assisted hopping, Phys. Rev. B, Volume 108 (2023) no. 16, L161111 | DOI
[4] Possible high Tc superconductivity in the Ba–La–Cu–O system, Z. Phys. B: Condens. Matter, Volume 64 (1986), pp. 189-193 | DOI
[5] Discussion of the paper by de Boer and Verwey, Proc. Phys. Soc., Volume 49 (1937) no. 4S, pp. 72-73 | DOI
[6] Nobel lecture: electronic structure of matter-wave functions and density functionals, Rev. Mod. Phys., Volume 71 (1999) no. 5, pp. 1253-1266 | DOI
[7] Self-consistent equations including exchange and correlation effects, Phys. Rev., Volume 385 (1965) no. 1951, pp. 1133-1138 | DOI
[8] Perspective: multireference coupled cluster theories of dynamical electron correlation, J. Chem. Phys., Volume 149 (2018) no. 3, 030901 | DOI
[9] The Lanczos method, The LDA+DMFT Approach to Strongly Correlated Materials (E. Pavarini; E. Koch; D. Vollhardt; A. Lichtenstein, eds.), Volume 1, Verlag des Forschungszentrum Jülich, Jülich, 2011 https://www.cond-mat.de/events/correl11/manuscripts/koch.pdf
[10] Sublattice coding algorithm and distributed memory parallelization for large-scale exact diagonalizations of quantum many-body systems, Phys. Rev. E, Volume 98 (2018) no. 3, 033309 | DOI
[11] Introduction to Monte Carlo algorithms, Advances in Computer Simulation (J. Kertesz; I. Kondor, eds.) (Lecture Notes in Physics), Springer Verlag, 1998 | DOI
[12] Computational complexity and fundamental limitations to fermionic quantum Monte Carlo simulations, Phys. Rev. Lett., Volume 94 (2005) no. 17, pp. 1-4 | DOI
[13] Diagrammatic Monte Carlo, Many-Body Methods for Real Materials Modeling and Simulation (E. Pavarini; E. Koch; S. Zhang, eds.), Volume 9, Forschungszentrum Jülich, Jülich, 2019
[14] Determinant diagrammatic Monte Carlo algorithm in the thermodynamic limit, Phys. Rev. Lett., Volume 119 (2017) no. 4, 045701 | DOI
[15] Polynomial complexity despite the fermionic sign, Europhys. Lett., Volume 118 (2017) no. 1, 10004 | DOI
[16] Emergent Phenomena in Correlated Matter, Forschungszentrum Jülich GmbH Zentralbibliothek, Verlag Jülich, Jülich, 2013, 562 pages http://hdl.handle.net/2128/5389
[17] Monte-Carlo solution of Schrödinger’s equation, J. Comput. Phys., Volume 7 (1971) no. 1, pp. 134-156 | DOI
[18] Constrained path Monte Carlo method for fermion ground states, Phys. Rev. B, Volume 55 (1997) no. 12, pp. 7464-7477 | DOI
[19] Fermion Monte Carlo without fixed nodes: a game of life, death, and annihilation in Slater determinant space, J. Chem. Phys., Volume 131 (2009) no. 5, 054106 | DOI
[20] Solving the quantum many-body problem with artificial neural networks, Science, Volume 355 (2017) no. 6325, pp. 602-606 | DOI
[21] Quantum computing for chemistry and physics applications from a Monte Carlo perspective, J. Chem. Phys., Volume 160 (2024), 010901 | DOI
[22] et al. Walking through Hilbert space with quantum computers, preprint, 2024 | arXiv
[23] The density-matrix renormalization group in the age of matrix product states, Ann. Phys., Volume 326 (2011) no. 1, pp. 96-192 | DOI
[24] An area law for one-dimensional quantum systems, J. Stat. Mech.: Theory Exp., Volume 2007 (2007) no. 08, p. P08024-P08024 | DOI
[25] Renormalization algorithms for Quantum-Many Body Systems in two and higher dimensions, preprint, 2004 (p. 1–5) | arXiv
[26] Simulating quantum computation by contracting tensor networks, SIAM J. Comput., Volume 38 (2008) no. 3, pp. 963-981 | DOI
[27] Isometric tensor network states in two dimensions, Phys. Rev. Lett., Volume 124 (2020) no. 3, 037201 | DOI
[28] Tensor networks contraction and the belief propagation algorithm, Phys. Rev. Res., Volume 3 (2021) no. 2, 023073 | DOI
[29] Efficient tensor network simulation of quantum many-body physics on sparse graphs, preprint, 2022 | arXiv
[30] Evolution of entanglement entropy in one-dimensional systems, J. Stat. Mech.: Theory Exp., Volume 2005 (2005) no. 04, p. P04010 | DOI
[31] et al. Solutions of the two-dimensional Hubbard model: benchmarks and results from a wide range of numerical algorithms, Phys. Rev. X, Volume 5 (2015) no. 4, 041041 | DOI
[32] Coexistence of superconductivity with partially filled stripes in the Hubbard model, preprint, 2023 | arXiv
[33] Quantum theory of many-particle systems. I. Physical interpretations by means of density matrices, natural spin-orbitals, and convergence problems in the method of configurational interaction, Phys. Rev., Volume 97 (1955) no. 6, pp. 1474-1489 | DOI
[34] Short-range correlations in nuclear wave functions, Nucl. Phys., Volume 17 (1960) no. C, pp. 477-485 | DOI
[35] Approximate variational coupled cluster theory, J. Chem. Phys., Volume 135 (2011) no. 4, 044113 | DOI
[36] On the difference between variational and unitary coupled cluster theories, J. Chem. Phys., Volume 148 (2018) no. 4, 044107 | DOI
[37] Pair correlation theories, Methods of Electronic Structure Theory (H. F. Schaefer, ed.), Springer US, 1977, pp. 129-182 | DOI
[38] Error analysis and improvements of coupled-cluster theory, Theoret. Chim. Acta, Volume 80 (1991) no. 4–5, pp. 349-386 | DOI
[39] Alternative ansätze in single reference coupled-cluster theory. III. A critical analysis of different methods, J. Chem. Phys., Volume 103 (1995) no. 1, pp. 281-298 | DOI
[40] The coupled cluster method, Microscopic Quantum Many-Body Theories and Their Applications, Springer, Berlin, Heidelberg, 2008, pp. 1-70 | DOI
[41] A complete active space SCF method (CASSCF) using a density matrix formulated super-CI approach, Chem. Phys., Volume 48 (1980) no. 2, pp. 157-173 | DOI
[42] The complete active space self-consistent field method and its applications in electronic structure calculations, Adv. Chem. Phys., Volume 69 (1987), pp. 399-445 | DOI
[43] Iterative perturbation calculations of ground and excited state energies from multiconfigurational zeroth-order wavefunctions, J. Chem. Phys., Volume 58 (1973) no. 12, pp. 5745-5759 | DOI
[44] Quantum chemistry, classical heuristics, and quantum advantage, Faraday Discuss., Volume 254 (2024), pp. 11-52 | DOI
[45] Dynamical mean-field theory of strongly correlated fermion systems and the limit of infinite dimensions, Rev. Mod. Phys., Volume 68 (1996) no. 1, pp. 13-125 | DOI
[46] Quantum computing with and for many-body physics, Eur. Phys. J. A, Volume 59 (2023) no. 10, 227 | DOI
[47] Strongly correlated electron materials: dynamical mean-field theory and electronic structure, AIP Conf. Proc., Volume 715 (2004) no. 1, pp. 3-74 | DOI
[48] Continuous-time Monte Carlo methods for quantum impurity models, Rev. Mod. Phys., Volume 83 (2011) no. 2, pp. 349-404 | DOI
[49] Nonequilibrium dynamical mean-field theory and its applications, Rev. Mod. Phys., Volume 86 (2014) no. 2, pp. 779-837 | DOI
[50] Rotationally invariant slave-boson formalism and momentum dependence of the quasiparticle weight, Phys. Rev. B, Volume 76 (2007) no. 15, 155102 | DOI
[51] Equivalence of Gutzwiller and slave-boson mean-field theories for multiband Hubbard models, Phys. Rev. B, Volume 76 (2007) no. 19, 193104 | DOI
[52] Phase diagram and electronic structure of praseodymium and plutonium, Phys. Rev. X, Volume 5 (2015) no. 1, 011008 | DOI
[53] Dynamical mean-field theory, density-matrix embedding theory, and rotationally invariant slave bosons: A unified perspective, Phys. Rev. B, Volume 96 (2017) no. 23, 235139 | DOI
[54] Pseudogap opening and formation of Fermi arcs as an orbital-selective Mott transition in momentum space, Phys. Rev. B, Volume 80 (2009) no. 6, 064501 | DOI
[55] Density matrix embedding: a simple alternative to dynamical mean-field theory, Phys. Rev. Lett., Volume 109 (2012) no. 18, 186404 | DOI
[56] Quantum Computing with and for Many-Body Physics, 123, Springer, Berlin, Heidelberg, 2023, pp. 1-46 | arXiv
[57] Monte Carlo simulation of stoquastic Hamiltonians, Quantum Inf. Comput., Volume 15 (2015) no. 13–14, pp. 1122-1140 | DOI
[58] Quantum versus classical annealing of Ising spin glasses, Science, Volume 348 (2015) no. 6231, pp. 215-217 | DOI
[59] What is the computational value of finite-range tunneling?, Phys. Rev. X, Volume 6 (2016), 031015 | DOI
[60] Simulating physics with computers, Int. J. Theor. Phys., Volume 21 (1982) no. 6–7, pp. 467-488 | DOI
[61] Many-body physics with ultracold gases, Rev. Mod. Phys., Volume 80 (2008) no. September, 885 | DOI
[62] Many-body physics with individually controlled Rydberg atoms, Nat. Phys., Volume 16 (2020) no. 2, pp. 132-142 | DOI
[63] A Mott insulator of fermionic atoms in an optical lattice, Nature, Volume 455 (2008), pp. 204-207 | DOI
[64] et al. Quantum simulation of 2D antiferromagnets with hundreds of Rydberg atoms, Nature, Volume 595 (2021) no. 7866, pp. 233-238 | DOI
[65] Frustration- and doping-induced magnetism in a Fermi–Hubbard simulator, Nature, Volume 620 (2023) no. 7976, pp. 971-976 | DOI
[66] Algorithms for quantum computation: discrete logarithms and factoring, Proceedings 35th Annual Symposium on Foundations of Computer Science, IEEE Computer Society Press, 1995, pp. 124-134 http://ieeexplore.ieee.org/document/365700 | DOI
[67] A fast quantum mechanical algorithm for database search, Proceedings of the Twenty-Eighth Annual ACM Symposium on Theory of Computing - STOC ’96, ACM Press, 1996, pp. 212-219 | DOI
[68] Scheme for reducing decoherence in quantum computer memory, Phys. Rev. A, Volume 52 (1995) no. 4, pp. 2493-2496 | DOI
[69] Fault-tolerant quantum computation, Proceedings of 37th Conference on Foundations of Computer Science, IEEE Computer Society Press, 1996, pp. 56-65 | DOI
[70] et al. Exponential suppression of bit or phase errors with cyclic error correction, Nature, Volume 595 (2021) no. 7867, pp. 383-387 | DOI
[71] et al. Realizing repeated quantum error correction in a distance-three surface code, Nature, Volume 605 (2022) no. 7911, pp. 669-674 | DOI
[72] et al. Logical quantum processor based on reconfigurable atom arrays, Nature, Volume 626 (2024) no. 7997, pp. 58-65 | DOI
[73] et al. Demonstration of logical qubits and repeated error correction with better-than-physical error rates, preprint, 2024 (p. 1–13) | arXiv
[74] Adiabatic quantum computation, Rev. Mod. Phys., Volume 90 (2018) no. 1, 015002 | DOI
[75] Observing the space- and time-dependent growth of correlations in dynamically tuned synthetic ising models with antiferromagnetic interactions, Phys. Rev. X, Volume 8 (2018) no. 2, 021070 | DOI
[76] Universal quantum simulators, Science, Volume 273 (1996) no. 5278, pp. 1073-1078 | DOI
[77] Theory of trotter error with commutator scaling, Phys. Rev. X, Volume 11 (2021) no. 1, 011020 | DOI
[78] Heisenberg-limited ground state energy estimation for early fault-tolerant quantum computers, Phys. Rev. X Quantum, Volume 3 (2022), 010318 | DOI
[79] Hamiltonian simulation using linear combinations of unitary operations, Quantum Inform. Comput., Volume 12 (2012), pp. 901-924
[80] Optimal Hamiltonian simulation by quantum signal processing, Phys. Rev. Lett., Volume 118 (2017) no. 1, 010501 | DOI
[81] Hamiltonian simulation by qubitization, Quantum, Volume 3 (2019), p. 163 | DOI
[82] Quantum algorithm for simulating real time evolution of lattice Hamiltonians, SIAM J. Comput., Volume 52 (2023) no. 6, pp. 250-284 | DOI
[83] Quantum measurements and the Abelian Stabilizer Problem, preprint, 1995 (p. 1–22) | arXiv
[84] Quantum algorithms revisited, Proc. R. Soc. A: Math. Phys. Eng. Sci., Volume 454 (1998) no. 1969, pp. 339-354 | DOI
[85] Chemistry: simulated quantum computation of molecular energies, Science, Volume 309 (2005) no. 5741, pp. 1704-1707 | DOI
[86] et al. Postponing the orthogonality catastrophe: efficient state preparation for electronic structure simulations on quantum devices, preprint, 2018 (p. 1–13) | arXiv
[87] et al. Evaluating the evidence for exponential quantum advantage in ground-state quantum chemistry, Nat. Commun., Volume 14 (2023) no. 1, 1952 | DOI
[88] Hybrid quantum-classical approach to correlated materials, Phys. Rev. X, Volume 6 (2016) no. 3, 031045 | DOI
[89] Non-linear quantum-classical scheme to simulate non-equilibrium strongly correlated fermionic many-body dynamics, Sci. Rep., Volume 6 (2016) no. 1, 32940 | DOI
[90] Few-qubit quantum-classical simulation of strongly correlated lattice fermions, EPJ Quantum Technol., Volume 3 (2016) no. 1, 11 | DOI
[91] et al. Improved fault-tolerant quantum simulation of condensed-phase correlated electrons via trotterization, Quantum, Volume 4 (2020), 296 | DOI
[92] Surface codes: towards practical large-scale quantum computation, Phys. Rev. A, Volume 86 (2012) no. 3, 032324 | DOI
[93] et al. Phase transition in random circuit sampling, Nature, Volume 634 (2024), pp. 328-333 | DOI
[94] et al. Quantum supremacy using a programmable superconducting processor, Nature, Volume 574 (2019) no. 7779, pp. 505-510 | DOI
[95] A variational eigenvalue solver on a quantum processor, Nat. Commun., Volume 5 (2013) no. 1, 4213 | DOI
[96] et al. The variational quantum eigensolver: a review of methods and best practices, Phys. Rep., Volume 986 (2022), pp. 1-128 | DOI
[97] et al. Self-verifying variational quantum simulation of lattice models, Nature, Volume 569 (2019) no. 7756, pp. 355-360 | DOI
[98] Barren plateaus in quantum neural network training landscapes, Nat. Commun., Volume 9 (2018), 4812 | DOI
[99] et al. A review of barren plateaus in variational quantum computing, preprint, 2024 (p. 1–21) | arXiv
[100] Barren plateaus of alternated disentangled UCC ansatzs, preprint, 2023 (p. 18–21) | arXiv
[101] A unified theory of barren plateaus for deep parametrized quantum circuits, Nat. Commun., Volume 15 (2024), 7172 | DOI
[102] Equivalence of quantum barren plateaus to cost concentration and narrow gorges, Quantum Sci. Technol., Volume 7 (2022) no. 4, 045015 | DOI
[103] An adaptive variational algorithm for exact molecular simulations on a quantum computer, Nat. Commun., Volume 10 (2019) no. 1, 3007 | DOI
[104] qubit-ADAPT-VQE: an adaptive algorithm for constructing hardware-efficient ansatze on a quantum processor, Phys. Rev. X Quantum, Volume 2 (2021), 020310 | DOI
[105] Hardware-efficient variational quantum eigensolver for small molecules and quantum magnets, Nature, Volume 549 (2017) no. 7671, pp. 242-246 | DOI
[106] Progress towards practical quantum variational algorithms, Phys. Rev. A, Volume 92 (2015) no. 4, 042303 | DOI
[107] et al. Scalable quantum simulation of molecular energies, Phys. Rev. X, Volume 6 (2015) no. 3, 031007 | DOI
[108] Application of fermionic marginal constraints to hybrid quantum algorithms, J. Phys., Volume 20 (2018) no. 5, 053020 | DOI
[109] Operator sampling for shot-frugal optimization in variational algorithms, preprint, 2020 (p. 1–11) | arXiv
[110] Two-site dynamical mean-field theory, Phys. Rev. B, Volume 64 (2001) no. 16, 165114 | DOI
[111] et al. Dynamical mean field theory algorithm and experiment on quantum computers, preprint, 2019 (p. 1-10) | arXiv
[112] Minimum hardware requirements for hybrid quantum–classical DMFT, Quantum Sci. Technol., Volume 5 (2020) no. 3, 034015 | DOI
[113] Gutzwiller hybrid quantum-classical computing approach for correlated materials, Phys. Rev. Res., Volume 3 (2021) no. 1, 013184 | DOI
[114] et al. Dynamical mean field theory for real materials on a quantum computer, preprint, 2024 (p. 1–25) | arXiv
[115] et al. Characterizing quantum supremacy in near-term devices, Nat. Phys., Volume 14 (2016) no. 6, pp. 595-600 | DOI
[116] The sum-over-histories formulation of quantum computing, preprint, 2006 | arXiv
[117] Simulating the Sycamore quantum supremacy circuits, preprint, 2021 (p. 1–9) | arXiv
[118] Solving the sampling problem of the Sycamore quantum supremacy circuits, Phys. Rev. Lett., Volume 129 (2022), 090502 | DOI
[119] Hyper-optimized tensor network contraction, Quantum, Volume 5 (2021), pp. 1-22 | DOI
[120] et al. Efficient parallelization of tensor network contraction for simulating quantum computation, Nat. Comput. Sci., Volume 1 (2021) no. 9, pp. 578-587 | DOI
[121] What limits the simulation of quantum computers?, Phys. Rev. X, Volume 10 (2020) no. 4, 041038 | DOI
[122] Efficient classical simulation of slightly entangled quantum computations, Phys. Rev. Lett., Volume 91 (2003) no. 14, 147902 | DOI
[123] Density-matrix renormalization group algorithm for simulating quantum circuits with a finite fidelity, PRX Quantum, Volume 4 (2023) no. 2, 020304 | DOI
[124] A quantum approximate optimization algorithm, preprint, 2014 | arXiv
[125] Efficient classical simulation of noisy random quantum circuits in one dimension, Quantum, Volume 4 (2020), p. 318 | DOI
[126] Enabling large-depth simulation of noisy quantum circuits with positive tensor networks, preprint, 2024 (p. 1–17) | arXiv
[127] Simulating noisy quantum circuits with matrix product density operators, Phys. Rev. Res., Volume 3 (2021) no. 2, 023005 | DOI
[128] Quantum divide and compute: Hardware demonstrations and noisy simulations, Proceedings of IEEE Computer Society Annual Symposium on VLSI, ISVLSI, 2020, pp. 138-140 | DOI
[129] Quantum divide and compute: exploring the effect of different noise sources, SN Comput. Sci., Volume 2 (2021) no. 3, 132 | DOI
[130] et al. How to build a quantum supercomputer: scaling challenges and opportunities, preprint, 2024 | arXiv
[131] Combining matrix product states and noisy quantum computers for quantum simulation, Phys. Rev. A, Volume 109 (2024) no. 6, 062437 | DOI
[132] Real- and imaginary-time evolution with compressed quantum circuits, PRX Quantum, Volume 2 (2021) no. 1, 010342 | DOI
[133] Preparing projected entangled pair states on a quantum computer, Phys. Rev. Lett., Volume 108 (2012) no. 11, 110502 | DOI
[134] Preparing topological projected entangled pair states on a quantum computer, Phys. Rev. A, Volume 88 (2013) no. 3, 032321 | DOI
[135] et al. Strong quantum computational advantage using a superconducting quantum processor, Phys. Rev. Lett., Volume 127 (2021) no. 18, 180501 | DOI
[136] et al. Evidence for the utility of quantum computing before fault tolerance, Nature, Volume 618 (2023) no. 7965, pp. 500-505 | DOI
[137] Efficient tensor network simulation of IBM’s eagle kicked ising experiment, PRX Quantum, Volume 5 (2024) no. 1, 010308 | DOI
[138] Fast and converged classical simulations of evidence for the utility of quantum computing before fault tolerance, Sci. Adv., Volume 10 (2024) no. 3, pp. 1-4 | DOI
[139] Effective quantum volume, fidelity and computational cost of noisy quantum processing experiments, Future Gener. Comput. Syst., Volume 153 (2024), pp. 431-441 | DOI
[140] Dissipative mean-field theory of IBM utility experiment, Volume 1 (2023), pp. 1-4 | arXiv
[141] Unraveling correlated material properties with noisy quantum computers: Natural orbitalized variational quantum eigensolving of extended impurity models within a slave-boson approach, Phys. Rev. B, Volume 105 (2022) no. 11, 115108 | DOI
[142] Compact fermionic quantum state preparation with a natural-orbitalizing variational quantum eigensolving scheme, preprint, 2024 (p. 1–15) | arXiv
[143] Quantum simulation of electronic structure with linear depth and connectivity, Phys. Rev. Lett., Volume 120 (2018) no. 11, 110501 | DOI
[144] Efficient real-frequency solver for dynamical mean-field theory, Phys. Rev. B, Volume 90 (2014) no. 8, 085102 | DOI
[145] Natural-orbital impurity solver and projection approach for Green’s functions, Phys. Rev. B, Volume 100 (2019) no. 11, 115134 | DOI
[146] Anderson impurity solver integrating tensor network methods with quantum computing, preprint, 2023 (p. 1–8) | arXiv
[147] Operator locality in the quantum simulation of fermionic models, Phys. Rev. A, Volume 95 (2017) no. 3, 032332 | DOI
[148] Mapping local Hamiltonians of fermions to local Hamiltonians of spins, J. Stat. Mech.: Theory Exp., Volume 2005 (2005) no. 09, p. P09012-P09012 | DOI
[149] Hubbard physics with Rydberg atoms: Using a quantum spin simulator to simulate strong fermionic correlations, Phys. Rev. B, Volume 109 (2024) no. 17, 174409 | DOI
[150] Orbital-selective Mott transition in multiband systems: Slave-spin representation and dynamical mean-field theory, Phys. Rev. B, Volume 72 (2005) no. 20, 205124 | DOI
[151] Z2-slave-spin theory for strongly correlated fermions, Phys. Rev. B, Volume 81 (2010) no. 15, 155118 | DOI
[152] Modeling many-body physics with Slave-Spin mean-field: Mott and Hund’s physics in Fe-superconductors, The Iron Pnictide Superconductors (Springer Series in Solid-State Sciences), Springer, 2017, pp. 115-185 | DOI
[153] Quantum quenches in the Hubbard model: time-dependent mean-field theory and the role of quantum fluctuations, Phys. Rev. B, Volume 83 (2011) no. 16, pp. 1-19 | DOI
[154] Linear ramps of interaction in the fermionic hubbard model, Phys. Rev. B, Volume 86 (2012), 075122 | DOI
[155] Slave spins away from half filling: cluster mean-field theory of the Hubbard and extended Hubbard models, Phys. Rev. B, Volume 81 (2010) no. 3, 035106 | DOI
[156] Solving optimization problems with Rydberg analog quantum computers: realistic requirements for quantum advantage using noisy simulation and classical benchmarks, Phys. Rev. A, Volume 102 (2020) no. 5, 052617 | DOI
[157] Finite correlation length scaling in lorentz-invariant gapless iPEPS wave functions, Phys. Rev. X, Volume 8 (2018) no. 3, 31030 | DOI
[158] On the feasibility of performing quantum chemistry calculations on quantum computers, preprint, 2023 | arXiv
[159] Variational wave functions and their overlap with the ground state, Phys. Rev. Lett., Volume 99 (2007) no. 3, 030403 | DOI
[160] et al. Variational benchmarks for quantum many-body problems, Science, Volume 386 (2024), pp. 296-301 | DOI
[161] et al. Quantum optimization: potential, challenges, and the path forward, Nat. Rev. Phys., Volume 6 (2024), 718 | DOI
[162] On the computational complexity of ising spin glass models, J. Phys. A: Math. General, Volume 15 (1982) no. 10, pp. 3241-3253 | DOI
[163] Classical and Quantum Computation, American Mathematical Society, Providence, RI, 2002
[164] Adiabatic quantum state generation and statistical zero knowledge, Proceedings of the Thirty-Fifth Annual ACM Symposium on Theory of Computing, ACM, 2003, pp. 20-29 | DOI
[165] Quantum optimization for maximum independent set using Rydberg atom arrays, preprint, 2018 | arXiv
[166] Quantum optimization with arbitrary connectivity using Rydberg atom arrays, PRX Quantum, Volume 4 (2023) no. 1, pp. 1-19 | DOI
[167] Exploring the impact of graph locality for the resolution of the maximum-independent-set problem with neutral atom devices, Phys. Rev. A, Volume 108 (2023) no. 5, 052423 | DOI
[168] Benchmarking quantum coprocessors in an application-centric, hardware-agnostic, and scalable way, IEEE Trans. Quantum Eng., Volume 2 (2021), pp. 1-11 | DOI
[169] Characterizing quantum gates via randomized benchmarking, Phys. Rev. A, Volume 85 (2012) no. 4, 042311 | DOI
[170] Scalable and robust randomized benchmarking of quantum processes, Phys. Rev. Lett., Volume 106 (2011) no. 18, 180504 | DOI
[171] Evaluating the Q-score of quantum annealers, 2022 IEEE International Conference on Quantum Software (QSW), IEEE, 2022, pp. 9-16 | DOI
[172] Efficient protocol for solving combinatorial graph problems on neutral-atom quantum processors, preprint, 2022 | arXiv
[173] Simulating many-body systems with a projective quantum eigensolver, PRX Quantum, Volume 2 (2021) no. 3, 030301 | DOI
[174] et al. Chemistry beyond exact solutions on a quantum-centric supercomputer, preprint, 2024 | arXiv
[175] Unbiasing fermionic quantum Monte Carlo with a quantum computer, Nature, Volume 603 (2022) no. 7901, pp. 416-420 | DOI
[176] Quantum computing quantum Monte Carlo, preprint, 2022 (p. 1–7) | arXiv
Cité par Sources :
Commentaires - Politique