Comptes Rendus
Article de synthèse
Resonant analogue configurations in atomic condensates
[Configurations analogues résonantes dans les condensats atomiques]
Comptes Rendus. Physique, Online first (2024), pp. 1-63.

En guise de contribution à ce volume commémoratif, nous proposons une discussion approfondie des configurations résonnantes en gravité analogue, en nous concentrant sur leur mise en œuvre dans les condensats atomiques et en combinant une revue de la littérature avec des analyses et des calculs originaux. En particulier, nous analysons conjointement les analogues des effets Andreev et Hawking en utilisant une description microscopique basée sur l’approximation de Bogoliubov. Nous réalisons une étude détaillée de la thermalité des spectres d’Andreev et de Hawking pour les solutions canoniques de trous noirs, en constatant que les deux peuvent être décrits par une distribution de corps gris avec une très bonne approximation. Nous envisageons plusieurs scénarios résonants dont l’efficacité pour améliorer les processus de diffusion anormaux est comparée à celle de configurations non résonantes. La présence de signatures quantiques dans les configurations analogues, telles que la violation des inégalités de Cauchy–Schwarz ou l’intrication, est analysée. Nous observons que les configurations résonantes augmentent fortement le signal d’intrication, en particulier pour l’effet Andreev. Nous discutons également de la façon dont ces résultats ont servi d’inspiration pour le domaine en pleine expansion de l’information quantique dans les collisionneurs de haute énergie. Enfin, nous étudions la physique des lasers à trous noirs comme autres exemples de structures analogues résonantes, en distinguant trois étapes dans leur évolution temporelle. Pour les temps courts, nous calculons le spectre linéaire et non linéaire pour différents modèles. Pour les temps intermédiaires, nous généralisons l’analyse actuelle du croisement BHL–BCL. Pour les temps longs, nous discutons du concept émergent d’état de Floquet spontané et de ses implications potentielles.

As a contribution to a memorial volume, we provide a comprehensive discussion of resonant configurations in analogue gravity, focusing on its implementation in atomic condensates and combining review features with original insights and calculations. In particular, we jointly analyze the analogues of the Andreev and Hawking effects using a microscopic description based on the Bogoliubov approximation. We perform a detailed study of the thermality of the Andreev and Hawking spectra for canonical black-hole solutions, finding that both can be described by a gray-body distribution to a very good approximation. We contemplate several resonant scenarios whose efficiency to enhance anomalous scattering processes is compared to that of non-resonant setups. The presence of quantum signatures in analogue configurations, such as the violation of Cauchy–Schwarz inequalities or entanglement, is analyzed, observing that resonant configurations highly increase the entanglement signal, especially for the Andreev effect. We also discuss how these results have served as inspiration for the rapidly expanding field of quantum information in high-energy colliders. Finally, we study the physics of black-hole lasers as further examples of resonant analogue structures, distinguishing three stages in its time evolution. For short times, we compute the linear and non-linear spectrum for different models. For intermediate times, we generalize the current analysis of the BHL–BCL crossover. For long times, we discuss the emerging concept of spontaneous Floquet state and its potential implications.

Reçu le :
Révisé le :
Accepté le :
Première publication :
DOI : 10.5802/crphys.212
Keywords: Analog gravity, Quantum gases, Andreev processes, Quantum information, High-energy colliders, Time-crystals
Mots-clés : Gravité analogique, Gaz quantiques, Processus d’Andreev, Information quantique, Collisionneurs à haute énergie, Cristaux temporels

Juan Ramón Muñoz de Nova 1 ; Pablo Fernández Palacios 2 ; Pedro  Alcázar Guerrero 3, 4 ; Ivar Zapata 5 ; Fernando Sols 1

1 Departamento de Física de Materiales, Universidad Complutense de Madrid, 28040 Madrid, Spain
2 Instituto de Energía Solar, Universidad Politécnica de Madrid, 28040 Madrid, Spain
3 Catalan Institute of Nanoscience and Nanotechnology (ICN2), CSIC and BIST, Campus UAB, Bellaterra, 08193 Barcelona, Spain
4 Department of Physics, Campus UAB, Bellaterra, 08193 Barcelona, Spain
5 mrHouston Tech Solutions, 28002 Madrid, Spain
Licence : CC-BY 4.0
Droits d'auteur : Les auteurs conservent leurs droits
@article{CRPHYS_2024__25_S2_A11_0,
     author = {Juan Ram\'on Mu\~noz de Nova and Pablo Fern\'andez Palacios and Pedro~ Alc\'azar~Guerrero and Ivar Zapata and Fernando Sols},
     title = {Resonant analogue configurations in atomic condensates},
     journal = {Comptes Rendus. Physique},
     publisher = {Acad\'emie des sciences, Paris},
     year = {2024},
     doi = {10.5802/crphys.212},
     language = {en},
     note = {Online first},
}
TY  - JOUR
AU  - Juan Ramón Muñoz de Nova
AU  - Pablo Fernández Palacios
AU  - Pedro  Alcázar Guerrero
AU  - Ivar Zapata
AU  - Fernando Sols
TI  - Resonant analogue configurations in atomic condensates
JO  - Comptes Rendus. Physique
PY  - 2024
PB  - Académie des sciences, Paris
N1  - Online first
DO  - 10.5802/crphys.212
LA  - en
ID  - CRPHYS_2024__25_S2_A11_0
ER  - 
%0 Journal Article
%A Juan Ramón Muñoz de Nova
%A Pablo Fernández Palacios
%A Pedro  Alcázar Guerrero
%A Ivar Zapata
%A Fernando Sols
%T Resonant analogue configurations in atomic condensates
%J Comptes Rendus. Physique
%D 2024
%I Académie des sciences, Paris
%Z Online first
%R 10.5802/crphys.212
%G en
%F CRPHYS_2024__25_S2_A11_0
Juan Ramón Muñoz de Nova; Pablo Fernández Palacios; Pedro  Alcázar Guerrero; Ivar Zapata; Fernando Sols. Resonant analogue configurations in atomic condensates. Comptes Rendus. Physique, Online first (2024), pp. 1-63. doi : 10.5802/crphys.212.

[1] S. W. Hawking Black hole explosions?, Nature, Volume 248 (1974), pp. 30-31 | DOI

[2] W. G. Unruh Experimental black-hole evaporation?, Phys. Rev. Lett., Volume 46 (1981) no. 21, pp. 1351-1353 | DOI

[3] L. J. Garay; J. R. Anglin; J. I. Cirac; P. Zoller Sonic analog of gravitational black holes in Bose–Einstein condensates, Phys. Rev. Lett., Volume 85 (2000) no. 22, pp. 4643-4647 | DOI

[4] O. Lahav; A. Itah; A. Blumkin; C. Gordon; S. Rinott; A. Zayats; J. Steinhauer Realization of a sonic black hole analog in a Bose–Einstein condensate, Phys. Rev. Lett., Volume 105 (2010) no. 24, 240401 | DOI

[5] R. Schützhold; W. G. Unruh Gravity wave analogues of black holes, Phys. Rev. D, Volume 66 (2002), 044019 | DOI

[6] S. Weinfurtner; E. W. Tedford; M. C. J. Penrice; W. G. Unruh; G. A. Lawrence Measurement of stimulated Hawking emission in an analogue system, Phys. Rev. Lett., Volume 106 (2011), 021302 | DOI

[7] T. G. Philbin; C. Kuklewicz; S. Robertson; S. Hill; F. Konig; U. Leonhardt Fiber-optical analog of the event horizon, Science, Volume 319 (2008) no. 5868, pp. 1367-1370 | DOI

[8] J. Drori; Y. Rosenberg; D. Bermudez; Y. Silberberg; U. Leonhardt Observation of stimulated hawking radiation in an optical analogue, Phys. Rev. Lett., Volume 122 (2019), 010404 | DOI

[9] B. Horstmann; B. Reznik; S. Fagnocchi; J. I. Cirac Hawking radiation from an acoustic black hole on an ion ring, Phys. Rev. Lett., Volume 104 (2010) no. 25, 250403 | DOI

[10] M. Wittemer; F. Hakelberg; P. Kiefer; J.-P. Schröder; C. Fey; R. Schützhold; U. Warring; T. Schaetz Phonon pair creation by inflating quantum fluctuations in an ion trap, Phys. Rev. Lett., Volume 123 (2019), 180502 | DOI

[11] I. Carusotto; C. Ciuti Quantum fluids of light, Rev. Mod. Phys., Volume 85 (2013), pp. 299-366 | DOI

[12] H. S. Nguyen; D. Gerace; I. Carusotto et al. Acoustic black hole in a stationary hydrodynamic flow of microcavity polaritons, Phys. Rev. Lett., Volume 114 (2015), 036402 | DOI

[13] Y.-H. Shi; R.-Q. Yang; Z. Xiang et al. Quantum simulation of Hawking radiation and curved spacetime with a superconducting on-chip black hole, Nat. Commun., Volume 14 (2023) no. 1, 3263 | DOI

[14] L.-P. Euvé; F. Michel; R. Parentani; T. G. Philbin; G. Rousseaux Observation of noise correlated by the hawking effect in a water tank, Phys. Rev. Lett., Volume 117 (2016), 121301 | DOI

[15] C. Viermann; M. Sparn; N. Liebster et al. Quantum field simulator for dynamics in curved spacetime, Nature, Volume 611 (2022) no. 7935, pp. 260-264 | DOI

[16] U. Leonhardt; T. Kiss; P. Öhberg Bogoliubov theory of the Hawking effect in Bose–Einstein condensates, J. Opt. B: Quantum Semiclass. Opt., Volume 5 (2003) no. 2, S42 | DOI

[17] R. Balbinot; A. Fabbri; S. Fagnocchi; A. Recati; I. Carusotto Nonlocal density correlations as a signature of Hawking radiation from acoustic black holes, Phys. Rev. A, Volume 78 (2008), 21603 | DOI

[18] I. Carusotto; S. Fagnocchi; A. Recati; R. Balbinot; A. Fabbri Numerical observation of Hawking radiation from acoustic black holes in atomic Bose–Einstein condensates, New J. Phys., Volume 10 (2008) no. 10, 103001 | DOI

[19] J. Macher; R. Parentani Black-hole radiation in Bose–Einstein condensates, Phys. Rev. A, Volume 80 (2009) no. 4, 43601 | DOI

[20] A. Recati; N. Pavloff; I. Carusotto Bogoliubov theory of acoustic Hawking radiation in Bose–Einstein condensates, Phys. Rev. A, Volume 80 (2009) no. 4, 43603 | DOI

[21] I. Zapata; M. Albert; R. Parentani; F. Sols Resonant Hawking radiation in Bose–Einstein condensates, New J. Phys., Volume 13 (2011) no. 6, 63048 | DOI

[22] P.-É. Larré; A. Recati; I. Carusotto; N. Pavloff Quantum fluctuations around black hole horizons in Bose–Einstein condensates, Phys. Rev. A, Volume 85 (2012), 13621 | DOI

[23] J. R. M. de Nova; F. Sols; I. Zapata Violation of Cauchy-Schwarz inequalities by spontaneous Hawking radiation in resonant boson structures, Phys. Rev. A, Volume 89 (2014), 043808 | DOI

[24] S. Finazzi; I. Carusotto Entangled phonons in atomic Bose–Einstein condensates, Phys. Rev. A, Volume 90 (2014), 033607 | DOI

[25] X. Busch; R. Parentani Quantum entanglement in analogue Hawking radiation: When is the final state nonseparable?, Phys. Rev. D, Volume 89 (2014), 105024 | DOI

[26] J. R. M. de Nova; F. Sols; I. Zapata Entanglement and violation of classical inequalities in the Hawking radiation of flowing atom condensates, New J. Phys., Volume 17 (2015) no. 10, 105003 | DOI

[27] F. Michel; R. Parentani; R. Zegers No-hair theorems for analogue black holes, Phys. Rev. D, Volume 93 (2016), 065039 | DOI

[28] I. Shammass; S. Rinott; A. Berkovitz; R. Schley; J. Steinhauer Phonon dispersion relation of an atomic Bose–Einstein condensate, Phys. Rev. Lett., Volume 109 (2012), 195301 | DOI

[29] R. Schley; A. Berkovitz; S. Rinott; I. Shammass; A. Blumkin; J. Steinhauer Planck distribution of phonons in a Bose–Einstein condensate, Phys. Rev. Lett., Volume 111 (2013), 055301 | DOI

[30] J. Steinhauer Observation of self-amplifying Hawking radiation in an analog black hole laser, Nat. Phys., Volume 10 (2014), pp. 864-869 | DOI

[31] J. Steinhauer Observation of quantum Hawking radiation and its entanglement in an analogue black hole, Nat. Phys., Volume 12 (2016), pp. 959-965 | DOI

[32] J. R. M. de Nova; K. Golubkov; V. I. Kolobov; J. Steinhauer Observation of thermal Hawking radiation and its temperature in an analogue black hole, Nature, Volume 569 (2019), pp. 688-691 | DOI

[33] V. I. Kolobov; K. Golubkov; J. R. M. de Nova; J. Steinhauer Observation of stationary spontaneous Hawking radiation and the time evolution of an analogue black hole, Nat. Phys., Volume 17 (2021) no. 3, pp. 362-367 | DOI

[34] J.-C. Jaskula; G. B. Partridge; M. Bonneau; R. Lopes; J. Ruaudel; D. Boiron; C. I. Westbrook Acoustic analog to the dynamical casimir effect in a Bose–Einstein condensate, Phys. Rev. Lett., Volume 109 (2012), 220401 | DOI

[35] C.-L. Hung; V. Gurarie; C. Chin From cosmology to cold atoms: observation of Sakharov oscillations in a quenched atomic superfluid, Science, Volume 341 (2013) no. 6151, pp. 1213-1215 | DOI

[36] T. Torres; S. Patrick; A. Coutant; M. Richartz; E. W. Tedford; S. Weinfurtner Rotational superradiant scattering in a vortex flow, Nat. Phys., Volume 13 (2017) no. 9, pp. 833-836 | DOI

[37] S. Eckel; A. Kumar; T. Jacobson; I. B. Spielman; G. K. Campbell A rapidly expanding Bose–Einstein condensate: an expanding Universe in the Lab, Phys. Rev. X, Volume 8 (2018), 021021 | DOI

[38] J. Hu; L. Feng; Z. Zhang; C. Chin Quantum simulation of Unruh radiation, Nat. Phys., Volume 15 (2019) no. 8, pp. 785-789 | DOI

[39] T. Torres; S. Patrick; M. Richartz; S. Weinfurtner Quasinormal mode oscillations in an analogue black hole experiment, Phys. Rev. Lett., Volume 125 (2020), 011301 | DOI

[40] S. Patrick; H. Goodhew; C. Gooding; S. Weinfurtner Backreaction in an analogue black hole experiment, Phys. Rev. Lett., Volume 126 (2021), 041105 | DOI

[41] J. Steinhauer; M. Abuzarli; T. Aladjidi et al. Analogue cosmological particle creation in an ultracold quantum fluid of light, Nat. Commun., Volume 13 (2022) no. 1, 2890 | DOI

[42] I. Zapata; F. Sols Andreev reflection in bosonic condensates, Phys. Rev. Lett., Volume 102 (2009) no. 18, 180405 | DOI

[43] A. F. Andreev The thermal conductivity of the intermediate state in superconductors, Sov. Phys. JETP, Volume 19 (1964) no. 5, pp. 1823-1828

[44] S. I. Bozhko; V. S. Tsoi; S. E. Yakovlev Observation of Andreev reflection with the help of transverse electron focusing, JETP Lett., Volume 36 (1982) no. 4, pp. 123-126

[45] P. A. M. Benistant; H. van Kempen; P. Wyder Direct observation of andreev reflection, Phys. Rev. Lett., Volume 51 (1983), pp. 817-820 | DOI

[46] M. P. Enrico; S. N. Fisher; A. M. Guénault; G. R. Pickett; K. Torizuka Direct observation of the Andreev reflection of a beam of excitations in superfluid 3 B, Phys. Rev. Lett., Volume 70 (1993), pp. 1846-1849 | DOI

[47] T. Okuda; H. Ikegami; H. Akimoto; H. Ishimoto Direct observation of quantum Andreev reflection at free surface of superfluid 3 He, Phys. Rev. Lett., Volume 80 (1998), pp. 2857-2860 | DOI

[48] S. Corley; T. Jacobson Black hole lasers, Phys. Rev. D, Volume 59 (1999), 124011 | DOI

[49] J. Macher; R. Parentani Black/white hole radiation from dispersive theories, Phys. Rev. D, Volume 79 (2009) no. 12, 124008 | DOI

[50] E. Prada; F. Sols Divergent beams of nonlocally entangled electrons emitted from hybrid normal-superconducting structures, New J. Phys., Volume 7 (2005) no. 1, 231 | DOI

[51] J. R. M. de Nova; D. Guéry-Odelin; F. Sols; I. Zapata Birth of a quasi-stationary black hole in an outcoupled Bose–Einstein condensate, New J. Phys., Volume 16 (2014) no. 12, 123033 | DOI

[52] J. R. M. de Nova; F. Sols; I. Zapata Quantum transport in the black-hole configuration of an atom condensate outcoupled through an optical lattice, Ann. Phys., Volume 529 (2017), 1600385 | DOI

[53] D. F. Walls; G. J. Milburn Quantum Optics, SpringerLink: Springer e-Books, Springer, 2008

[54] W. Unruh Entanglement in Unruh, Hawking, and Cherenkov radiation from a quantum optical perspective, Phys. Rev. Res., Volume 4 (2022), 033010 | DOI

[55] R. Simon Peres-Horodecki separability criterion for continuous variable systems, Phys. Rev. Lett., Volume 84 (2000), pp. 2726-2729 | DOI

[56] Y. Afik; J. R. M. de Nova Entanglement and quantum tomography with top quarks at the LHC, Eur. Phys. J. Plus, Volume 136 (2021) no. 9, 907 | DOI

[57] ATLAS Collaboration Observation of quantum entanglement in top-quark pairs using the ATLAS detector, Nature, Volume 633 (2024), 542

[58] CMS Collaboration Observation of quantum entanglement in top quark pair production in proton-proton collisions at s=13 TeV, Rep. Prog. Phys., Volume 87 (2024), 117801

[59] Y. Afik; J. R. M. de Nova Quantum information with top quarks in QCD, Quantum, Volume 6 (2022), 820 | DOI

[60] U. Leonhardt; T. Kiss; P. Öhberg Theory of elementary excitations in unstable Bose–Einstein condensates and the instability of sonic horizons, Phys. Rev. A, Volume 67 (2003) no. 3, 33602 | DOI

[61] C. Barceló; A. Cano; L. J. Garay; G. Jannes Stability analysis of sonic horizons in Bose–Einstein condensates, Phys. Rev. D, Volume 74 (2006), 024008 | DOI

[62] P. Jain; A. S. Bradley; C. Gardiner Quantum de Laval nozzle: stability and quantum dynamics of sonic horizons in a toroidally trapped Bose gas containing a superflow, Phys. Rev. A, Volume 76 (2007) no. 2, 23617 | DOI

[63] A. Coutant; R. Parentani Black hole lasers, a mode analysis, Phys. Rev. D, Volume 81 (2010), 84042 | DOI

[64] S. Finazzi; R. Parentani Black hole lasers in Bose–Einstein condensates, New J. Phys., Volume 12 (2010) no. 9, 095015 | DOI

[65] D. Bermúdez; U. Leonhardt Resonant Hawking radiation as an instability, Class. Quantum Gravity, Volume 36 (2018) no. 2, 024001 | DOI

[66] R. Bürkle; A. Gaidoukov; J. R. Anglin Quasi-steady radiation of sound from turbulent sonic ergoregions, New J. Phys., Volume 20 (2018) no. 8, 083020 | DOI

[67] D. Faccio; T. Arane; M. Lamperti; U. Leonhardt Optical black hole lasers, Class. Quantum Gravity, Volume 29 (2012) no. 22, 224009 | DOI

[68] C. Peloquin; L.-P. Euvé; T. Philbin; G. Rousseaux Analog wormholes and black hole laser effects in hydrodynamics, Phys. Rev. D, Volume 93 (2016), 084032 | DOI

[69] J. D. Rincón-Estrada; D. Bermúdez Instabilities in an optical black-hole laser, Ann. Phys., Volume 533 (2021) no. 1, 2000239 | DOI

[70] H. Katayama Quantum-circuit black hole lasers, Sci. Rep., Volume 11 (2021) no. 1, 19137 | DOI

[71] F. Michel; R. Parentani Saturation of black hole lasers in Bose–Einstein condensates, Phys. Rev. D, Volume 88 (2013), 125012 | DOI

[72] F. Michel; R. Parentani Nonlinear effects in time-dependent transonic flows: an analysis of analog black hole stability, Phys. Rev. A, Volume 91 (2015), 053603 | DOI

[73] J. R. M. de Nova; S. Finazzi; I. Carusotto Time-dependent study of a black-hole laser in a flowing atomic condensate, Phys. Rev. A, Volume 94 (2016), 043616 | DOI

[74] J. R. M. de Nova Non-linear stationary solutions in realistic models for analog black-hole lasers, Universe, Volume 3 (2017), p. 54 | DOI

[75] I. Carusotto; S. X. Hu; L. A. Collins; A. Smerzi Bogoliubov-Čerenkov radiation in a Bose–Einstein condensate flowing against an obstacle, Phys. Rev. Lett., Volume 97 (2006), 260403 | DOI

[76] A. Coutant; A. Fabbri; R. Parentani; R. Balbinot; P. R. Anderson Hawking radiation of massive modes and undulations, Phys. Rev. D, Volume 86 (2012), 064022 | DOI

[77] J. Steinhauer Confirmation of stimulated Hawking radiation, but not of black hole lasing, Phys. Rev. D, Volume 106 (2022), 102007 | DOI

[78] M. Tettamanti; S. L. Cacciatori; A. Parola; I. Carusotto Numerical study of a recent black-hole lasing experiment, Europhys. Lett., Volume 114 (2016) no. 6, 60011 | DOI

[79] J. Steinhauer; J. R. M. de Nova Self-amplifying Hawking radiation and its background: a numerical study, Phys. Rev. A, Volume 95 (2017), 033604 | DOI

[80] Y.-H. Wang; T. Jacobson; M. Edwards; C. W. Clark Mechanism of stimulated Hawking radiation in a laboratory Bose–Einstein condensate, Phys. Rev. A, Volume 96 (2017), 023616 | DOI

[81] Y.-H. Wang; T. Jacobson; M. Edwards; C. W. Clark Induced density correlations in a sonic black hole condensate, SciPost Phys., Volume 3 (2017), 022 | DOI

[82] J. M. G. Llorente; J. Plata Black-hole lasing in Bose–Einstein condensates: analysis of the role of the dynamical instabilities in a nonstationary setup, J. Phys. B: At. Mol. Opt. Phys., Volume 52 (2019) no. 7, 075004 | DOI

[83] M. Tettamanti; I. Carusotto; A. Parola On the role of interactions in trans-sonically flowing atomic condensates, Europhys. Lett., Volume 133 (2021) no. 2, 20002 | DOI

[84] J. R. M. de Nova; F. Sols Black-hole laser to Bogoliubov–Cherenkov–Landau crossover: from nonlinear to linear quantum amplification, Phys. Rev. Res., Volume 5 (2023), 043282 | DOI

[85] J. R. M. de Nova; P. F. Palacios; I. Carusotto; F. Sols Long time universality of black-hole lasers, New J. Phys., Volume 23 (2021) no. 2, 023040 | DOI

[86] J. R. M. de Nova; F. Sols Continuous-time crystal from a spontaneous many-body Floquet state, Phys. Rev. A, Volume 105 (2022), 043302 | DOI

[87] A. L. Fetter; J. D. Walecka Quantum Theory of Many-particle Systems, Dover Books on Physics, Dover Publications, New York, 2003

[88] L. Pitaevskii; S. Stringari Bose–Einstein Condensation and Superfluidity, Clarendon Press, Oxford, 2016

[89] M. Visser Acoustic black holes: horizons, ergospheres and Hawking radiation, Class. Quantum Gravity, Volume 15 (1998) no. 6, pp. 1767-1791 | DOI

[90] C. Mayoral; A. Recati; A. Fabbri; R. Parentani; R. Balbinot; I. Carusotto Acoustic white holes in flowing atomic Bose–Einstein condensates, New J. Phys., Volume 13 (2011) no. 2, 025007 | DOI

[91] B. Wu; Q. Niu Superfluidity of Bose–Einstein condensate in an optical lattice: Landau-Zener tunnelling and dynamical instability, New J. Phys., Volume 5 (2003), 104 | DOI

[92] P. Samuelsson; E. V. Sukhorukov; M. Büttiker Orbital entanglement and violation of bell inequalities in mesoscopic conductors, Phys. Rev. Lett., Volume 91 (2003), 157002 | DOI

[93] E. Prada; F. Sols Entangled electron current through finite size normal-superconductor tunneling structures, Eur. Phys. J. B, Volume 40 (2004), pp. 379-396 | DOI

[94] S. K. Manikandan; A. N. Jordan Andreev reflections and the quantum physics of black holes, Phys. Rev. D, Volume 96 (2017), 124011 | DOI

[95] S. K. Manikandan; A. N. Jordan Black holes as Andreev reflecting mirrors, Phys. Rev. D, Volume 102 (2020), 064028 | DOI

[96] G. I. Martone; A. Recati; N. Pavloff Supersolidity of cnoidal waves in an ultracold Bose gas, Phys. Rev. Res., Volume 3 (2021), 013143 | DOI

[97] C. Orzel; A. K. Tuchman; M. L. Fenselau; M. Yasuda; M. A. Kasevich Squeezed states in a Bose–Einstein condensate, Science, Volume 291 (2001) no. 5512, pp. 2386-2389 | DOI

[98] M. Greiner; O. Mandel; T. Esslinger; T. W. Hänsch; I. Bloch Quantum phase transition from a superfluid to a Mott insulator in a gas of ultracold atoms, Nature, Volume 415 (2002) no. 6867, pp. 39-44 | DOI

[99] W. S. Bakr; J. I. Gillen; A. Peng; S. Fölling; M. Greiner A quantum gas microscope for detecting single atoms in a Hubbard-regime optical lattice, Nature, Volume 462 (2009) no. 7269, pp. 74-77 | DOI

[100] C. M. Fabre; P. Cheiney; G. L. Gattobigio; F. Vermersch; S. Faure; R. Mathevet; T. Lahaye; D. Guéry-Odelin Realization of a distributed Bragg reflector for propagating guided matter waves, Phys. Rev. Lett., Volume 107 (2011) no. 23, 230401 | DOI

[101] L. Santos; L. Roso Multilayer “dielectric” mirror for atoms, Phys. Rev. A, Volume 58 (1998), pp. 2407-2412 | DOI

[102] L. Santos; L. Roso Bloch-like quantum multiple reflections of atoms, Phys. Rev. A, Volume 60 (1999), pp. 2312-2318 | DOI

[103] I. Carusotto; G. C. La Rocca Modulated optical lattice as an atomic Fabry-Perot interferometer, Phys. Rev. Lett., Volume 84 (2000), pp. 399-403 | DOI

[104] S. Giovanazzi; C. Farrell; T. Kiss; U. Leonhardt Conditions for one-dimensional supersonic flow of quantum gases, Phys. Rev. A, Volume 70 (2004) no. 6, 63602 | DOI

[105] M. J. S. Lowe Matrix techniques for modeling ultrasonic waves in multilayered media, IEEE Trans. Ultrason. Ferroelectr. Freq. Control., Volume 42 (1995) no. 4, pp. 525-542 | DOI

[106] R. Pernas-Salomón; R. Pérez-Alvarez Sturm-liouville matrix equation for the study of electromagnetic-waves propagation in layered anisotropic media, Prog. Electromagn. Res., Volume 40 (2014), pp. 79-90 | DOI

[107] K. Slevin; Y. Asada; L. I. Deych Fluctuations of the Lyapunov exponent in two-dimensional disordered systems, Phys. Rev. B, Volume 70 (2004), 054201 | DOI

[108] L. Amico; M. Boshier; G. Birkl et al. Roadmap on atomtronics: state of the art and perspective, AVS Quantum Sci., Volume 3 (2021) no. 3, 039201 | DOI

[109] W. Schleich Quantum Optics in Phase Space, Wiley-VCH, Berlin, 2001

[110] J. F. Clauser Experimental distinction between the quantum and classical field-theoretic predictions for the photoelectric effect, Phys. Rev. D, Volume 9 (1974), pp. 853-860 | DOI

[111] K. V. Kheruntsyan; J.-C. Jaskula; P. Deuar et al. Violation of the Cauchy–Schwarz inequality with matter waves, Phys. Rev. Lett., Volume 108 (2012), 260401 | DOI

[112] J. Adamek; X. Busch; R. Parentani Dissipative fields in de Sitter and black hole spacetimes: quantum entanglement due to pair production and dissipation, Phys. Rev. D, Volume 87 (2013), 124039 | DOI

[113] A. Aspect; P. Grangier; G. Roger Experimental realization of Einstein–Podolsky–Rosen–Bohm gedanken experiment: a new violation of Bell’s inequalities, Phys. Rev. Lett., Volume 49 (1982), pp. 91-94 | DOI

[114] J. A. Formaggio; D. I. Kaiser; M. M. Murskyj; T. E. Weiss Violation of the Leggett–Garg inequality in neutrino oscillations, Phys. Rev. Lett., Volume 117 (2016), 050402 | DOI

[115] Belle Collaboration Measurement of Einstein–Podolsky–Rosen-type flavour entanglement in ϒ(4S)B 0 B ¯ 0 decays, Phys. Rev. Lett., Volume 99 (2007), 131802 | DOI

[116] E. Hagley; X. Maître; G. Nogues; C. Wunderlich; M. Brune; J. M. Raimond; S. Haroche Generation of Einstein–Podolsky–Rosen pairs of atoms, Phys. Rev. Lett., Volume 79 (1997), pp. 1-5 | DOI

[117] Y. Bao; S. S. Yu; L. Anderegg; E. Chae; W. Ketterle; K.-K. Ni; J. M. Doyle Dipolar spin-exchange and entanglement between molecules in an optical tweezer array, Science, Volume 382 (2023) no. 6675, pp. 1138-1143 | DOI

[118] C. M. Holland; Y. Lu; L. W. Cheuk On-demand entanglement of molecules in a reconfigurable optical tweezer array, Science, Volume 382 (2023) no. 6675, pp. 1143-1147 | DOI

[119] M. Steffen; M. Ansmann; R. C. Bialczak et al. Measurement of the entanglement of two superconducting qubits via state tomography, Science, Volume 313 (2006) no. 5792, pp. 1423-1425 | DOI

[120] W. Pfaff; T. H. Taminiau; L. Robledo; H. Bernien; M. Markham; D. J. Twitchen; R. Hanson Demonstration of entanglement-by-measurement of solid-state qubits, Nat. Phys., Volume 9 (2013) no. 1, pp. 29-33 | DOI

[121] K. Lee; M. Sprague; B. Sussman et al. Entangling macroscopic diamonds at room temperature, Science, Volume 334 (2011), pp. 1253-1256 | DOI

[122] R. F. Werner Quantum states with Einstein–Podolsky–Rosen correlations admitting a hidden-variable model, Phys. Rev. A, Volume 40 (1989), pp. 4277-4281 | DOI

[123] A. Peres Separability criterion for density matrices, Phys. Rev. Lett., Volume 77 (1996), pp. 1413-1415 | DOI

[124] P. Horodecki Separability criterion and inseparable mixed states with positive partial transposition, Phys. Lett. A, Volume 232 (1997) no. 5, pp. 333-339 | DOI

[125] E. Shchukin; W. Vogel Inseparability criteria for continuous bipartite quantum states, Phys. Rev. Lett., Volume 95 (2005), 230502 | DOI

[126] S. Wölk; M. Huber; O. Gühne Unified approach to entanglement criteria using the Cauchy–Schwarz and Hölder inequalities, Phys. Rev. A, Volume 90 (2014), 022315 | DOI

[127] D. Boiron; A. Fabbri; P.-É. Larré; N. Pavloff; C. I. Westbrook; P. Ziń Quantum signature of analog Hawking radiation in momentum space, Phys. Rev. Lett., Volume 115 (2015), 025301 | DOI

[128] J. Steinhauer Measuring the entanglement of analogue Hawking radiation by the density-density correlation function, Phys. Rev. D, Volume 92 (2015), 024043 | DOI

[129] O. Giraud; P. Braun; D. Braun Classicality of spin states, Phys. Rev. A, Volume 78 (2008), 042112 | DOI

[130] M. Kitagawa; M. Ueda Squeezed spin states, Phys. Rev. A, Volume 47 (1993), pp. 5138-5143 | DOI

[131] S. Robertson; F. Michel; R. Parentani Assessing degrees of entanglement of phonon states in atomic Bose gases through the measurement of commuting observables, Phys. Rev. D, Volume 96 (2017), 045012 | DOI

[132] Y. Afik; J. R. M. de Nova Quantum discord and steering in top quarks at the LHC, Phys. Rev. Lett., Volume 130 (2023), 221801 | DOI

[133] M. Fabbrichesi; R. Floreanini; G. Panizzo Testing bell inequalities at the LHC with top-quark pairs, Phys. Rev. Lett., Volume 127 (2021), 161801 | DOI

[134] C. Severi; C. D. E. Boschi; F. Maltoni; M. Sioli Quantum tops at the LHC: from entanglement to Bell inequalities, Eur. Phys. J. C, Volume 82 (2022) no. 4, 285 | DOI

[135] J. A. Aguilar-Saavedra; J. A. Casas Improved tests of entanglement and Bell inequalities with LHC tops, Eur. Phys. J. C, Volume 82 (2022), 666 | DOI

[136] R. Aoude; E. Madge; F. Maltoni; L. Mantani Quantum SMEFT tomography: top quark pair production at the LHC, Phys. Rev. D, Volume 106 (2022), 055007 | DOI

[137] A. J. Barr Testing Bell inequalities in Higgs boson decays, Phys. Lett. B, Volume 825 (2022), 136866 | DOI

[138] A. Bernal; P. Caban; J. Rembieliński Entanglement and Bell inequalities violation in HZZ with anomalous coupling, Eur. Phys. J. C, Volume 83 (2023) no. 11, 1050 | DOI

[139] R. A. Morales Exploring Bell inequalities and quantum entanglement in vector boson scattering, Eur. Phys. J. Plus, Volume 138 (2023) no. 12, pp. 1-24 | DOI

[140] K. Cheng; T. Han; M. Low Optimizing fictitious states for Bell inequality violation in bipartite qubit systems with applications to the tt ¯ system, Phys. Rev. D, Volume 109 (2024), 116005 | DOI

[141] K. Sakurai; M. Spannowsky Three-body entanglement in particle decays, Phys. Rev. Lett., Volume 132 (2024), 151602 | DOI

[142] Z. Dong; D. Gonçalves; K. Kong; A. Navarro Entanglement and Bell inequalities with boosted tt ¯ , Phys. Rev. D, Volume 109 (2024), 115023 | DOI

[143] Y. Afik; Y. Kats; J. R. M. de Nova; A. Soffer; D. Uzan Entanglement and Bell nonlocality with bottom-quark pairs at hadron colliders, preprint, 2024 | arXiv

[144] C. C. H. Ribeiro; S.-S. Baak; U. R. Fischer Existence of steady-state black hole analogs in finite quasi-one-dimensional Bose–Einstein condensates, Phys. Rev. D, Volume 105 (2022), 124066 | DOI

[145] F. Sols; J. Ferrer Crossover from the Josephson effect to bulk superconducting flow, Phys. Rev. B, Volume 49 (1994), pp. 15913-15919 | DOI

[146] M. Lewenstein; L. You Quantum phase diffusion of a Bose–Einstein condensate, Phys. Rev. Lett., Volume 77 (1996), pp. 3489-3493 | DOI

[147] J. Caillat; J. Zanghellini; M. Kitzler; O. Koch; W. Kreuzer; A. Scrinzi Correlated multielectron systems in strong laser fields: a multiconfiguration time-dependent Hartree–Fock approach, Phys. Rev. A, Volume 71 (2005), 012712 | DOI

[148] O. E. Alon; A. I. Streltsov; L. S. Cederbaum Multiconfigurational time-dependent Hartree method for bosons: many-body dynamics of bosonic systems, Phys. Rev. A, Volume 77 (2008), 033613 | DOI

[149] D. J. Thouless The Quantum Mechanics of Many-Body Systems, Courier Corporation, North Chelmsford, 2014

[150] D. Jaksch; C. Bruder; J. I. Cirac; C. W. Gardiner; P. Zoller Cold bosonic atoms in optical lattices, Phys. Rev. Lett., Volume 81 (1998), pp. 3108-3111 | DOI

[151] F. Wilczek Quantum time crystals, Phys. Rev. Lett., Volume 109 (2012), 160401 | DOI

[152] P. Kongkhambut; J. Skulte; L. Mathey; J. G. Cosme; A. Hemmerich; H. Keßler Observation of a continuous time crystal, Science, Volume 377 (2022) no. 6606, pp. 670-673 | DOI

[153] K. Sacha Modeling spontaneous breaking of time-translation symmetry, Phys. Rev. A, Volume 91 (2015), 033617 | DOI

[154] D. V. Else; B. Bauer; C. Nayak Floquet time crystals, Phys. Rev. Lett., Volume 117 (2016), 090402 | DOI

[155] J. Zhang; P. W. Hess; A. Kyprianidis et al. Observation of a discrete time crystal, Nature, Volume 543 (2017) no. 7644, pp. 217-220 | DOI

[156] S. Choi; J. Choi; R. Landig et al. Observation of discrete time-crystalline order in a disordered dipolar many-body system, Nature, Volume 543 (2017) no. 7644, pp. 221-225 | DOI

[157] M. Moeckel; S. Kehrein Interaction quench in the Hubbard model, Phys. Rev. Lett., Volume 100 (2008), 175702 | DOI

[158] B. Sciolla; G. Biroli Quantum quenches and off-equilibrium dynamical transition in the infinite-dimensional Bose–Hubbard model, Phys. Rev. Lett., Volume 105 (2010), 220401 | DOI

[159] J. Lang; B. Frank; J. C. Halimeh Dynamical quantum phase transitions: a geometric picture, Phys. Rev. Lett., Volume 121 (2018), 130603 | DOI

[160] M. A. Cazalilla Effect of suddenly turning on interactions in the Luttinger model, Phys. Rev. Lett., Volume 97 (2006), 156403 | DOI

[161] M. Rigol; V. Dunjko; V. Yurovsky; M. Olshanii Relaxation in a completely integrable many-body quantum system: an ab initio study of the dynamics of the highly excited states of 1D lattice Hard-Core bosons, Phys. Rev. Lett., Volume 98 (2007), 050405 | DOI

[162] T. Langen; S. Erne; R. Geiger et al. Experimental observation of a generalized Gibbs ensemble, Science, Volume 348 (2015) no. 6231, pp. 207-211 | DOI

[163] J. R. M. de Nova; F. Sols Simultaneous symmetry breaking in spontaneous Floquet states: Floquet–Nambu–Goldstone modes, Floquet thermodynamics, and the time operator, preprint, 2024 | arXiv

[164] J. Dziarmaga Quantum dark soliton: nonperturbative diffusion of phase and position, Phys. Rev. A, Volume 70 (2004), 063616 | DOI

[165] C. Mora; Y. Castin Extension of Bogoliubov theory to quasicondensates, Phys. Rev. A, Volume 67 (2003), 053615 | DOI

[166] C. C. Holanda Ribeiro; U. R. Fischer Impact of trans-Planckian excitations on black-hole radiation in dipolar condensates, Phys. Rev. D, Volume 107 (2023), p. L121502 | DOI

[167] M. Isoard; N. Milazzo; N. Pavloff; O. Giraud Bipartite and tripartite entanglement in a Bose–Einstein acoustic black hole, Phys. Rev. A, Volume 104 (2021), 063302 | DOI

[168] G. Ciliberto; S. Emig; N. Pavloff; M. Isoard Violation of Bell inequalities in an analog black hole, Phys. Rev. A, Volume 109 (2024), 063325 | DOI

[169] A. Coutant; R. Parentani Undulations from amplified low frequency surface waves, Phys. Fluids, Volume 26 (2014) no. 4, 044106 | DOI

[170] A. Bossard; N. James; C. Aucouturier; J. Fourdrinoy; S. Robertson; G. Rousseaux How to create analogue black hole or white fountain horizons and LASER cavities in experimental free surface hydrodynamics?, preprint, 2023 | arXiv

[171] R. Balbinot; S. Fagnocchi; G. P. Procopio Backreaction in acoustic black holes, Phys. Rev. Lett., Volume 94 (2005) no. 16, 161302 | DOI

[172] S.-S. Baak; C. C. H. Ribeiro; U. R. Fischer Number-conserving solution for dynamical quantum backreaction in a Bose–Einstein condensate, Phys. Rev. A, Volume 106 (2022), 053319 | DOI

[173] S. Butera; I. Carusotto Numerical studies of back reaction effects in an analog model of cosmological preheating, Phys. Rev. Lett., Volume 130 (2023), 241501 | DOI

[174] Y. Aharonov; D. Bohm Time in the quantum theory and the uncertainty relation for time and energy, Phys. Rev., Volume 122 (1961), pp. 1649-1658 | DOI

[175] L. Susskind; J. Glogower Quantum mechanical phase and time operator, Phys. Phys. Fiz., Volume 1 (1964), pp. 49-61 | DOI

[176] W. G. Unruh; R. M. Wald Time and the interpretation of canonical quantum gravity, Phys. Rev. D, Volume 40 (1989), pp. 2598-2614 | DOI

[177] P. A. Höhn; A. R. H. Smith; M. P. E. Lock Trinity of relational quantum dynamics, Phys. Rev. D, Volume 104 (2021), 066001 | DOI

[178] I. Septembre; S. Koniakhin; J. S. Meyer; D. D. Solnyshkov; G. Malpuech Parametric amplification of topological interface states in synthetic Andreev bands, Phys. Rev. B, Volume 103 (2021), 214504 | DOI

[179] I. Septembre; D. D. Solnyshkov; G. Malpuech Angle-dependent Andreev reflection at an interface with a polaritonic superfluid, Phys. Rev. B, Volume 108 (2023), 115309 | DOI

[180] M. J. Jacquet; L. Giacomelli; Q. Valnais et al. Quantum vacuum excitation of a quasinormal mode in an analog model of black hole spacetime, Phys. Rev. Lett., Volume 130 (2023), 111501 | DOI

[181] X. Busch; I. Carusotto; R. Parentani Spectrum and entanglement of phonons in quantum fluids of light, Phys. Rev. A, Volume 89 (2014), 043819 | DOI

[182] I. Agullo; A. J. Brady; D. Kranas Quantum aspects of stimulated Hawking radiation in an optical analog white-black hole pair, Phys. Rev. Lett., Volume 128 (2022), 091301 | DOI

[183] A. J. Brady; I. Agullo; D. Kranas Symplectic circuits, entanglement, and stimulated Hawking radiation in analogue gravity, Phys. Rev. D, Volume 106 (2022), 105021 | DOI

[184] A. Delhom; K. Guerrero; P. Calizaya Cabrera; K. Falque; A. Bramati; A. J. Brady; M. J. Jacquet; I. Agullo Entanglement from superradiance and rotating quantum fluids of light, Phys. Rev. D, Volume 109 (2024), 105024 | DOI

[185] A. Opala; M. Pieczarka; N. Bobrovska; M. Matuszewski Dynamics of defect-induced dark solitons in an exciton-polariton condensate, Phys. Rev. B, Volume 97 (2018), 155304 | DOI

Cité par Sources :

Commentaires - Politique