Comptes Rendus
Intervention en colloque
Interlayer phase coherence and composite fermions
[Cohérence de phase entre bicouche et fermions composites]
Comptes Rendus. Physique, Volume 26 (2025), pp. 113-124.

Cet article fait partie du numéro thématique Questions ouvertes dans le problème quantique à N corps coordonné par Yvan Castin et al..

L’effet Hall quantique fractionnaire (FQHE) réalisé dans les systèmes électroniques bidimensionnels s’explique par l’émergence de fermions composites (CF) à partir d’électrons ordinaires. Il est possible d’écrire des fonctions d’onde explicites expliquant de nombreux, voire tous les états de l’effet Hall quantique fractionnaire. Dans les systèmes formés de bicouches, il existe un régime de remplissage entier du niveau de Landau le plus bas qui présente une brisure spontanée de la phase relative U(1) entre les deux couches. Cela peut être considéré comme une cohérence de phase entre les couches (ILC) en termes d’électrons. Des expériences récentes dans des échantillons à double couche de graphène ont révélé l’apparition de nombreux états FQHE propres au cas bicouche. Nous discutons des extensions de l’idée de CF dans cette situation ainsi que de l’existence possible d’ILC de CFs.

The fractional quantum Hall effect (FQHE) realized in two-dimensional electron systems is explained by the emergent composite fermions (CF) out of ordinary electrons. It is possible to write down explicit wavefunctions explaining many if not all FQHE states. In bilayer systems there is a regime at integer filling of the lowest Landau level that displays a spontaneous breakdown of the U(1) relative phase between the two layers. This can be seen as interlayer phase coherence (ILC) in terms of electrons. Recent experiments in double layer samples of graphene have revealed the appearance of many FQHE states unique to the bilayer case. We discuss extensions of the CF idea in this situation as well as the possible existence of ILC of CFs.

Reçu le :
Révisé le :
Accepté le :
Publié le :
DOI : 10.5802/crphys.232
Keywords: Quantum Hall effect, Composite fermions, Interlayer phase coherence, Bilayer graphene
Mots-clés : Effet Hall quantique, Fermions composites, Coherence entre couches, Bicouche de graphene

Thierry Jolicoeur 1

1 Paris-Saclay University, CNRS, CEA, IPhT, France
Licence : CC-BY 4.0
Droits d'auteur : Les auteurs conservent leurs droits
@article{CRPHYS_2025__26_G1_113_0,
     author = {Thierry Jolicoeur},
     title = {Interlayer phase coherence and composite fermions},
     journal = {Comptes Rendus. Physique},
     pages = {113--124},
     publisher = {Acad\'emie des sciences, Paris},
     volume = {26},
     year = {2025},
     doi = {10.5802/crphys.232},
     language = {en},
}
TY  - JOUR
AU  - Thierry Jolicoeur
TI  - Interlayer phase coherence and composite fermions
JO  - Comptes Rendus. Physique
PY  - 2025
SP  - 113
EP  - 124
VL  - 26
PB  - Académie des sciences, Paris
DO  - 10.5802/crphys.232
LA  - en
ID  - CRPHYS_2025__26_G1_113_0
ER  - 
%0 Journal Article
%A Thierry Jolicoeur
%T Interlayer phase coherence and composite fermions
%J Comptes Rendus. Physique
%D 2025
%P 113-124
%V 26
%I Académie des sciences, Paris
%R 10.5802/crphys.232
%G en
%F CRPHYS_2025__26_G1_113_0
Thierry Jolicoeur. Interlayer phase coherence and composite fermions. Comptes Rendus. Physique, Volume 26 (2025), pp. 113-124. doi : 10.5802/crphys.232. https://comptes-rendus.academie-sciences.fr/physique/articles/10.5802/crphys.232/

[1] D. C. Tsui; H. L. Stormer; A. C. Gossard Two-dimensional magnetotransport in the extreme quantum limit, Phys. Rev. Lett., Volume 48 (1982) no. 22, 1559 | DOI

[2] R. B. Laughlin Anomalous quantum Hall effect: an incompressible quantum fluid with fractionally charged excitations, Phys. Rev. Lett., Volume 50 (1983) no. 18, 1395 | DOI

[3] J. K. Jain Composite Fermions, Cambridge University Press, Cambridge, 2007 | DOI

[4] G. A. Csathy; J. K. Jain Next-level composite fermions, Nat. Phys., Volume 15 (2019), pp. 883-884 | DOI

[5] V. W. Scarola; J. K. Jain Phase diagram of bilayer composite fermion states, Phys. Rev. B, Volume 64 (2001), 085313 | DOI

[6] J. K. Jain; R. K. Kamilla Quantitative study of large composite-fermion systems, Phys. Rev. B, Volume 55 (1997), p. R4895-R4898 | DOI

[7] S. Das Sarma; A. Pinczuk Perspectives in Quantum Hall Effects: Novel Quantum Liquids in Low-Dimensional Semiconductor Structures, Wiley, New Jersey, 2008

[8] O. Heinonen Composite Fermions: A Unified View of the Quantum Hall Regime, World Scientific, Singapore, 1998 | DOI

[9] R. E. Prange; S. M. Girvin The Quantum Hall Effect, Springer New York, New York, 1989 | DOI

[10] B. I. Halperin Theory of the quantized Hall conductance, Helv. Phys. Acta, Volume 56 (1983) no. 1–3, pp. 75-102

[11] G. Moore; N. Read NonAbelions in the fractional quantum Hall effect, Nucl. Phys. B, Volume 360 (1991), pp. 362-396 | DOI

[12] J. P. Eisenstein Exciton condensation in bilayer quantum Hall systems, Annu. Rev. Condens. Matter Phys., Volume 5 (2014), pp. 159-181 | DOI

[13] X. Liu; Z. Hao; K. Watanabe; T. Taniguchi; B. I. Halperin; P. Kim Interlayer fractional quantum Hall effect in a coupled graphene double layer, Nat. Phys., Volume 15 (2019), pp. 893-897 | DOI

[14] J. I. A. Li; Q. Shi; Y. Zeng; K. Watanabe; T. Taniguchi; J. Hone; C. R. Dean Pairing states of composite fermions in double-layer graphene, Nat. Phys., Volume 15 (2019), pp. 898-903 | DOI

[15] Y. W. Suen; L. W. Engel; M. B. Santos; M. Shayegan; D. C. Tsui Observation of a ν = 1/2 fractional quantum Hall state in a double-layer electron system, Phys. Rev. Lett., Volume 68 (1992), pp. 1379-1382 | DOI

[16] J. P. Eisenstein; G. S. Boebinger; L. N. Pfeiffer; K. W. West; S. He New fractional quantum Hall state in double-layer two-dimensional electron systems, Phys. Rev. Lett., Volume 68 (1992), pp. 1383-1386 | DOI

[17] W. N. Faugno; A. C. Balram; A. Wójs; J. K. Jain Theoretical phase diagram of two-component composite fermions in double-layer graphene, Phys. Rev. B, Volume 101 (2020), 085412 | DOI

[18] H. C. Manoharan; Y. W. Suen; M. B. Santos; M. Shayegan Evidence for a bilayer quantum Wigner solid, Phys. Rev. Lett., Volume 77 (1996), pp. 1813-1816 | DOI

[19] M. Shayegan; H. C. Manoharan; Y. W. Suen; T. S. Lay; M. B. Santos Correlated bilayer electron states, Semicond. Sci. Technol., Volume 11 (1996), pp. 1539-1545 | DOI

[20] K. Huang; H. Fu; D. R. Hickey; N. Alem; X. Lin; K. Watanabe; T. Taniguchi; J. Zhu Valley isospin controlled fractional quantum Hall states in bilayer graphene, Phys. Rev. X, Volume 12 (2022), 031019 | DOI

Cité par Sources :

Commentaires - Politique