[Configurations analogues résonantes dans les condensats atomiques]
En guise de contribution à ce volume commémoratif, nous proposons une discussion approfondie des configurations résonnantes en gravité analogue, en nous concentrant sur leur mise en œuvre dans les condensats atomiques et en combinant une revue de la littérature avec des analyses et des calculs originaux. En particulier, nous analysons conjointement les analogues des effets Andreev et Hawking en utilisant une description microscopique basée sur l’approximation de Bogoliubov. Nous réalisons une étude détaillée de la thermalité des spectres d’Andreev et de Hawking pour les solutions canoniques de trous noirs, en constatant que les deux peuvent être décrits par une distribution de corps gris avec une très bonne approximation. Nous envisageons plusieurs scénarios résonants dont l’efficacité pour améliorer les processus de diffusion anormaux est comparée à celle de configurations non résonantes. La présence de signatures quantiques dans les configurations analogues, telles que la violation des inégalités de Cauchy–Schwarz ou l’intrication, est analysée. Nous observons que les configurations résonantes augmentent fortement le signal d’intrication, en particulier pour l’effet Andreev. Nous discutons également de la façon dont ces résultats ont servi d’inspiration pour le domaine en pleine expansion de l’information quantique dans les collisionneurs de haute énergie. Enfin, nous étudions la physique des lasers à trous noirs comme autres exemples de structures analogues résonantes, en distinguant trois étapes dans leur évolution temporelle. Pour les temps courts, nous calculons le spectre linéaire et non linéaire pour différents modèles. Pour les temps intermédiaires, nous généralisons l’analyse actuelle du croisement BHL–BCL. Pour les temps longs, nous discutons du concept émergent d’état de Floquet spontané et de ses implications potentielles.
As a contribution to a memorial volume, we provide a comprehensive discussion of resonant configurations in analogue gravity, focusing on its implementation in atomic condensates and combining review features with original insights and calculations. In particular, we jointly analyze the analogues of the Andreev and Hawking effects using a microscopic description based on the Bogoliubov approximation. We perform a detailed study of the thermality of the Andreev and Hawking spectra for canonical black-hole solutions, finding that both can be described by a gray-body distribution to a very good approximation. We contemplate several resonant scenarios whose efficiency to enhance anomalous scattering processes is compared to that of non-resonant setups. The presence of quantum signatures in analogue configurations, such as the violation of Cauchy–Schwarz inequalities or entanglement, is analyzed, observing that resonant configurations highly increase the entanglement signal, especially for the Andreev effect. We also discuss how these results have served as inspiration for the rapidly expanding field of quantum information in high-energy colliders. Finally, we study the physics of black-hole lasers as further examples of resonant analogue structures, distinguishing three stages in its time evolution. For short times, we compute the linear and non-linear spectrum for different models. For intermediate times, we generalize the current analysis of the BHL–BCL crossover. For long times, we discuss the emerging concept of spontaneous Floquet state and its potential implications.
Révisé le :
Accepté le :
Première publication :
Mots-clés : Gravité analogique, Gaz quantiques, Processus d’Andreev, Information quantique, Collisionneurs à haute énergie, Cristaux temporels
Juan Ramón Muñoz de Nova 1 ; Pablo Fernández Palacios 2 ; Pedro Alcázar Guerrero 3, 4 ; Ivar Zapata 5 ; Fernando Sols 1
@article{CRPHYS_2024__25_S2_A11_0, author = {Juan Ram\'on Mu\~noz de Nova and Pablo Fern\'andez Palacios and Pedro~ Alc\'azar~Guerrero and Ivar Zapata and Fernando Sols}, title = {Resonant analogue configurations in atomic condensates}, journal = {Comptes Rendus. Physique}, publisher = {Acad\'emie des sciences, Paris}, year = {2024}, doi = {10.5802/crphys.212}, language = {en}, note = {Online first}, }
TY - JOUR AU - Juan Ramón Muñoz de Nova AU - Pablo Fernández Palacios AU - Pedro Alcázar Guerrero AU - Ivar Zapata AU - Fernando Sols TI - Resonant analogue configurations in atomic condensates JO - Comptes Rendus. Physique PY - 2024 PB - Académie des sciences, Paris N1 - Online first DO - 10.5802/crphys.212 LA - en ID - CRPHYS_2024__25_S2_A11_0 ER -
%0 Journal Article %A Juan Ramón Muñoz de Nova %A Pablo Fernández Palacios %A Pedro Alcázar Guerrero %A Ivar Zapata %A Fernando Sols %T Resonant analogue configurations in atomic condensates %J Comptes Rendus. Physique %D 2024 %I Académie des sciences, Paris %Z Online first %R 10.5802/crphys.212 %G en %F CRPHYS_2024__25_S2_A11_0
Juan Ramón Muñoz de Nova; Pablo Fernández Palacios; Pedro Alcázar Guerrero; Ivar Zapata; Fernando Sols. Resonant analogue configurations in atomic condensates. Comptes Rendus. Physique, Online first (2024), pp. 1-63. doi : 10.5802/crphys.212.
[1] Black hole explosions?, Nature, Volume 248 (1974), pp. 30-31 | DOI
[2] Experimental black-hole evaporation?, Phys. Rev. Lett., Volume 46 (1981) no. 21, pp. 1351-1353 | DOI
[3] Sonic analog of gravitational black holes in Bose–Einstein condensates, Phys. Rev. Lett., Volume 85 (2000) no. 22, pp. 4643-4647 | DOI
[4] Realization of a sonic black hole analog in a Bose–Einstein condensate, Phys. Rev. Lett., Volume 105 (2010) no. 24, 240401 | DOI
[5] Gravity wave analogues of black holes, Phys. Rev. D, Volume 66 (2002), 044019 | DOI
[6] Measurement of stimulated Hawking emission in an analogue system, Phys. Rev. Lett., Volume 106 (2011), 021302 | DOI
[7] Fiber-optical analog of the event horizon, Science, Volume 319 (2008) no. 5868, pp. 1367-1370 | DOI
[8] Observation of stimulated hawking radiation in an optical analogue, Phys. Rev. Lett., Volume 122 (2019), 010404 | DOI
[9] Hawking radiation from an acoustic black hole on an ion ring, Phys. Rev. Lett., Volume 104 (2010) no. 25, 250403 | DOI
[10] Phonon pair creation by inflating quantum fluctuations in an ion trap, Phys. Rev. Lett., Volume 123 (2019), 180502 | DOI
[11] Quantum fluids of light, Rev. Mod. Phys., Volume 85 (2013), pp. 299-366 | DOI
[12] et al. Acoustic black hole in a stationary hydrodynamic flow of microcavity polaritons, Phys. Rev. Lett., Volume 114 (2015), 036402 | DOI
[13] et al. Quantum simulation of Hawking radiation and curved spacetime with a superconducting on-chip black hole, Nat. Commun., Volume 14 (2023) no. 1, 3263 | DOI
[14] Observation of noise correlated by the hawking effect in a water tank, Phys. Rev. Lett., Volume 117 (2016), 121301 | DOI
[15] et al. Quantum field simulator for dynamics in curved spacetime, Nature, Volume 611 (2022) no. 7935, pp. 260-264 | DOI
[16] Bogoliubov theory of the Hawking effect in Bose–Einstein condensates, J. Opt. B: Quantum Semiclass. Opt., Volume 5 (2003) no. 2, S42 | DOI
[17] Nonlocal density correlations as a signature of Hawking radiation from acoustic black holes, Phys. Rev. A, Volume 78 (2008), 21603 | DOI
[18] Numerical observation of Hawking radiation from acoustic black holes in atomic Bose–Einstein condensates, New J. Phys., Volume 10 (2008) no. 10, 103001 | DOI
[19] Black-hole radiation in Bose–Einstein condensates, Phys. Rev. A, Volume 80 (2009) no. 4, 43601 | DOI
[20] Bogoliubov theory of acoustic Hawking radiation in Bose–Einstein condensates, Phys. Rev. A, Volume 80 (2009) no. 4, 43603 | DOI
[21] Resonant Hawking radiation in Bose–Einstein condensates, New J. Phys., Volume 13 (2011) no. 6, 63048 | DOI
[22] Quantum fluctuations around black hole horizons in Bose–Einstein condensates, Phys. Rev. A, Volume 85 (2012), 13621 | DOI
[23] Violation of Cauchy-Schwarz inequalities by spontaneous Hawking radiation in resonant boson structures, Phys. Rev. A, Volume 89 (2014), 043808 | DOI
[24] Entangled phonons in atomic Bose–Einstein condensates, Phys. Rev. A, Volume 90 (2014), 033607 | DOI
[25] Quantum entanglement in analogue Hawking radiation: When is the final state nonseparable?, Phys. Rev. D, Volume 89 (2014), 105024 | DOI
[26] Entanglement and violation of classical inequalities in the Hawking radiation of flowing atom condensates, New J. Phys., Volume 17 (2015) no. 10, 105003 | DOI
[27] No-hair theorems for analogue black holes, Phys. Rev. D, Volume 93 (2016), 065039 | DOI
[28] Phonon dispersion relation of an atomic Bose–Einstein condensate, Phys. Rev. Lett., Volume 109 (2012), 195301 | DOI
[29] Planck distribution of phonons in a Bose–Einstein condensate, Phys. Rev. Lett., Volume 111 (2013), 055301 | DOI
[30] Observation of self-amplifying Hawking radiation in an analog black hole laser, Nat. Phys., Volume 10 (2014), pp. 864-869 | DOI
[31] Observation of quantum Hawking radiation and its entanglement in an analogue black hole, Nat. Phys., Volume 12 (2016), pp. 959-965 | DOI
[32] Observation of thermal Hawking radiation and its temperature in an analogue black hole, Nature, Volume 569 (2019), pp. 688-691 | DOI
[33] Observation of stationary spontaneous Hawking radiation and the time evolution of an analogue black hole, Nat. Phys., Volume 17 (2021) no. 3, pp. 362-367 | DOI
[34] Acoustic analog to the dynamical casimir effect in a Bose–Einstein condensate, Phys. Rev. Lett., Volume 109 (2012), 220401 | DOI
[35] From cosmology to cold atoms: observation of Sakharov oscillations in a quenched atomic superfluid, Science, Volume 341 (2013) no. 6151, pp. 1213-1215 | DOI
[36] Rotational superradiant scattering in a vortex flow, Nat. Phys., Volume 13 (2017) no. 9, pp. 833-836 | DOI
[37] A rapidly expanding Bose–Einstein condensate: an expanding Universe in the Lab, Phys. Rev. X, Volume 8 (2018), 021021 | DOI
[38] Quantum simulation of Unruh radiation, Nat. Phys., Volume 15 (2019) no. 8, pp. 785-789 | DOI
[39] Quasinormal mode oscillations in an analogue black hole experiment, Phys. Rev. Lett., Volume 125 (2020), 011301 | DOI
[40] Backreaction in an analogue black hole experiment, Phys. Rev. Lett., Volume 126 (2021), 041105 | DOI
[41] et al. Analogue cosmological particle creation in an ultracold quantum fluid of light, Nat. Commun., Volume 13 (2022) no. 1, 2890 | DOI
[42] Andreev reflection in bosonic condensates, Phys. Rev. Lett., Volume 102 (2009) no. 18, 180405 | DOI
[43] The thermal conductivity of the intermediate state in superconductors, Sov. Phys. JETP, Volume 19 (1964) no. 5, pp. 1823-1828
[44] Observation of Andreev reflection with the help of transverse electron focusing, JETP Lett., Volume 36 (1982) no. 4, pp. 123-126
[45] Direct observation of andreev reflection, Phys. Rev. Lett., Volume 51 (1983), pp. 817-820 | DOI
[46] Direct observation of the Andreev reflection of a beam of excitations in superfluid B, Phys. Rev. Lett., Volume 70 (1993), pp. 1846-1849 | DOI
[47] Direct observation of quantum Andreev reflection at free surface of superfluid He, Phys. Rev. Lett., Volume 80 (1998), pp. 2857-2860 | DOI
[48] Black hole lasers, Phys. Rev. D, Volume 59 (1999), 124011 | DOI
[49] Black/white hole radiation from dispersive theories, Phys. Rev. D, Volume 79 (2009) no. 12, 124008 | DOI
[50] Divergent beams of nonlocally entangled electrons emitted from hybrid normal-superconducting structures, New J. Phys., Volume 7 (2005) no. 1, 231 | DOI
[51] Birth of a quasi-stationary black hole in an outcoupled Bose–Einstein condensate, New J. Phys., Volume 16 (2014) no. 12, 123033 | DOI
[52] Quantum transport in the black-hole configuration of an atom condensate outcoupled through an optical lattice, Ann. Phys., Volume 529 (2017), 1600385 | DOI
[53] Quantum Optics, SpringerLink: Springer e-Books, Springer, 2008
[54] Entanglement in Unruh, Hawking, and Cherenkov radiation from a quantum optical perspective, Phys. Rev. Res., Volume 4 (2022), 033010 | DOI
[55] Peres-Horodecki separability criterion for continuous variable systems, Phys. Rev. Lett., Volume 84 (2000), pp. 2726-2729 | DOI
[56] Entanglement and quantum tomography with top quarks at the LHC, Eur. Phys. J. Plus, Volume 136 (2021) no. 9, 907 | DOI
[57] Observation of quantum entanglement in top-quark pairs using the ATLAS detector, Nature, Volume 633 (2024), 542
[58] Observation of quantum entanglement in top quark pair production in proton-proton collisions at TeV, Rep. Prog. Phys., Volume 87 (2024), 117801
[59] Quantum information with top quarks in QCD, Quantum, Volume 6 (2022), 820 | DOI
[60] Theory of elementary excitations in unstable Bose–Einstein condensates and the instability of sonic horizons, Phys. Rev. A, Volume 67 (2003) no. 3, 33602 | DOI
[61] Stability analysis of sonic horizons in Bose–Einstein condensates, Phys. Rev. D, Volume 74 (2006), 024008 | DOI
[62] Quantum de Laval nozzle: stability and quantum dynamics of sonic horizons in a toroidally trapped Bose gas containing a superflow, Phys. Rev. A, Volume 76 (2007) no. 2, 23617 | DOI
[63] Black hole lasers, a mode analysis, Phys. Rev. D, Volume 81 (2010), 84042 | DOI
[64] Black hole lasers in Bose–Einstein condensates, New J. Phys., Volume 12 (2010) no. 9, 095015 | DOI
[65] Resonant Hawking radiation as an instability, Class. Quantum Gravity, Volume 36 (2018) no. 2, 024001 | DOI
[66] Quasi-steady radiation of sound from turbulent sonic ergoregions, New J. Phys., Volume 20 (2018) no. 8, 083020 | DOI
[67] Optical black hole lasers, Class. Quantum Gravity, Volume 29 (2012) no. 22, 224009 | DOI
[68] Analog wormholes and black hole laser effects in hydrodynamics, Phys. Rev. D, Volume 93 (2016), 084032 | DOI
[69] Instabilities in an optical black-hole laser, Ann. Phys., Volume 533 (2021) no. 1, 2000239 | DOI
[70] Quantum-circuit black hole lasers, Sci. Rep., Volume 11 (2021) no. 1, 19137 | DOI
[71] Saturation of black hole lasers in Bose–Einstein condensates, Phys. Rev. D, Volume 88 (2013), 125012 | DOI
[72] Nonlinear effects in time-dependent transonic flows: an analysis of analog black hole stability, Phys. Rev. A, Volume 91 (2015), 053603 | DOI
[73] Time-dependent study of a black-hole laser in a flowing atomic condensate, Phys. Rev. A, Volume 94 (2016), 043616 | DOI
[74] Non-linear stationary solutions in realistic models for analog black-hole lasers, Universe, Volume 3 (2017), p. 54 | DOI
[75] Bogoliubov-Čerenkov radiation in a Bose–Einstein condensate flowing against an obstacle, Phys. Rev. Lett., Volume 97 (2006), 260403 | DOI
[76] Hawking radiation of massive modes and undulations, Phys. Rev. D, Volume 86 (2012), 064022 | DOI
[77] Confirmation of stimulated Hawking radiation, but not of black hole lasing, Phys. Rev. D, Volume 106 (2022), 102007 | DOI
[78] Numerical study of a recent black-hole lasing experiment, Europhys. Lett., Volume 114 (2016) no. 6, 60011 | DOI
[79] Self-amplifying Hawking radiation and its background: a numerical study, Phys. Rev. A, Volume 95 (2017), 033604 | DOI
[80] Mechanism of stimulated Hawking radiation in a laboratory Bose–Einstein condensate, Phys. Rev. A, Volume 96 (2017), 023616 | DOI
[81] Induced density correlations in a sonic black hole condensate, SciPost Phys., Volume 3 (2017), 022 | DOI
[82] Black-hole lasing in Bose–Einstein condensates: analysis of the role of the dynamical instabilities in a nonstationary setup, J. Phys. B: At. Mol. Opt. Phys., Volume 52 (2019) no. 7, 075004 | DOI
[83] On the role of interactions in trans-sonically flowing atomic condensates, Europhys. Lett., Volume 133 (2021) no. 2, 20002 | DOI
[84] Black-hole laser to Bogoliubov–Cherenkov–Landau crossover: from nonlinear to linear quantum amplification, Phys. Rev. Res., Volume 5 (2023), 043282 | DOI
[85] Long time universality of black-hole lasers, New J. Phys., Volume 23 (2021) no. 2, 023040 | DOI
[86] Continuous-time crystal from a spontaneous many-body Floquet state, Phys. Rev. A, Volume 105 (2022), 043302 | DOI
[87] Quantum Theory of Many-particle Systems, Dover Books on Physics, Dover Publications, New York, 2003
[88] Bose–Einstein Condensation and Superfluidity, Clarendon Press, Oxford, 2016
[89] Acoustic black holes: horizons, ergospheres and Hawking radiation, Class. Quantum Gravity, Volume 15 (1998) no. 6, pp. 1767-1791 | DOI
[90] Acoustic white holes in flowing atomic Bose–Einstein condensates, New J. Phys., Volume 13 (2011) no. 2, 025007 | DOI
[91] Superfluidity of Bose–Einstein condensate in an optical lattice: Landau-Zener tunnelling and dynamical instability, New J. Phys., Volume 5 (2003), 104 | DOI
[92] Orbital entanglement and violation of bell inequalities in mesoscopic conductors, Phys. Rev. Lett., Volume 91 (2003), 157002 | DOI
[93] Entangled electron current through finite size normal-superconductor tunneling structures, Eur. Phys. J. B, Volume 40 (2004), pp. 379-396 | DOI
[94] Andreev reflections and the quantum physics of black holes, Phys. Rev. D, Volume 96 (2017), 124011 | DOI
[95] Black holes as Andreev reflecting mirrors, Phys. Rev. D, Volume 102 (2020), 064028 | DOI
[96] Supersolidity of cnoidal waves in an ultracold Bose gas, Phys. Rev. Res., Volume 3 (2021), 013143 | DOI
[97] Squeezed states in a Bose–Einstein condensate, Science, Volume 291 (2001) no. 5512, pp. 2386-2389 | DOI
[98] Quantum phase transition from a superfluid to a Mott insulator in a gas of ultracold atoms, Nature, Volume 415 (2002) no. 6867, pp. 39-44 | DOI
[99] A quantum gas microscope for detecting single atoms in a Hubbard-regime optical lattice, Nature, Volume 462 (2009) no. 7269, pp. 74-77 | DOI
[100] Realization of a distributed Bragg reflector for propagating guided matter waves, Phys. Rev. Lett., Volume 107 (2011) no. 23, 230401 | DOI
[101] Multilayer “dielectric” mirror for atoms, Phys. Rev. A, Volume 58 (1998), pp. 2407-2412 | DOI
[102] Bloch-like quantum multiple reflections of atoms, Phys. Rev. A, Volume 60 (1999), pp. 2312-2318 | DOI
[103] Modulated optical lattice as an atomic Fabry-Perot interferometer, Phys. Rev. Lett., Volume 84 (2000), pp. 399-403 | DOI
[104] Conditions for one-dimensional supersonic flow of quantum gases, Phys. Rev. A, Volume 70 (2004) no. 6, 63602 | DOI
[105] Matrix techniques for modeling ultrasonic waves in multilayered media, IEEE Trans. Ultrason. Ferroelectr. Freq. Control., Volume 42 (1995) no. 4, pp. 525-542 | DOI
[106] Sturm-liouville matrix equation for the study of electromagnetic-waves propagation in layered anisotropic media, Prog. Electromagn. Res., Volume 40 (2014), pp. 79-90 | DOI
[107] Fluctuations of the Lyapunov exponent in two-dimensional disordered systems, Phys. Rev. B, Volume 70 (2004), 054201 | DOI
[108] et al. Roadmap on atomtronics: state of the art and perspective, AVS Quantum Sci., Volume 3 (2021) no. 3, 039201 | DOI
[109] Quantum Optics in Phase Space, Wiley-VCH, Berlin, 2001
[110] Experimental distinction between the quantum and classical field-theoretic predictions for the photoelectric effect, Phys. Rev. D, Volume 9 (1974), pp. 853-860 | DOI
[111] et al. Violation of the Cauchy–Schwarz inequality with matter waves, Phys. Rev. Lett., Volume 108 (2012), 260401 | DOI
[112] Dissipative fields in de Sitter and black hole spacetimes: quantum entanglement due to pair production and dissipation, Phys. Rev. D, Volume 87 (2013), 124039 | DOI
[113] Experimental realization of Einstein–Podolsky–Rosen–Bohm gedanken experiment: a new violation of Bell’s inequalities, Phys. Rev. Lett., Volume 49 (1982), pp. 91-94 | DOI
[114] Violation of the Leggett–Garg inequality in neutrino oscillations, Phys. Rev. Lett., Volume 117 (2016), 050402 | DOI
[115] Measurement of Einstein–Podolsky–Rosen-type flavour entanglement in decays, Phys. Rev. Lett., Volume 99 (2007), 131802 | DOI
[116] Generation of Einstein–Podolsky–Rosen pairs of atoms, Phys. Rev. Lett., Volume 79 (1997), pp. 1-5 | DOI
[117] Dipolar spin-exchange and entanglement between molecules in an optical tweezer array, Science, Volume 382 (2023) no. 6675, pp. 1138-1143 | DOI
[118] On-demand entanglement of molecules in a reconfigurable optical tweezer array, Science, Volume 382 (2023) no. 6675, pp. 1143-1147 | DOI
[119] et al. Measurement of the entanglement of two superconducting qubits via state tomography, Science, Volume 313 (2006) no. 5792, pp. 1423-1425 | DOI
[120] Demonstration of entanglement-by-measurement of solid-state qubits, Nat. Phys., Volume 9 (2013) no. 1, pp. 29-33 | DOI
[121] et al. Entangling macroscopic diamonds at room temperature, Science, Volume 334 (2011), pp. 1253-1256 | DOI
[122] Quantum states with Einstein–Podolsky–Rosen correlations admitting a hidden-variable model, Phys. Rev. A, Volume 40 (1989), pp. 4277-4281 | DOI
[123] Separability criterion for density matrices, Phys. Rev. Lett., Volume 77 (1996), pp. 1413-1415 | DOI
[124] Separability criterion and inseparable mixed states with positive partial transposition, Phys. Lett. A, Volume 232 (1997) no. 5, pp. 333-339 | DOI
[125] Inseparability criteria for continuous bipartite quantum states, Phys. Rev. Lett., Volume 95 (2005), 230502 | DOI
[126] Unified approach to entanglement criteria using the Cauchy–Schwarz and Hölder inequalities, Phys. Rev. A, Volume 90 (2014), 022315 | DOI
[127] Quantum signature of analog Hawking radiation in momentum space, Phys. Rev. Lett., Volume 115 (2015), 025301 | DOI
[128] Measuring the entanglement of analogue Hawking radiation by the density-density correlation function, Phys. Rev. D, Volume 92 (2015), 024043 | DOI
[129] Classicality of spin states, Phys. Rev. A, Volume 78 (2008), 042112 | DOI
[130] Squeezed spin states, Phys. Rev. A, Volume 47 (1993), pp. 5138-5143 | DOI
[131] Assessing degrees of entanglement of phonon states in atomic Bose gases through the measurement of commuting observables, Phys. Rev. D, Volume 96 (2017), 045012 | DOI
[132] Quantum discord and steering in top quarks at the LHC, Phys. Rev. Lett., Volume 130 (2023), 221801 | DOI
[133] Testing bell inequalities at the LHC with top-quark pairs, Phys. Rev. Lett., Volume 127 (2021), 161801 | DOI
[134] Quantum tops at the LHC: from entanglement to Bell inequalities, Eur. Phys. J. C, Volume 82 (2022) no. 4, 285 | DOI
[135] Improved tests of entanglement and Bell inequalities with LHC tops, Eur. Phys. J. C, Volume 82 (2022), 666 | DOI
[136] Quantum SMEFT tomography: top quark pair production at the LHC, Phys. Rev. D, Volume 106 (2022), 055007 | DOI
[137] Testing Bell inequalities in Higgs boson decays, Phys. Lett. B, Volume 825 (2022), 136866 | DOI
[138] Entanglement and Bell inequalities violation in HZZ with anomalous coupling, Eur. Phys. J. C, Volume 83 (2023) no. 11, 1050 | DOI
[139] Exploring Bell inequalities and quantum entanglement in vector boson scattering, Eur. Phys. J. Plus, Volume 138 (2023) no. 12, pp. 1-24 | DOI
[140] Optimizing fictitious states for Bell inequality violation in bipartite qubit systems with applications to the system, Phys. Rev. D, Volume 109 (2024), 116005 | DOI
[141] Three-body entanglement in particle decays, Phys. Rev. Lett., Volume 132 (2024), 151602 | DOI
[142] Entanglement and Bell inequalities with boosted , Phys. Rev. D, Volume 109 (2024), 115023 | DOI
[143] Entanglement and Bell nonlocality with bottom-quark pairs at hadron colliders, preprint, 2024 | arXiv
[144] Existence of steady-state black hole analogs in finite quasi-one-dimensional Bose–Einstein condensates, Phys. Rev. D, Volume 105 (2022), 124066 | DOI
[145] Crossover from the Josephson effect to bulk superconducting flow, Phys. Rev. B, Volume 49 (1994), pp. 15913-15919 | DOI
[146] Quantum phase diffusion of a Bose–Einstein condensate, Phys. Rev. Lett., Volume 77 (1996), pp. 3489-3493 | DOI
[147] Correlated multielectron systems in strong laser fields: a multiconfiguration time-dependent Hartree–Fock approach, Phys. Rev. A, Volume 71 (2005), 012712 | DOI
[148] Multiconfigurational time-dependent Hartree method for bosons: many-body dynamics of bosonic systems, Phys. Rev. A, Volume 77 (2008), 033613 | DOI
[149] The Quantum Mechanics of Many-Body Systems, Courier Corporation, North Chelmsford, 2014
[150] Cold bosonic atoms in optical lattices, Phys. Rev. Lett., Volume 81 (1998), pp. 3108-3111 | DOI
[151] Quantum time crystals, Phys. Rev. Lett., Volume 109 (2012), 160401 | DOI
[152] Observation of a continuous time crystal, Science, Volume 377 (2022) no. 6606, pp. 670-673 | DOI
[153] Modeling spontaneous breaking of time-translation symmetry, Phys. Rev. A, Volume 91 (2015), 033617 | DOI
[154] Floquet time crystals, Phys. Rev. Lett., Volume 117 (2016), 090402 | DOI
[155] et al. Observation of a discrete time crystal, Nature, Volume 543 (2017) no. 7644, pp. 217-220 | DOI
[156] et al. Observation of discrete time-crystalline order in a disordered dipolar many-body system, Nature, Volume 543 (2017) no. 7644, pp. 221-225 | DOI
[157] Interaction quench in the Hubbard model, Phys. Rev. Lett., Volume 100 (2008), 175702 | DOI
[158] Quantum quenches and off-equilibrium dynamical transition in the infinite-dimensional Bose–Hubbard model, Phys. Rev. Lett., Volume 105 (2010), 220401 | DOI
[159] Dynamical quantum phase transitions: a geometric picture, Phys. Rev. Lett., Volume 121 (2018), 130603 | DOI
[160] Effect of suddenly turning on interactions in the Luttinger model, Phys. Rev. Lett., Volume 97 (2006), 156403 | DOI
[161] Relaxation in a completely integrable many-body quantum system: an ab initio study of the dynamics of the highly excited states of 1D lattice Hard-Core bosons, Phys. Rev. Lett., Volume 98 (2007), 050405 | DOI
[162] et al. Experimental observation of a generalized Gibbs ensemble, Science, Volume 348 (2015) no. 6231, pp. 207-211 | DOI
[163] Simultaneous symmetry breaking in spontaneous Floquet states: Floquet–Nambu–Goldstone modes, Floquet thermodynamics, and the time operator, preprint, 2024 | arXiv
[164] Quantum dark soliton: nonperturbative diffusion of phase and position, Phys. Rev. A, Volume 70 (2004), 063616 | DOI
[165] Extension of Bogoliubov theory to quasicondensates, Phys. Rev. A, Volume 67 (2003), 053615 | DOI
[166] Impact of trans-Planckian excitations on black-hole radiation in dipolar condensates, Phys. Rev. D, Volume 107 (2023), p. L121502 | DOI
[167] Bipartite and tripartite entanglement in a Bose–Einstein acoustic black hole, Phys. Rev. A, Volume 104 (2021), 063302 | DOI
[168] Violation of Bell inequalities in an analog black hole, Phys. Rev. A, Volume 109 (2024), 063325 | DOI
[169] Undulations from amplified low frequency surface waves, Phys. Fluids, Volume 26 (2014) no. 4, 044106 | DOI
[170] How to create analogue black hole or white fountain horizons and LASER cavities in experimental free surface hydrodynamics?, preprint, 2023 | arXiv
[171] Backreaction in acoustic black holes, Phys. Rev. Lett., Volume 94 (2005) no. 16, 161302 | DOI
[172] Number-conserving solution for dynamical quantum backreaction in a Bose–Einstein condensate, Phys. Rev. A, Volume 106 (2022), 053319 | DOI
[173] Numerical studies of back reaction effects in an analog model of cosmological preheating, Phys. Rev. Lett., Volume 130 (2023), 241501 | DOI
[174] Time in the quantum theory and the uncertainty relation for time and energy, Phys. Rev., Volume 122 (1961), pp. 1649-1658 | DOI
[175] Quantum mechanical phase and time operator, Phys. Phys. Fiz., Volume 1 (1964), pp. 49-61 | DOI
[176] Time and the interpretation of canonical quantum gravity, Phys. Rev. D, Volume 40 (1989), pp. 2598-2614 | DOI
[177] Trinity of relational quantum dynamics, Phys. Rev. D, Volume 104 (2021), 066001 | DOI
[178] Parametric amplification of topological interface states in synthetic Andreev bands, Phys. Rev. B, Volume 103 (2021), 214504 | DOI
[179] Angle-dependent Andreev reflection at an interface with a polaritonic superfluid, Phys. Rev. B, Volume 108 (2023), 115309 | DOI
[180] et al. Quantum vacuum excitation of a quasinormal mode in an analog model of black hole spacetime, Phys. Rev. Lett., Volume 130 (2023), 111501 | DOI
[181] Spectrum and entanglement of phonons in quantum fluids of light, Phys. Rev. A, Volume 89 (2014), 043819 | DOI
[182] Quantum aspects of stimulated Hawking radiation in an optical analog white-black hole pair, Phys. Rev. Lett., Volume 128 (2022), 091301 | DOI
[183] Symplectic circuits, entanglement, and stimulated Hawking radiation in analogue gravity, Phys. Rev. D, Volume 106 (2022), 105021 | DOI
[184] Entanglement from superradiance and rotating quantum fluids of light, Phys. Rev. D, Volume 109 (2024), 105024 | DOI
[185] Dynamics of defect-induced dark solitons in an exciton-polariton condensate, Phys. Rev. B, Volume 97 (2018), 155304 | DOI
Cité par Sources :
Commentaires - Politique