[Physique de lʼeffet Hall quantique fractionnaire dans des bandes plates topologiques]
Nous présentons une revue didactique sur la physique des isolants de Chern, qui se concentre plus particulièrement sur lʼeffet Hall quantique fractionnaire. Habituellement, cet effet apparaît typiquement dans des hétérostructures semiconductrices à basse température et sous champ magnétique fort. En revanche, les isolants de Chern peuvent abriter des phases topologiques aux propriétés similaires, mais stabilisées à lʼéchelle du paramètre de réseau, ce qui peut conduire un ordre topologique à haute température. Nous décrivons la construction des modèles avec bande(s) plate(s), passons en revue les résultats numériques et établissons une comparaison entre les isolants de Chern sur réseau et le problème de Landau défini dans le continuum. Nous discutons alors brièvement les aspects de la physique des isolants de Chern qui nont pas dʼanalogues dans le continuum, avant de passer aux possibles réalisations expérimentales. Nous concluons par une liste de perspectives et de problèmes encore ouverts dans ce domaine, ainsi que par une discussion des extensions de ces idées à des dimensions supérieures et à dʼautres phases topologiques.
We present a pedagogical review of the physics of fractional Chern insulators with a particular focus on the connection to the fractional quantum Hall effect. While the latter conventionally arises in semiconductor heterostructures at low temperatures and in high magnetic fields, interacting Chern insulators at fractional band filling may host phases with the same topological properties, but stabilized at the lattice scale, potentially leading to high-temperature topological order. We discuss the construction of topological flat band models, provide a survey of numerical results, and establish the connection between the Chern band and the continuum Landau problem. We then briefly summarize various aspects of Chern band physics that have no natural continuum analogs, before turning to a discussion of possible experimental realizations. We close with a survey of future directions and open problems, as well as a discussion of extensions of these ideas to higher dimensions and to other topological phases.
Mots-clés : Isolants de Chern, Bandes plates, Effet Hall fractionnaire, Ordre topologique
Siddharth A. Parameswaran 1 ; Rahul Roy 2 ; Shivaji L. Sondhi 3
@article{CRPHYS_2013__14_9-10_816_0, author = {Siddharth A. Parameswaran and Rahul Roy and Shivaji L. Sondhi}, title = {Fractional quantum {Hall} physics in topological flat bands}, journal = {Comptes Rendus. Physique}, pages = {816--839}, publisher = {Elsevier}, volume = {14}, number = {9-10}, year = {2013}, doi = {10.1016/j.crhy.2013.04.003}, language = {en}, }
TY - JOUR AU - Siddharth A. Parameswaran AU - Rahul Roy AU - Shivaji L. Sondhi TI - Fractional quantum Hall physics in topological flat bands JO - Comptes Rendus. Physique PY - 2013 SP - 816 EP - 839 VL - 14 IS - 9-10 PB - Elsevier DO - 10.1016/j.crhy.2013.04.003 LA - en ID - CRPHYS_2013__14_9-10_816_0 ER -
Siddharth A. Parameswaran; Rahul Roy; Shivaji L. Sondhi. Fractional quantum Hall physics in topological flat bands. Comptes Rendus. Physique, Topological insulators / Isolants topologiques, Volume 14 (2013) no. 9-10, pp. 816-839. doi : 10.1016/j.crhy.2013.04.003. https://comptes-rendus.academie-sciences.fr/physique/articles/10.1016/j.crhy.2013.04.003/
[1] New method for high-accuracy determination of the fine-structure constant based on quantized Hall resistance, Phys. Rev. Lett., Volume 45 (1980) no. 6, p. 494 | DOI
[2] Two-dimensional magnetotransport in the extreme quantum limit, Phys. Rev. Lett., Volume 48 (1982) no. 22, p. 1559 | DOI
[3] Anomalous quantum Hall effect: An incompressible quantum fluid with fractionally charged excitations, Phys. Rev. Lett., Volume 50 (1983) no. 18, p. 1395 | DOI
[4] Topological order in rigid states, Int. J. Mod. Phys. B, Volume 4 (1990), p. 239 | DOI
[5] Fractional quantization of the Hall effect: A hierarchy of incompressible quantum fluid states, Phys. Rev. Lett., Volume 51 (1983) no. 7, p. 605 | DOI
[6] Statistics of quasiparticles and the hierarchy of fractional quantized Hall states, Phys. Rev. Lett., Volume 52 (1984) no. 18, p. 1583 | DOI
[7] Nonabelions in the fractional quantum Hall effect, Nucl. Phys. B, Volume 360 (1991) no. 2–3, p. 362
[8] Effective field theory model for the fractional quantum Hall effect, Phys. Rev. Lett., Volume 62 (1989) no. 1, p. 82
[9] The Chern–Simons–Landau–Ginzburg theory of the fractional quantum Hall effect, Int. J. Mod. Phys. B, Volume 6 (1992) no. 1, pp. 43-77
[10] Quantized Hall conductance in a two-dimensional periodic potential, Phys. Rev. Lett., Volume 49 (1982) no. 6, p. 405 | DOI
[11] Model for a quantum Hall effect without Landau levels: Condensed-matter realization of the “parity anomaly”, Phys. Rev. Lett., Volume 61 (1988) no. 18, pp. 2015-2018 | DOI
[12] High-temperature fractional quantum hall states, Phys. Rev. Lett., Volume 106 (2011) no. 23, p. 236802 | DOI
[13] Nearly flatbands with nontrivial topology, Phys. Rev. Lett., Volume 106 (2011) no. 23, p. 236803 | DOI
[14] Fractional quantum Hall states at zero magnetic field, Phys. Rev. Lett., Volume 106 (2011) no. 23, p. 236804 | DOI
[15] Fractional quantum Hall effect in the absence of Landau levels, Nat. Commun., Volume 2 (2011), p. 389
[16] Fractional quantum Hall effect of hard-core bosons in topological flat bands, Phys. Rev. Lett., Volume 107 (2011), p. 146803 | DOI
[17] Fractional Chern insulator, Phys. Rev. X, Volume 1 (2011) no. 2, p. 021014
[18] Generic wave-function description of fractional quantum anomalous Hall states and fractional topological insulators, Phys. Rev. Lett., Volume 107 (2011), p. 126803 | DOI
[19] Fractional Chern insulators and the
[20] Band geometry of fractional topological insulators | arXiv
[21] Composite fermions for fractionally filled Chern bands | arXiv
[22] Hamiltonian theory of fractionally filled Chern bands | arXiv
[23] Fractional quantum Hall states of atoms in optical lattices, Phys. Rev. Lett., Volume 94 (2005) no. 8, p. 086803 | DOI
[24] Magneto-roton theory of collective excitations in the fractional quantum Hall effect, Phys. Rev. B, Volume 33 (1986) no. 4, pp. 2481-2494 | DOI
[25] Continuous transitions between composite Fermi liquid and Landau Fermi liquid: A route to fractionalized mott insulators, Phys. Rev. B, Volume 86 (2012), p. 075136 | DOI
[26] arXiv
|[27] Establishing non-Abelian topological order in Gutzwiller projected Chern insulators via entanglement entropy and modular S-matrix | arXiv
[28] Composite fermion theory for bosonic quantum Hall states on lattices, Phys. Rev. Lett., Volume 103 (2009) no. 10, p. 105303 | DOI
[29] Interface engineering of quantum Hall effects in digital transition metal oxide heterostructures, Nat. Commun., Volume 2 (2011) | DOI
[30] Optical flux lattices for ultracold atomic gases, Phys. Rev. Lett., Volume 106 (2011), p. 175301 | DOI
[31] Realizing fractional Chern insulators with dipolar spins | arXiv
[32] Topological flat bands from dipolar spin systems, Phys. Rev. Lett., Volume 109 (2012), p. 266804 | DOI
[33] Topological insulators and fractional quantum Hall effect on the ruby lattice, Phys. Rev. B, Volume 84 (2011) no. 15, p. 155116
[34] Many-particle translational symmetries of two-dimensional electrons at rational Landau-level filling, Phys. Rev. Lett., Volume 55 (1985), pp. 2095-2098 | DOI
[35] Fractional quantum Hall effect in a periodic potential, Phys. Rev. B, Volume 48 (1993), pp. 8890-8898 | DOI
[36] “Fractional statistics” in arbitrary dimensions: A generalization of the Pauli principle, Phys. Rev. Lett., Volume 67 (1991), pp. 937-940 | DOI
[37] Emergent many-body translational symmetries of abelian and non-abelian fractionally filled topological insulators, Phys. Rev. B, Volume 85 (2012), p. 075128 | DOI
[38] Topological entanglement entropy, Phys. Rev. Lett., Volume 96 (2006), p. 110404 | DOI
[39] Detecting topological order in a ground state wave function, Phys. Rev. Lett., Volume 96 (2006), p. 110405 | DOI
[40] Entanglement spectrum as a generalization of entanglement entropy: Identification of topological order in non-abelian fractional quantum Hall effect states, Phys. Rev. Lett., Volume 101 (2008) no. 1, p. 010504 | DOI
[41] Entropy and area, Phys. Rev. Lett., Volume 71 (1993), pp. 666-669 | DOI
[42] Extracting excitations from model state entanglement, Phys. Rev. Lett., Volume 106 (2011), p. 100405 | DOI
[43] Quasiparticle statistics and braiding from ground-state entanglement, Phys. Rev. B, Volume 85 (2012), p. 235151 | DOI
[44] Pseudopotential formalism for fractional Chern insulators | arXiv
[45] From fractional Chern insulators to abelian and non-abelian fractional quantum Hall states: Adiabatic continuity and orbital entanglement spectrum, Phys. Rev. B, Volume 87 (2013), p. 035306 | DOI
[46] Adiabatic continuation of fractional Chern insulators to fractional quantum Hall states, Phys. Rev. Lett., Volume 109 (2012), p. 246805 | DOI
[47] Adiabatic continuity between Hofstadter and Chern insulator states, Phys. Rev. B, Volume 86 (2012), p. 165129 | DOI
[48] Localization, percolation, and the quantum Hall effect, Phys. Rev. B, Volume 27 (1983) no. 12, p. 7539 | DOI
[49] Gauge-fixed Wannier wave functions for fractional topological insulators, Phys. Rev. B, Volume 86 (2012), p. 085129 | DOI
[50] Bloch electrons in a uniform magnetic field, Phys. Rev. A, Volume 133 (1964) no. 4, pp. 1038-1044 | DOI
[51] R. Roy, 2011, unpublished.
[52] N. Regnault, B.A. Bernevig, 2011, personal communication.
[53] Exact parent Hamiltonian for the quantum Hall states in a lattice, Phys. Rev. Lett., Volume 105 (2010), p. 215303 | DOI
[54] Non-abelian braiding of lattice bosons, Phys. Rev. Lett., Volume 108 (2012), p. 066802 | DOI
[55] The integer quantum Hall transition and random su(N) rotation, J. Phys. Condens. Matter, Volume 15 (2003), p. L125-L132 | DOI
[56] Geometrical description of Berryʼs phase, Phys. Rev. A, Volume 36 (1987), pp. 3479-3481
[57] Geometry of quantum evolution, Phys. Rev. Lett., Volume 65 (1990), pp. 1697-1700 | DOI
[58] Foundations of Differential Geometry, vol. 2, Interscience Publishers, New York, 1969
[59] Relation between “phases” and “distance” in quantum evolution, Phys. Lett. A, Volume 159 (1991) no. 3, pp. 105-112 | DOI
[60] The insulating state of matter: A geometrical theory, Eur. Phys. J. B, Volume 79 (2011), pp. 121-137 | arXiv | DOI
[61] Enhancing the stability of a fractional Chern insulator against competing phases, Phys. Rev. B, Volume 86 (2012), p. 205125 | DOI
[62] Noncommutative geometry for three-dimensional topological insulators, Phys. Rev. B, Volume 86 (2012), p. 035125 | DOI
[63] Magnetic translation algebra with or without magnetic field in the continuum or on arbitrary Bravais lattices in any dimension, Phys. Rev. B, Volume 86 (2012), p. 195125 | DOI
[64] d-algebra structure of topological insulators, Phys. Rev. B, Volume 86 (2012), p. 241104 | DOI
[65] Symmetry-protected fractional Chern insulators and fractional topological insulators, Phys. Rev. B, Volume 85 (2012), p. 165134 | DOI
[66] Quantum orders and symmetric spin liquids, Phys. Rev. B, Volume 65 (2002), p. 165113 | DOI
[67] Wave functions for fractional Chern insulators, Phys. Rev. B, Volume 85 (2012), p. 125105 | DOI
[68] Topological entanglement entropy of
[69] Non-abelian quantum Hall effect in topological flat bands, Phys. Rev. Lett., Volume 108 (2012), p. 126805 | DOI
[70] Fractional quantum Hall effect in topological flat bands with Chern number two, Phys. Rev. B, Volume 86 (2012), p. 201101 | DOI
[71] Topological flat band models with arbitrary Chern numbers, Phys. Rev. B, Volume 86 (2012), p. 241112 | DOI
[72] Nearly flat band with Chern number
[73] Flat bands with higher Chern number in pyrochlore slabs, Phys. Rev. B, Volume 86 (2012) no. 24, p. 241111
[74] Fractional Chern insulators in topological flat bands with higher Chern number, Phys. Rev. Lett., Volume 109 (2012), p. 186805 | DOI
[75] Series of Abelian and non-Abelian states in
[76] Topological nematic states and non-abelian lattice dislocations, Phys. Rev. X, Volume 2 (2012), p. 031013 | DOI
[77] Bloch model wavefunctions and pseudopotentials for all fractional Chern insulators | arXiv
[78] Theory of the quantized Hall conductance, Helv. Phys. Acta, Volume 56 (1983), p. 75
[79] Genons, twist defects, and projective non-Abelian braiding statistics | arXiv
[80] Fractional Chern insulator on a triangular lattice of strongly correlated
[81] Narrowing of topological bands due to electronic orbital degrees of freedom, Phys. Rev. Lett., Volume 107 (2011), p. 116401 | DOI
[82] Fractional quantum-Hall liquid spontaneously generated by strongly correlated
[83] Designing topological bands in reciprocal space, Phys. Rev. Lett., Volume 109 (2012), p. 215302 | DOI
[84] Reaching fractional quantum Hall states with optical flux lattices | arXiv
[85] Quantized anomalous Hall effect in two-dimensional ferromagnets: Quantum Hall effect in metals, Phys. Rev. Lett., Volume 90 (2003) no. 20, p. 206601 | DOI
[86] Global phase diagram in the quantum Hall effect, Phys. Rev. B, Volume 46 (1992) no. 4, p. 2223
[87] Long-range interactions and the quantum Hall effect, Phys. Rev. B, Volume 46 (1992) no. 20, p. 13319
[88] Fractional Chern insulators beyond Laughlin states | arXiv
[89] Hierarchy of fractional Chern insulators and competing compressible states | arXiv
[90] Chiral Luttinger liquid and the edge excitations in the fractional quantum Hall states, Phys. Rev. B, Volume 41 (1990) no. 18, p. 12838 | DOI
[91] Interferometric approach to measuring band topology in 2D optical lattices | arXiv
[92] Mapping the Berry curvature from semiclassical dynamics in optical lattices, Phys. Rev. A, Volume 85 (2012), p. 033620 | DOI
[93] Direct measurement of the Zak phase in topological Bloch bands | arXiv
[94] Finitely correlated states on quantum spin chains, Commun. Math. Phys., Volume 144 (1992), pp. 443-490 | DOI
[95] Density matrix formulation for quantum renormalization groups, Phys. Rev. Lett., Volume 69 (1992), pp. 2863-2866 | DOI
[96] Thermodynamic limit of density matrix renormalization, Phys. Rev. Lett., Volume 75 (1995), pp. 3537-3540 | DOI
[97] Renormalization algorithms for quantum-many body systems in two and higher dimensions | arXiv
[98] Exact matrix product states for quantum Hall wave functions, Phys. Rev. B, Volume 86 (2012), p. 245305 | DOI
[99] Matrix product states and the fractional quantum Hall effect | arXiv
[100] Local tensor network for strongly correlated projective states, Phys. Rev. Lett., Volume 106 (2011), p. 156401 | DOI
[101] A class of
[102] Fractional topological insulators, Phys. Rev. Lett., Volume 103 (2009), p. 196803 | DOI
[103] Fractional topological insulators in three dimensions, Phys. Rev. Lett., Volume 105 (2010), p. 246809 | DOI
[104] Correlated topological insulators and the fractional magnetoelectric effect, Phys. Rev. B, Volume 83 (2011), p. 195139 | DOI
[105] Fractional topological liquids with time-reversal symmetry and their lattice realization, Phys. Rev. B, Volume 84 (2011), p. 165107 | DOI
[106] Time-reversal symmetric hierarchy of fractional incompressible liquids, Phys. Rev. B, Volume 84 (2011), p. 165138 | DOI
[107] Exactly soluble models for fractional topological insulators in two and three dimensions, Phys. Rev. B, Volume 84 (2011), p. 235145 | DOI
[108] Symmetry protected topological orders in interacting bosonic systems | arXiv
[109] Entanglement spectrum of a topological phase in one dimension, Phys. Rev. B, Volume 81 (2010), p. 064439 | DOI
[110] Symmetry protection of topological phases in one-dimensional quantum spin systems, Phys. Rev. B, Volume 85 (2012), p. 075125 | DOI
- Porous Haldane model: topological phase transitions and flat bands, Journal of Physics: Condensed Matter, Volume 37 (2025) no. 7, p. 075501 | DOI:10.1088/1361-648x/ad9723
- Parafermions in moiré minibands, Nature Communications, Volume 16 (2025) no. 1 | DOI:10.1038/s41467-025-57035-x
- Flat-band enhanced antiferromagnetic fluctuations and superconductivity in pressurized CsCr3Sb5, Nature Communications, Volume 16 (2025) no. 1 | DOI:10.1038/s41467-025-56582-7
- Interaction-driven breakdown of Aharonov–Bohm caging in flat-band Rydberg lattices, Nature Physics, Volume 21 (2025) no. 2, p. 221 | DOI:10.1038/s41567-024-02714-7
- Square lattice model with staggered magnetic fluxes: Zero Chern number topological states and topological flat bands, Physical Review B, Volume 111 (2025) no. 11 | DOI:10.1103/physrevb.111.115136
- Variational mapping of Chern bands to Landau levels: Application to fractional Chern insulators in twisted MoTe2, Physical Review B, Volume 111 (2025) no. 12 | DOI:10.1103/physrevb.111.125122
- Topological triviality of flat Hamiltonians, Physical Review B, Volume 111 (2025) no. 4 | DOI:10.1103/physrevb.111.l041105
- Higher Vortexability: Zero-Field Realization of Higher Landau Levels, Physical Review Letters, Volume 134 (2025) no. 10 | DOI:10.1103/physrevlett.134.106502
- Closed Band-Projected Density Algebra Must Be Girvin-MacDonald-Platzman, Physical Review Letters, Volume 134 (2025) no. 13 | DOI:10.1103/physrevlett.134.136502
- Multiple Chern Bands in Twisted MoTe2 and Possible Non-Abelian States, Physical Review Letters, Volume 134 (2025) no. 6 | DOI:10.1103/physrevlett.134.066601
- Unveiling hidden bipartite limit and flat band in semifunctionalized graphene by electric field, Physical Review Materials, Volume 9 (2025) no. 2 | DOI:10.1103/physrevmaterials.9.024005
- Universal performance gap of neural quantum states applied to the Hofstadter-Bose-Hubbard model, SciPost Physics, Volume 18 (2025) no. 1 | DOI:10.21468/scipostphys.18.1.011
- Flat band physics in the charge-density wave state of 1T-TaS2 and 1T-TaSe2, npj Quantum Materials, Volume 10 (2025) no. 1 | DOI:10.1038/s41535-025-00747-6
- Fractionalized topological states in moiré superlattices, Acta Physica Sinica, Volume 73 (2024) no. 20, p. 207303 | DOI:10.7498/aps.73.20241029
- Fractional Quantum Anomalous Hall Phase for Raman Superarray of Rydberg Atoms, Advanced Quantum Technologies, Volume 7 (2024) no. 5 | DOI:10.1002/qute.202300356
- Transfer learning relaxation, electronic structure and continuum model for twisted bilayer MoTe2, Communications Physics, Volume 7 (2024) no. 1 | DOI:10.1038/s42005-024-01754-y
- Quantum Magnetism in Wannier-Obstructed Mott Insulators, Crystals, Volume 14 (2024) no. 2, p. 176 | DOI:10.3390/cryst14020176
- Recent developments in fractional Chern insulators, Encyclopedia of Condensed Matter Physics (2024), p. 515 | DOI:10.1016/b978-0-323-90800-9.00136-0
- Orthogonal flatbands in Hamiltonians with local symmetry, Journal of Physics A: Mathematical and Theoretical, Volume 57 (2024) no. 49, p. 495301 | DOI:10.1088/1751-8121/ad909d
- Fubini–Study metric and topological properties of flat band electronic states: the case of an atomic chain with s − p orbitals, Journal of Physics: Condensed Matter, Volume 36 (2024) no. 1, p. 015502 | DOI:10.1088/1361-648x/acfbd1
- Topological phase transitions and flat bands on an islamic lattice, Journal of Physics: Condensed Matter, Volume 36 (2024) no. 3, p. 035501 | DOI:10.1088/1361-648x/acfeba
- Tunable moiré materials for probing Berry physics and topology, Nature Reviews Materials, Volume 9 (2024) no. 7, p. 481 | DOI:10.1038/s41578-024-00671-4
- Band mixing in the quantum anomalous Hall regime of twisted semiconductor bilayers, Physical Review B, Volume 109 (2024) no. 12 | DOI:10.1103/physrevb.109.l121107
- Strong-coupling topological states and phase transitions in helical trilayer graphene, Physical Review B, Volume 109 (2024) no. 12 | DOI:10.1103/physrevb.109.125141
- Quantum geometric bound and ideal condition for Euler band topology, Physical Review B, Volume 109 (2024) no. 16 | DOI:10.1103/physrevb.109.l161111
- Upper bounds on superconducting and excitonic phase stiffness for interacting isolated narrow bands, Physical Review B, Volume 109 (2024) no. 2 | DOI:10.1103/physrevb.109.024507
- Moiré fractional Chern insulators. I. First-principles calculations and continuum models of twisted bilayer MoTe2, Physical Review B, Volume 109 (2024) no. 20 | DOI:10.1103/physrevb.109.205121
- Moiré fractional Chern insulators. II. First-principles calculations and continuum models of rhombohedral graphene superlattices, Physical Review B, Volume 109 (2024) no. 20 | DOI:10.1103/physrevb.109.205122
- Contrasting twisted bilayer graphene and transition metal dichalcogenides for fractional Chern insulators: An emergent gauge picture, Physical Review B, Volume 109 (2024) no. 24 | DOI:10.1103/physrevb.109.245131
- Fractional quantum Hall states with variational projected entangled-pair states: A study of the bosonic Harper-Hofstadter model, Physical Review B, Volume 109 (2024) no. 24 | DOI:10.1103/physrevb.109.l241117
- Stability of fractional Chern insulators with a non-Landau level continuum limit, Physical Review B, Volume 109 (2024) no. 24 | DOI:10.1103/physrevb.109.245111
- Boundary flat bands with topological spin textures protected by subchiral symmetry, Physical Review B, Volume 109 (2024) no. 24 | DOI:10.1103/physrevb.109.245402
- Fractional Chern insulators versus nonmagnetic states in twisted bilayer MoTe2, Physical Review B, Volume 109 (2024) no. 4 | DOI:10.1103/physrevb.109.045147
- Topological states and flat bands on the maple leaf lattice, Physical Review B, Volume 109 (2024) no. 7 | DOI:10.1103/physrevb.109.075118
- Phase transitions out of quantum Hall states in moiré materials, Physical Review B, Volume 109 (2024) no. 8 | DOI:10.1103/physrevb.109.085143
- Area-law entanglement from quantum geometry, Physical Review B, Volume 109 (2024) no. 8 | DOI:10.1103/physrevb.109.085146
- Self-consistent theory of fractional quantum anomalous Hall states in rhombohedral graphene, Physical Review B, Volume 110 (2024) no. 11 | DOI:10.1103/physrevb.110.115146
- Topological quantum phase transitions driven by a displacement field in twisted MoTe2 bilayers, Physical Review B, Volume 110 (2024) no. 12 | DOI:10.1103/physrevb.110.125142
- Non-Abelian and Abelian descendants of a vortex spin liquid: Fractional quantum spin Hall effect in twisted MoTe2, Physical Review B, Volume 110 (2024) no. 15 | DOI:10.1103/physrevb.110.155102
- Non-Abelian fractional quantum anomalous Hall states and first Landau level physics of the second moiré band of twisted bilayer MoTe2, Physical Review B, Volume 110 (2024) no. 16 | DOI:10.1103/physrevb.110.l161109
- Higher-bracket structure of density operators in Weyl fermion systems and topological insulators, Physical Review B, Volume 110 (2024) no. 19 | DOI:10.1103/physrevb.110.195115
- Hyperbolic fractional Chern insulators, Physical Review B, Volume 110 (2024) no. 19 | DOI:10.1103/physrevb.110.195113
- Constructing vortex functions and basis states of Chern insulators: Ideal condition, inequality from index theorem, and coherentlike states on the von Neumann lattice, Physical Review B, Volume 110 (2024) no. 24 | DOI:10.1103/physrevb.110.245112
- Density wave halo around anyons in fractional quantum anomalous Hall states, Physical Review B, Volume 110 (2024) no. 8 | DOI:10.1103/physrevb.110.085120
- Topological inverse Anderson insulator, Physical Review B, Volume 110 (2024) no. 8 | DOI:10.1103/physrevb.110.085157
- Pair density wave order in multiband systems, Physical Review B, Volume 110 (2024) no. 9 | DOI:10.1103/physrevb.110.094515
- Cold-Atom Elevator: From Edge-State Injection to the Preparation of Fractional Chern Insulators, Physical Review Letters, Volume 132 (2024) no. 16 | DOI:10.1103/physrevlett.132.163402
- Ginzburg-Landau Theory of Flat-Band Superconductors with Quantum Metric, Physical Review Letters, Volume 132 (2024) no. 2 | DOI:10.1103/physrevlett.132.026002
- Fractional Chern Insulator in Twisted Bilayer MoTe2, Physical Review Letters, Volume 132 (2024) no. 3 | DOI:10.1103/physrevlett.132.036501
- Vortex Spin Liquid with Fractional Quantum Spin Hall Effect in Moiré Chern Bands, Physical Review Letters, Volume 133 (2024) no. 10 | DOI:10.1103/physrevlett.133.106502
- Anomalous Hall Crystals in Rhombohedral Multilayer Graphene. I. Interaction-Driven Chern Bands and Fractional Quantum Hall States at Zero Magnetic Field, Physical Review Letters, Volume 133 (2024) no. 20 | DOI:10.1103/physrevlett.133.206503
- Designing Topology and Fractionalization in Narrow Gap Semiconductor Films via Electrostatic Engineering, Physical Review Letters, Volume 133 (2024) no. 20 | DOI:10.1103/physrevlett.133.206601
- Fractional Quantum Anomalous Hall Effect in Rhombohedral Multilayer Graphene in the Moiréless Limit, Physical Review Letters, Volume 133 (2024) no. 20 | DOI:10.1103/physrevlett.133.206504
- Theory of Quantum Anomalous Hall Phases in Pentalayer Rhombohedral Graphene Moiré Structures, Physical Review Letters, Volume 133 (2024) no. 20 | DOI:10.1103/physrevlett.133.206502
- Topological Moiré Polaritons, Physical Review Letters, Volume 133 (2024) no. 26 | DOI:10.1103/physrevlett.133.266602
- Quantum mechanics of composite fermions, Physical Review Research, Volume 6 (2024) no. 2 | DOI:10.1103/physrevresearch.6.023306
- Quantum-metric-induced quantum Hall conductance inversion and reentrant transition in fractional Chern insulators, Physical Review Research, Volume 6 (2024) no. 3 | DOI:10.1103/physrevresearch.6.l032063
- Ideal Chern bands with strong short-range repulsion: Applications to correlated metals, superconductivity, and topological order, Physical Review Research, Volume 6 (2024) no. 4 | DOI:10.1103/physrevresearch.6.043240
- Particle-Hole Asymmetric Ferromagnetism and Spin Textures in the Triangular Hubbard-Hofstadter Model, Physical Review X, Volume 14 (2024) no. 4 | DOI:10.1103/physrevx.14.041025
- Parent Berry Curvature and the Ideal Anomalous Hall Crystal, Physical Review X, Volume 14 (2024) no. 4 | DOI:10.1103/physrevx.14.041040
- Maximally localized Wannier functions, interaction models, and fractional quantum anomalous Hall effect in twisted bilayer MoTe2, Proceedings of the National Academy of Sciences, Volume 121 (2024) no. 8 | DOI:10.1073/pnas.2316749121
- Topological Metamaterials, Chemical Reviews, Volume 123 (2023) no. 12, p. 7585 | DOI:10.1021/acs.chemrev.2c00800
- Phase transition in bilayer quantum Hall system with opposite magnetic field, Chinese Physics B, Volume 32 (2023) no. 9, p. 097303 | DOI:10.1088/1674-1056/ace61d
- Noncommutative geometry and deformation quantization in the quantum Hall fluids with inhomogeneous magnetic fields, Journal of Physics A: Mathematical and Theoretical, Volume 56 (2023) no. 45, p. 455203 | DOI:10.1088/1751-8121/ad018b
- Light driven magnetic transitions in transition metal dichalcogenide heterobilayers, Journal of Physics: Condensed Matter, Volume 35 (2023) no. 9, p. 095801 | DOI:10.1088/1361-648x/acab49
- Properties of Laughlin states on fractal lattices, Journal of Statistical Mechanics: Theory and Experiment, Volume 2023 (2023) no. 5, p. 053103 | DOI:10.1088/1742-5468/acd104
- One-dimensional flat bands and Dirac cones in narrow zigzag dice lattice ribbons, Materials Science and Engineering: B, Volume 293 (2023), p. 116486 | DOI:10.1016/j.mseb.2023.116486
- Topological quantum devices: a review, Nanoscale, Volume 15 (2023) no. 31, p. 12787 | DOI:10.1039/d3nr01288c
- The twisted material that splits the electron, Nature, Volume 622 (2023) no. 7981, p. 36 | DOI:10.1038/d41586-023-02941-7
- Signatures of fractional quantum anomalous Hall states in twisted MoTe2, Nature, Volume 622 (2023) no. 7981, p. 63 | DOI:10.1038/s41586-023-06289-w
- Thermodynamic evidence of fractional Chern insulator in moiré MoTe2, Nature, Volume 622 (2023) no. 7981, p. 69 | DOI:10.1038/s41586-023-06452-3
- Singular flat bands in the modified Haldane-Dice model, Physica B: Condensed Matter, Volume 659 (2023), p. 414848 | DOI:10.1016/j.physb.2023.414848
- Application of the real space decimation method in determining intricate electronic phases of matter: a review, Physical Chemistry Chemical Physics, Volume 25 (2023) no. 14, p. 9706 | DOI:10.1039/d3cp00680h
- Nonperturbative regularization of ( 1+1 )-dimensional anomaly-free chiral fermions and bosons: On the equivalence of anomaly matching conditions and boundary gapping rules, Physical Review B, Volume 107 (2023) no. 1 | DOI:10.1103/physrevb.107.014311
- Flat band induced metal-insulator transitions for weak magnetic flux and spin-orbit disorder, Physical Review B, Volume 107 (2023) no. 17 | DOI:10.1103/physrevb.107.174202
- Flat bands with high Chern numbers and multiple flat bands in multifold staggered-flux models, Physical Review B, Volume 107 (2023) no. 23 | DOI:10.1103/physrevb.107.235116
- Extrinsic geometry of quantum states, Physical Review B, Volume 107 (2023) no. 24 | DOI:10.1103/physrevb.107.245136
- Interplay of many-body interactions and quasiperiodic disorder in the all-bands-flat diamond chain, Physical Review B, Volume 107 (2023) no. 24 | DOI:10.1103/physrevb.107.245110
- Thermopower of the dice lattice, Physical Review B, Volume 108 (2023) no. 11 | DOI:10.1103/physrevb.108.115141
- Vortexability: A unifying criterion for ideal fractional Chern insulators, Physical Review B, Volume 108 (2023) no. 20 | DOI:10.1103/physrevb.108.205144
- Minimal tight-binding model for the distinct magnetic orders of semihydrogenated and semifluorinated graphene, Physical Review B, Volume 108 (2023) no. 24 | DOI:10.1103/physrevb.108.245120
- Staggered magnetic flux induced higher-order topological insulators and topological flat bands on the ruby lattice, Physical Review B, Volume 108 (2023) no. 8 | DOI:10.1103/physrevb.108.085121
- Suppression of Nonequilibrium Quasiparticle Transport in Flat-Band Superconductors, Physical Review Letters, Volume 130 (2023) no. 21 | DOI:10.1103/physrevlett.130.216003
- Composite Fermi Liquid at Zero Magnetic Field in Twisted MoTe2, Physical Review Letters, Volume 131 (2023) no. 13 | DOI:10.1103/physrevlett.131.136502
- Essay: Where Can Quantum Geometry Lead Us?, Physical Review Letters, Volume 131 (2023) no. 24 | DOI:10.1103/physrevlett.131.240001
- Electronic correlations and universal long-range scaling in kagome metals, Physical Review Research, Volume 5 (2023) no. 1 | DOI:10.1103/physrevresearch.5.l012008
- Relationship between two-particle topology and fractional Chern insulator, Physical Review Research, Volume 5 (2023) no. 1 | DOI:10.1103/physrevresearch.5.013112
- Topological Mott insulator at quarter filling in the interacting Haldane model, Physical Review Research, Volume 5 (2023) no. 1 | DOI:10.1103/physrevresearch.5.013162
- Adiabatic preparation of fractional Chern insulators from an effective thin-torus limit, Physical Review Research, Volume 5 (2023) no. 2 | DOI:10.1103/physrevresearch.5.023100
- Origin of model fractional Chern insulators in all topological ideal flatbands: Explicit color-entangled wave function and exact density algebra, Physical Review Research, Volume 5 (2023) no. 2 | DOI:10.1103/physrevresearch.5.023167
- Many-body ground states from decomposition of ideal higher Chern bands: Applications to chirally twisted graphene multilayers, Physical Review Research, Volume 5 (2023) no. 2 | DOI:10.1103/physrevresearch.5.023166
- Pressure-enhanced fractional Chern insulators along a magic line in moiré transition metal dichalcogenides, Physical Review Research, Volume 5 (2023) no. 3 | DOI:10.1103/physrevresearch.5.l032022
- Floquet fractional Chern insulators and competing phases in twisted bilayer graphene, SciPost Physics, Volume 15 (2023) no. 4 | DOI:10.21468/scipostphys.15.4.148
- Magic-angle helical trilayer graphene, Science Advances, Volume 9 (2023) no. 36 | DOI:10.1126/sciadv.adi6063
- Flat-band localization and interaction-induced delocalization of photons, Science Advances, Volume 9 (2023) no. 50 | DOI:10.1126/sciadv.adj7195
- Giant proximity exchange and flat Chern band in 2D magnet-semiconductor heterostructures, Science Advances, Volume 9 (2023) no. 8 | DOI:10.1126/sciadv.abn1401
- Interaction-induced topological transition in spin-orbit coupled ultracold bosons, Science China Physics, Mechanics Astronomy, Volume 66 (2023) no. 9 | DOI:10.1007/s11433-023-2166-y
- Shaping the dynamics of aharonov-bohm caged localized modes by nonlinearity, Facta universitatis - series: Physics, Chemistry and Technology, Volume 20 (2022) no. 1, p. 55 | DOI:10.2298/fupct2201055s
- Enhancement of pairing correlations due to nearly flat bands in the plaquette-Lieb Hubbard model, International Journal of Modern Physics C, Volume 33 (2022) no. 08 | DOI:10.1142/s0129183122501078
- Flat band of Kagome lattice in graphene plasmonic crystals, Journal of Physics D: Applied Physics, Volume 55 (2022) no. 6, p. 065106 | DOI:10.1088/1361-6463/ac30fe
- Topological States in Strongly Correlated Systems, Journal of Superconductivity and Novel Magnetism, Volume 35 (2022) no. 8, p. 2141 | DOI:10.1007/s10948-022-06251-3
- Ultra-strong spin–orbit coupling and topological moiré engineering in twisted ZrS2 bilayers, Nature Communications, Volume 13 (2022) no. 1 | DOI:10.1038/s41467-022-31604-w
- Three-body problem in a multiband Hubbard model, Physical Review A, Volume 105 (2022) no. 6 | DOI:10.1103/physreva.105.063310
- Stability of (N+1) -body fermion clusters in a multiband Hubbard model, Physical Review A, Volume 106 (2022) no. 3 | DOI:10.1103/physreva.106.033304
- Diagnosis of pairing symmetry by vortex and edge spectra in kagome superconductors, Physical Review B, Volume 105 (2022) no. 17 | DOI:10.1103/physrevb.105.174518
- Excitonic fractional quantum Hall hierarchy in moiré heterostructures, Physical Review B, Volume 105 (2022) no. 23 | DOI:10.1103/physrevb.105.235121
- Fractional Chern insulators with a non-Landau level continuum limit, Physical Review B, Volume 105 (2022) no. 4 | DOI:10.1103/physrevb.105.045144
- Disorder-driven phase transitions in bosonic fractional quantum Hall liquids, Physical Review B, Volume 105 (2022) no. 4 | DOI:10.1103/physrevb.105.045104
- Ferromagnetism in armchair graphene nanoribbon heterostructures, Physical Review B, Volume 105 (2022) no. 5 | DOI:10.1103/physrevb.105.054416
- Electric field driven flat bands: Enhanced magnetoelectric and electrocaloric effects in frustrated quantum magnets, Physical Review B, Volume 105 (2022) no. 5 | DOI:10.1103/physrevb.105.054420
- Evolution between quantum Hall and conducting phases: Simple models and some results, Physical Review B, Volume 105 (2022) no. 8 | DOI:10.1103/physrevb.105.085301
- Flat bands and band-touching from real-space topology in hyperbolic lattices, Physical Review B, Volume 106 (2022) no. 15 | DOI:10.1103/physrevb.106.155146
- Information geometry of quantum critical submanifolds: Relevant, marginal, and irrelevant operators, Physical Review B, Volume 106 (2022) no. 15 | DOI:10.1103/physrevb.106.155101
- Flat band based multifractality in the all-band-flat diamond chain, Physical Review B, Volume 106 (2022) no. 20 | DOI:10.1103/physrevb.106.205119
- Topological chiral currents in the Gross-Neveu model extension, Physical Review B, Volume 106 (2022) no. 4 | DOI:10.1103/physrevb.106.045147
- Bosonic fractional quantum Hall conductance in shaken honeycomb optical lattices without flat bands, Physical Review B, Volume 106 (2022) no. 5 | DOI:10.1103/physrevb.106.054310
- Ultraviolet-Infrared Mixing in Marginal Fermi Liquids, Physical Review Letters, Volume 128 (2022) no. 10 | DOI:10.1103/physrevlett.128.106402
- Hierarchy of Ideal Flatbands in Chiral Twisted Multilayer Graphene Models, Physical Review Letters, Volume 128 (2022) no. 17 | DOI:10.1103/physrevlett.128.176403
- Family of Ideal Chern Flatbands with Arbitrary Chern Number in Chiral Twisted Graphene Multilayers, Physical Review Letters, Volume 128 (2022) no. 17 | DOI:10.1103/physrevlett.128.176404
- Simulating Chiral Spin Liquids with Projected Entangled-Pair States, Physical Review Letters, Volume 129 (2022) no. 17 | DOI:10.1103/physrevlett.129.177201
- Magic-Angle Twisted Bilayer Graphene as a Topological Heavy Fermion Problem, Physical Review Letters, Volume 129 (2022) no. 4 | DOI:10.1103/physrevlett.129.047601
- Structure of the nearly-degenerate manifold of lattice quasiholes on a torus, Physics Letters A, Volume 445 (2022), p. 128259 | DOI:10.1016/j.physleta.2022.128259
- Relating the topology of Dirac Hamiltonians to quantum geometry: When the quantum metric dictates Chern numbers and winding numbers, SciPost Physics, Volume 12 (2022) no. 1 | DOI:10.21468/scipostphys.12.1.018
- Measurable signatures of bosonic fractional Chern insulator states and their fractional excitations in a quantum-gas microscope, SciPost Physics, Volume 12 (2022) no. 3 | DOI:10.21468/scipostphys.12.3.095
- Topological lattice models with constant Berry curvature, SciPost Physics, Volume 12 (2022) no. 4 | DOI:10.21468/scipostphys.12.4.118
- Strong coupling theory of magic-angle graphene: A pedagogical introduction, Annals of Physics, Volume 435 (2021), p. 168646 | DOI:10.1016/j.aop.2021.168646
- Electronic States and the Anomalous Hall Effect in Strongly Correlated Topological Systems, Journal of Experimental and Theoretical Physics, Volume 133 (2021) no. 1, p. 116 | DOI:10.1134/s1063776121060030
- Compactly supported Wannier functions and strictly local projectors, Journal of Physics A: Mathematical and Theoretical, Volume 54 (2021) no. 33, p. 335302 | DOI:10.1088/1751-8121/ac1167
- Anomalous fractional quantum Hall effect and multi-valued Hamiltonians, Journal of Physics: Condensed Matter, Volume 33 (2021) no. 35, p. 355601 | DOI:10.1088/1361-648x/ac0bec
- Fractional Chern insulators in magic-angle twisted bilayer graphene, Nature, Volume 600 (2021) no. 7889, p. 439 | DOI:10.1038/s41586-021-04002-3
- Two-body problem in a multiband lattice and the role of quantum geometry, Physical Review A, Volume 103 (2021) no. 5 | DOI:10.1103/physreva.103.053311
- Role of the defect-core orbital in fractional Chern insulators, Physical Review B, Volume 103 (2021) no. 11 | DOI:10.1103/physrevb.103.115138
- Microscopic diagnosis of universal geometric responses in fractional quantum Hall liquids, Physical Review B, Volume 103 (2021) no. 8 | DOI:10.1103/physrevb.103.085103
- Engineering geometrically flat Chern bands with Fubini-Study Kähler structure, Physical Review B, Volume 104 (2021) no. 11 | DOI:10.1103/physrevb.104.115160
- Stability, phase transitions, and numerical breakdown of fractional Chern insulators in higher Chern bands of the Hofstadter model, Physical Review B, Volume 104 (2021) no. 12 | DOI:10.1103/physrevb.104.125107
- Flat-band ferromagnetism and spin waves in the Haldane-Hubbard model, Physical Review B, Volume 104 (2021) no. 15 | DOI:10.1103/physrevb.104.155129
- Theory of Hofstadter superconductors, Physical Review B, Volume 104 (2021) no. 18 | DOI:10.1103/physrevb.104.184501
- Metal-insulator transition in infinitesimally weakly disordered flat bands, Physical Review B, Volume 104 (2021) no. 18 | DOI:10.1103/physrevb.104.l180201
- Noncompact atomic insulators, Physical Review B, Volume 104 (2021) no. 20 | DOI:10.1103/physrevb.104.l201114
- Flat topological bands and eigenstate criticality in a quasiperiodic insulator, Physical Review B, Volume 104 (2021) no. 4 | DOI:10.1103/physrevb.104.l041106
- Gate-Tunable Fractional Chern Insulators in Twisted Double Bilayer Graphene, Physical Review Letters, Volume 126 (2021) no. 2 | DOI:10.1103/physrevlett.126.026801
- Quench Dynamics of Collective Modes in Fractional Quantum Hall Bilayers, Physical Review Letters, Volume 126 (2021) no. 7 | DOI:10.1103/physrevlett.126.076604
- Nature of Unconventional Pairing in the Kagome Superconductors AV3Sb5 ( A=K,Rb,Cs ), Physical Review Letters, Volume 127 (2021) no. 17 | DOI:10.1103/physrevlett.127.177001
- Exact Landau Level Description of Geometry and Interaction in a Flatband, Physical Review Letters, Volume 127 (2021) no. 24 | DOI:10.1103/physrevlett.127.246403
- Crystalline gauge fields and quantized discrete geometric response for Abelian topological phases with lattice symmetry, Physical Review Research, Volume 3 (2021) no. 1 | DOI:10.1103/physrevresearch.3.013040
- Spontaneous fractional Chern insulators in transition metal dichalcogenide moiré superlattices, Physical Review Research, Volume 3 (2021) no. 3 | DOI:10.1103/physrevresearch.3.l032070
- Dissipative preparation of fractional Chern insulators, Physical Review Research, Volume 3 (2021) no. 4 | DOI:10.1103/physrevresearch.3.043119
- Optical spectral weight, phase stiffness, and T c bounds for trivial and topological flat band superconductors, Proceedings of the National Academy of Sciences, Volume 118 (2021) no. 34 | DOI:10.1073/pnas.2106744118
- Filling-enforced constraint on the quantized Hall conductivity on a periodic lattice, Annals of Physics, Volume 413 (2020), p. 168060 | DOI:10.1016/j.aop.2019.168060
- Photonic flat-band lattices and unconventional light localization, Nanophotonics, Volume 9 (2020) no. 5, p. 1161 | DOI:10.1515/nanoph-2020-0043
- Fractional Chern insulators of few bosons in a box: Hall plateaus from center-of-mass drifts and density profiles, Physical Review A, Volume 102 (2020) no. 6 | DOI:10.1103/physreva.102.063316
- Interaction-induced doublons and embedded topological subspace in a complete flat-band system, Physical Review A, Volume 102 (2020) no. 6 | DOI:10.1103/physreva.102.063325
- Fermionic tensor networks for higher-order topological insulators from charge pumping, Physical Review B, Volume 101 (2020) no. 11 | DOI:10.1103/physrevb.101.115134
- Non-Abelian fractional Chern insulator in disk geometry, Physical Review B, Volume 101 (2020) no. 16 | DOI:10.1103/physrevb.101.165127
- Twisted bilayer graphene in a parallel magnetic field, Physical Review B, Volume 101 (2020) no. 20 | DOI:10.1103/physrevb.101.205116
- Zero-energy excitation in the classical kagome antiferromagnet NaBa2Mn3F11, Physical Review B, Volume 101 (2020) no. 21 | DOI:10.1103/physrevb.101.214409
- Fractional quantum Hall states for moiré superstructures in the Hofstadter regime, Physical Review B, Volume 101 (2020) no. 23 | DOI:10.1103/physrevb.101.235312
- Interaction-driven topological phase transitions in fermionic SU(3) systems, Physical Review B, Volume 101 (2020) no. 24 | DOI:10.1103/physrevb.101.245159
- Intertwined order in fractional Chern insulators from finite-momentum pairing of composite fermions, Physical Review B, Volume 101 (2020) no. 24 | DOI:10.1103/physrevb.101.245154
- Quantum phase transitions in a ν=12 bosonic fractional Chern insulator, Physical Review B, Volume 102 (2020) no. 15 | DOI:10.1103/physrevb.102.155120
- Contrasting lattice geometry dependent versus independent quantities: Ramifications for Berry curvature, energy gaps, and dynamics, Physical Review B, Volume 102 (2020) no. 16 | DOI:10.1103/physrevb.102.165148
- Interplay of flat electronic bands with Holstein phonons, Physical Review B, Volume 102 (2020) no. 23 | DOI:10.1103/physrevb.102.235152
- Ferromagnetism in Narrow Bands of Moiré Superlattices, Physical Review Letters, Volume 124 (2020) no. 18 | DOI:10.1103/physrevlett.124.187601
- Non-Bloch-Band Collapse and Chiral Zener Tunneling, Physical Review Letters, Volume 124 (2020) no. 6 | DOI:10.1103/physrevlett.124.066602
- Magnon Crystallization in the Kagome Lattice Antiferromagnet, Physical Review Letters, Volume 125 (2020) no. 11 | DOI:10.1103/physrevlett.125.117207
- Hofstadter Topology: Noncrystalline Topological Materials at High Flux, Physical Review Letters, Volume 125 (2020) no. 23 | DOI:10.1103/physrevlett.125.236804
- Detecting Fractional Chern Insulators in Optical Lattices Through Quantized Displacement, Physical Review Letters, Volume 125 (2020) no. 23 | DOI:10.1103/physrevlett.125.236401
- Subradiant Emission from Regular Atomic Arrays: Universal Scaling of Decay Rates from the Generalized Bloch Theorem, Physical Review Letters, Volume 125 (2020) no. 25 | DOI:10.1103/physrevlett.125.253601
- Charge and statistics of lattice quasiholes from density measurements: A tree tensor network study, Physical Review Research, Volume 2 (2020) no. 1 | DOI:10.1103/physrevresearch.2.013145
- Flat bands and entanglement in the Kitaev ladder, Physical Review Research, Volume 2 (2020) no. 1 | DOI:10.1103/physrevresearch.2.013175
- Floquet-engineering of nodal rings and nodal spheres and their characterization using the quantum metric, Physical Review Research, Volume 2 (2020) no. 1 | DOI:10.1103/physrevresearch.2.013224
- Chern bands of twisted bilayer graphene: Fractional Chern insulators and spin phase transition, Physical Review Research, Volume 2 (2020) no. 2 | DOI:10.1103/physrevresearch.2.023238
- Strain-induced superconductor-insulator transition on a Lieb lattice, Physical Review Research, Volume 2 (2020) no. 2 | DOI:10.1103/physrevresearch.2.023136
- Fractional Chern insulator states in twisted bilayer graphene: An analytical approach, Physical Review Research, Volume 2 (2020) no. 2 | DOI:10.1103/physrevresearch.2.023237
- Local incompressibility estimates for the Laughlin phase, Communications in Mathematical Physics, Volume 365 (2019) no. 2, p. 431 | DOI:10.1007/s00220-018-3181-1
- Magnonic heat transport in the Lieb lattice, Journal of Magnetism and Magnetic Materials, Volume 469 (2019), p. 623 | DOI:10.1016/j.jmmm.2018.09.042
- Perturbed magnonic thermodynamic properties of the impurity-infected Lieb lattice, Journal of Magnetism and Magnetic Materials, Volume 474 (2019), p. 137 | DOI:10.1016/j.jmmm.2018.10.138
- Imaging topology of Hofstadter ribbons, New Journal of Physics, Volume 21 (2019) no. 5, p. 053021 | DOI:10.1088/1367-2630/ab165b
- Impurity-tuning of phase transition and mid-state in 2D spin Lieb lattice, Physica E: Low-dimensional Systems and Nanostructures, Volume 105 (2019), p. 56 | DOI:10.1016/j.physe.2018.08.019
- Non-Abelian geometric potentials and spin-orbit coupling for periodically driven systems, Physical Review A, Volume 100 (2019) no. 6 | DOI:10.1103/physreva.100.063616
- Origin of flat-band superfluidity on the Mielke checkerboard lattice, Physical Review A, Volume 99 (2019) no. 5 | DOI:10.1103/physreva.99.053608
- ZN gauge theories coupled to topological fermions: QED2 with a quantum mechanical θ angle, Physical Review B, Volume 100 (2019) no. 11 | DOI:10.1103/physrevb.100.115152
- Hidden mechanism for embedding the flat bands of Lieb, kagome, and checkerboard lattices in other structures, Physical Review B, Volume 100 (2019) no. 4 | DOI:10.1103/physrevb.100.045150
- Spin separation in the half-filled fractional topological insulator, Physical Review B, Volume 99 (2019) no. 11 | DOI:10.1103/physrevb.99.115131
- Renormalization group flows for Wilson-Hubbard matter and the topological Hamiltonian, Physical Review B, Volume 99 (2019) no. 12 | DOI:10.1103/physrevb.99.125106
- Fractional Chern insulators in singular geometries, Physical Review B, Volume 99 (2019) no. 16 | DOI:10.1103/physrevb.99.165105
- Fractional quantum Hall states with gapped boundaries in an extreme lattice limit, Physical Review B, Volume 99 (2019) no. 19 | DOI:10.1103/physrevb.99.195122
- Creating anomalous Floquet Chern insulators with magnetic quantum walks, Physical Review B, Volume 99 (2019) no. 21 | DOI:10.1103/physrevb.99.214303
- Characterization of quasiholes in two-component fractional quantum Hall states and fractional Chern insulators in |C| =2 flat bands, Physical Review B, Volume 99 (2019) no. 4 | DOI:10.1103/physrevb.99.045136
- Nearly flat Chern bands in moiré superlattices, Physical Review B, Volume 99 (2019) no. 7 | DOI:10.1103/physrevb.99.075127
- Fractional Chern insulator edges and layer-resolved lattice contacts, Physical Review B, Volume 99 (2019) no. 8 | DOI:10.1103/physrevb.99.081114
- Tuning the topological insulator states of artificial graphene, Physical Review B, Volume 99 (2019) no. 8 | DOI:10.1103/physrevb.99.085419
- Symmetry-protected topological phases in lattice gauge theories: TopologicalQED2, Physical Review D, Volume 99 (2019) no. 1 | DOI:10.1103/physrevd.99.014503
- Detecting Fractional Chern Insulators through Circular Dichroism, Physical Review Letters, Volume 122 (2019) no. 16 | DOI:10.1103/physrevlett.122.166801
- Topological bands for ultracold atoms, Reviews of Modern Physics, Volume 91 (2019) no. 1 | DOI:10.1103/revmodphys.91.015005
- Dissipation-induced topological insulators: A no-go theorem and a recipe, SciPost Physics, Volume 7 (2019) no. 5 | DOI:10.21468/scipostphys.7.5.067
- Artificial flat band systems: from lattice models to experiments, Advances in Physics: X, Volume 3 (2018) no. 1, p. 1473052 | DOI:10.1080/23746149.2018.1473052
- Gross–Neveu–Wilson model and correlated symmetry-protected topological phases, Annals of Physics, Volume 399 (2018), p. 149 | DOI:10.1016/j.aop.2018.10.007
- A controllable magneto-topological property and band gap engineering in 2D ferromagnetic Lieb lattice, Journal of Magnetism and Magnetic Materials, Volume 464 (2018), p. 103 | DOI:10.1016/j.jmmm.2018.05.046
- Artificial gauge fields and topology with ultracold atoms in optical lattices, Journal of Physics B: Atomic, Molecular and Optical Physics, Volume 51 (2018) no. 19, p. 193001 | DOI:10.1088/1361-6455/aac120
- Topological quantum phase transitions of Chern insulators in disk geometry, Journal of Physics: Condensed Matter, Volume 30 (2018) no. 35, p. 355502 | DOI:10.1088/1361-648x/aad51f
- Anomalous magnetic transport and extra quantum oscillation in semi-metallic photon-like fermion gas, New Journal of Physics, Volume 20 (2018) no. 8, p. 083036 | DOI:10.1088/1367-2630/aad9b7
- Magnetization process and low-temperature thermodynamics of a spin-1/2 Heisenberg octahedral chain, Physica B: Condensed Matter, Volume 536 (2018), p. 364 | DOI:10.1016/j.physb.2017.09.118
- Real-space probe for lattice quasiholes, Physical Review A, Volume 98 (2018) no. 6 | DOI:10.1103/physreva.98.063629
- Creating, probing, and manipulating fractionally charged excitations of fractional Chern insulators in optical lattices, Physical Review A, Volume 98 (2018) no. 6 | DOI:10.1103/physreva.98.063621
- Thermodynamic properties of Ba2CoSi2O6Cl2 in a strong magnetic field: Realization of flat-band physics in a highly frustrated quantum magnet, Physical Review B, Volume 97 (2018) no. 2 | DOI:10.1103/physrevb.97.024405
- Stability of fractional Chern insulators in the effective continuum limit of Harper-Hofstadter bands with Chern number |C|>1, Physical Review B, Volume 97 (2018) no. 3 | DOI:10.1103/physrevb.97.035159
- Compact localized states and flat bands from local symmetry partitioning, Physical Review B, Volume 97 (2018) no. 3 | DOI:10.1103/physrevb.97.035161
- Geometric quench and nonequilibrium dynamics of fractional quantum Hall states, Physical Review B, Volume 98 (2018) no. 15 | DOI:10.1103/physrevb.98.155140
- Evolution of the optimal trial wave function with interactions in fractional Chern insulators, Physical Review B, Volume 98 (2018) no. 19 | DOI:10.1103/physrevb.98.195131
- Disordered flat bands on the kagome lattice, Physical Review B, Volume 98 (2018) no. 23 | DOI:10.1103/physrevb.98.235109
- Higher angular momentum band inversions in two dimensions, Physical Review B, Volume 98 (2018) no. 23 | DOI:10.1103/physrevb.98.235160
- Finite-wave-vector electromagnetic response in lattice quantum Hall systems, Physical Review B, Volume 98 (2018) no. 24 | DOI:10.1103/physrevb.98.245303
- Fractional Excitonic Insulator, Physical Review Letters, Volume 121 (2018) no. 12 | DOI:10.1103/physrevlett.121.126601
- Unconventional Flatband Line States in Photonic Lieb Lattices, Physical Review Letters, Volume 121 (2018) no. 26 | DOI:10.1103/physrevlett.121.263902
- Emergent Multi-Flavor QED3 at the Plateau Transition between Fractional Chern Insulators: Applications to Graphene Heterostructures, Physical Review X, Volume 8 (2018) no. 3 | DOI:10.1103/physrevx.8.031015
- Interband excitations in the 1D limit of two-band fractional Chern insulators, Physics Letters A, Volume 382 (2018) no. 21, p. 1419 | DOI:10.1016/j.physleta.2018.03.035
- Lattices for fractional Chern insulators, Science, Volume 360 (2018) no. 6384, p. 31 | DOI:10.1126/science.aar5675
- Observation of fractional Chern insulators in a van der Waals heterostructure, Science, Volume 360 (2018) no. 6384, p. 62 | DOI:10.1126/science.aan8458
- Polariton condensation in S- and P-flatbands in a two-dimensional Lieb lattice, Applied Physics Letters, Volume 111 (2017) no. 23 | DOI:10.1063/1.4995385
- Phase transitions of the dimerized Kane–Mele model with/without strong interaction, Journal of Physics: Condensed Matter, Volume 29 (2017) no. 38, p. 385601 | DOI:10.1088/1361-648x/aa7a86
- Controllable photon and phonon localization in optomechanical Lieb lattices, Optics Express, Volume 25 (2017) no. 15, p. 17364 | DOI:10.1364/oe.25.017364
- Floquet analysis of a quantum system with modulated periodic driving, Physical Review A, Volume 95 (2017) no. 2 | DOI:10.1103/physreva.95.023615
- Coupled atomic wires in a synthetic magnetic field, Physical Review A, Volume 95 (2017) no. 4 | DOI:10.1103/physreva.95.043632
- Non-Hermiticity-induced flat band, Physical Review A, Volume 96 (2017) no. 1 | DOI:10.1103/physreva.96.011802
- Quadratic band touching points and flat bands in two-dimensional topological Floquet systems, Physical Review B, Volume 95 (2017) no. 3 | DOI:10.1103/physrevb.95.035136
- Persistence of the flat band in a kagome magnet with dipolar interactions, Physical Review B, Volume 96 (2017) no. 13 | DOI:10.1103/physrevb.96.134411
- Creating a bosonic fractional quantum Hall state by pairing fermions, Physical Review B, Volume 96 (2017) no. 16 | DOI:10.1103/physrevb.96.161111
- Band structure engineering of ideal fractional Chern insulators, Physical Review B, Volume 96 (2017) no. 16 | DOI:10.1103/physrevb.96.165150
- Exotic Non-Abelian Topological Defects in Lattice Fractional Quantum Hall States, Physical Review Letters, Volume 119 (2017) no. 10 | DOI:10.1103/physrevlett.119.106801
- Exploring Interacting Topological Insulators with Ultracold Atoms: The Synthetic Creutz-Hubbard Model, Physical Review X, Volume 7 (2017) no. 3 | DOI:10.1103/physrevx.7.031057
- Bimetric Theory of Fractional Quantum Hall States, Physical Review X, Volume 7 (2017) no. 4 | DOI:10.1103/physrevx.7.041032
- Colloquium: Atomic quantum gases in periodically driven optical lattices, Reviews of Modern Physics, Volume 89 (2017) no. 1 | DOI:10.1103/revmodphys.89.011004
- On the robustness of strongly correlated multi-photon states in frustrated driven-dissipative cavity lattices, The European Physical Journal Special Topics, Volume 226 (2017) no. 12, p. 2805 | DOI:10.1140/epjst/e2016-60379-0
- Preparing and Probing Chern Bands with Cold Atoms, Universal Themes of Bose-Einstein Condensation (2017), p. 274 | DOI:10.1017/9781316084366.016
- Introduction, Artificial Gauge Fields with Ultracold Atoms in Optical Lattices (2016), p. 1 | DOI:10.1007/978-3-319-25829-4_1
- Chern-Number Measurement of Hofstadter Bands, Artificial Gauge Fields with Ultracold Atoms in Optical Lattices (2016), p. 137 | DOI:10.1007/978-3-319-25829-4_8
- Conclusions and Outlook, Artificial Gauge Fields with Ultracold Atoms in Optical Lattices (2016), p. 161 | DOI:10.1007/978-3-319-25829-4_9
- Response of fermions in Chern bands to spatially local quenches, Journal of Statistical Mechanics: Theory and Experiment, Volume 2016 (2016) no. 8, p. 083103 | DOI:10.1088/1742-5468/2016/08/083103
- Interferometric measurements of many-body topological invariants using mobile impurities, Nature Communications, Volume 7 (2016) no. 1 | DOI:10.1038/ncomms11994
- Probing photon correlations in the dark sites of geometrically frustrated cavity lattices, Physical Review A, Volume 93 (2016) no. 4 | DOI:10.1103/physreva.93.043833
- Modified interactions in a Floquet topological system on a square lattice and their impact on a bosonic fractional Chern insulator state, Physical Review A, Volume 93 (2016) no. 4 | DOI:10.1103/physreva.93.043618
- Circuit quantum electrodynamics simulator of flat band physics in a Lieb lattice, Physical Review A, Volume 93 (2016) no. 6 | DOI:10.1103/physreva.93.062319
- Competing ground states of strongly correlated bosons in the Harper-Hofstadter-Mott model, Physical Review A, Volume 93 (2016) no. 6 | DOI:10.1103/physreva.93.063610
- Mean field study of the topological Haldane-Hubbard model of spin-12fermions, Physical Review B, Volume 93 (2016) no. 11 | DOI:10.1103/physrevb.93.115110
- Band flatness optimization through complex analysis, Physical Review B, Volume 93 (2016) no. 15 | DOI:10.1103/physrevb.93.155155
- Quantum geometry and stability of the fractional quantum Hall effect in the Hofstadter model, Physical Review B, Volume 93 (2016) no. 23 | DOI:10.1103/physrevb.93.235133
- Superconducting circuit simulator of Bose-Hubbard model with a flat band, Physical Review B, Volume 93 (2016) no. 5 | DOI:10.1103/physrevb.93.054116
- Scattering matrix invariants of Floquet topological insulators, Physical Review B, Volume 93 (2016) no. 7 | DOI:10.1103/physrevb.93.075405
- Adiabatic continuity, wave-function overlap, and topological phase transitions, Physical Review B, Volume 94 (2016) no. 12 | DOI:10.1103/physrevb.94.125111
- Haldane-Hubbard Mott Insulator: From Tetrahedral Spin Crystal to Chiral Spin Liquid, Physical Review Letters, Volume 116 (2016) no. 13 | DOI:10.1103/physrevlett.116.137202
- Dynamical Generation of Topological Magnetic Lattices for Ultracold Atoms, Physical Review Letters, Volume 116 (2016) no. 14 | DOI:10.1103/physrevlett.116.143003
- Model Fractional Chern Insulators, Physical Review Letters, Volume 116 (2016) no. 21 | DOI:10.1103/physrevlett.116.216802
- Landau-Zener Bloch Oscillations with Perturbed Flat Bands, Physical Review Letters, Volume 116 (2016) no. 24 | DOI:10.1103/physrevlett.116.245301
- Detecting topological phases of microwave photons in a circuit quantum electrodynamics lattice, npj Quantum Information, Volume 2 (2016) no. 1 | DOI:10.1038/npjqi.2016.15
- Homotopy Approach to Fractional Quantum Hall Effect, Applied Mathematics, Volume 06 (2015) no. 02, p. 345 | DOI:10.4236/am.2015.62033
- Strongly correlated flat-band systems: The route from Heisenberg spins to Hubbard electrons, International Journal of Modern Physics B, Volume 29 (2015) no. 12, p. 1530007 | DOI:10.1142/s0217979215300078
- Geometric stability of topological lattice phases, Nature Communications, Volume 6 (2015) no. 1 | DOI:10.1038/ncomms9629
- Measuring the Chern number of Hofstadter bands with ultracold bosonic atoms, Nature Physics, Volume 11 (2015) no. 2, p. 162 | DOI:10.1038/nphys3171
- Fractionalized topological insulators, Nature Physics, Volume 11 (2015) no. 5, p. 385 | DOI:10.1038/nphys3311
- Wave functions for fractional Chern insulators in disk geometry, New Journal of Physics, Volume 17 (2015) no. 12, p. 125005 | DOI:10.1088/1367-2630/17/12/125005
- Fractional quantum Hall effect revisited, Physica B: Condensed Matter, Volume 475 (2015), p. 122 | DOI:10.1016/j.physb.2015.07.024
- Fractional (Chern and topological) insulators, Physica Scripta, Volume T164 (2015), p. 014005 | DOI:10.1088/0031-8949/2015/t164/014005
- Periodically driven quantum matter: The case of resonant modulations, Physical Review A, Volume 91 (2015) no. 3 | DOI:10.1103/physreva.91.033632
- Topological bands with a Chern numberC=2by dipolar exchange interactions, Physical Review A, Volume 91 (2015) no. 5 | DOI:10.1103/physreva.91.053617
- Three-level Haldane-like model on a dice optical lattice, Physical Review A, Volume 92 (2015) no. 3 | DOI:10.1103/physreva.92.033617
- Fermionic non-Abelian fractional Chern insulators from dipolar interactions, Physical Review B, Volume 91 (2015) no. 12 | DOI:10.1103/physrevb.91.125138
- Two-dimensional topological order of kinetically constrained quantum particles, Physical Review B, Volume 91 (2015) no. 15 | DOI:10.1103/physrevb.91.155134
- Role of real-space micromotion for bosonic and fermionic Floquet fractional Chern insulators, Physical Review B, Volume 91 (2015) no. 24 | DOI:10.1103/physrevb.91.245135
- Interacting bosons in topological optical flux lattices, Physical Review B, Volume 91 (2015) no. 3 | DOI:10.1103/physrevb.91.035115
- Fractional topological phases in generalized Hofstadter bands with arbitrary Chern numbers, Physical Review B, Volume 91 (2015) no. 4 | DOI:10.1103/physrevb.91.041119
- Flat-band conductivity properties at long-range Coulomb interactions, Physical Review B, Volume 91 (2015) no. 4 | DOI:10.1103/physrevb.91.041102
- Characterization of quasiholes in fractional Chern insulators, Physical Review B, Volume 91 (2015) no. 4 | DOI:10.1103/physrevb.91.045126
- Discretized Abelian Chern-Simons gauge theory on arbitrary graphs, Physical Review B, Volume 92 (2015) no. 11 | DOI:10.1103/physrevb.92.115148
- Flat-band ferromagnetism and spin waves in topological Hubbard models, Physical Review B, Volume 92 (2015) no. 24 | DOI:10.1103/physrevb.92.245124
- Fractional Chern insulator phase at the transition between checkerboard and Lieb lattices, Physical Review B, Volume 92 (2015) no. 24 | DOI:10.1103/physrevb.92.245119
- Reordering fractional Chern insulators into stripes of fractional charges with long-range interactions, Physical Review B, Volume 92 (2015) no. 3 | DOI:10.1103/physrevb.92.035138
- Interaction-induced conductance from zero modes in a clean magnetic graphene waveguide, Physical Review B, Volume 92 (2015) no. 8 | DOI:10.1103/physrevb.92.085422
- Topology and Interactions in a Frustrated Slab: Tuning from Weyl Semimetals toC>1Fractional Chern Insulators, Physical Review Letters, Volume 114 (2015) no. 1 | DOI:10.1103/physrevlett.114.016806
- Bosonic Integer Quantum Hall Effect in Optical Flux Lattices, Physical Review Letters, Volume 115 (2015) no. 11 | DOI:10.1103/physrevlett.115.116802
- Fractional Chern Insulators in Harper-Hofstadter Bands with Higher Chern Number, Physical Review Letters, Volume 115 (2015) no. 12 | DOI:10.1103/physrevlett.115.126401
- Dynamic Optical Lattices of Subwavelength Spacing for Ultracold Atoms, Physical Review Letters, Volume 115 (2015) no. 14 | DOI:10.1103/physrevlett.115.140401
- An Aharonov-Bohm interferometer for determining Bloch band topology, Science, Volume 347 (2015) no. 6219, p. 288 | DOI:10.1126/science.1259052
- Twisted injectivity in projected entangled pair states and the classification of quantum phases, Annals of Physics, Volume 351 (2014), p. 447 | DOI:10.1016/j.aop.2014.09.007
- Exotic electronic states in the world of flat bands: From theory to material, Chinese Physics B, Volume 23 (2014) no. 7, p. 077308 | DOI:10.1088/1674-1056/23/7/077308
- Detangling flat bands into Fano lattices, EPL (Europhysics Letters), Volume 105 (2014) no. 3, p. 30001 | DOI:10.1209/0295-5075/105/30001
- Correlations and entanglement in flat band models with variable Chern numbers, Journal of Statistical Mechanics: Theory and Experiment, Volume 2014 (2014) no. 10, p. P10012 | DOI:10.1088/1742-5468/2014/10/p10012
- Haldane statistics for fractional Chern insulators with an arbitrary Chern number, Physical Review B, Volume 89 (2014) no. 15 | DOI:10.1103/physrevb.89.155113
- Gauge choices in the Hamiltonian theory of fractionally filled Chern bands, Physical Review B, Volume 89 (2014) no. 19 | DOI:10.1103/physrevb.89.195107
- Exact solutions of fractional Chern insulators: Interacting particles in the Hofstadter model at finite size, Physical Review B, Volume 90 (2014) no. 11 | DOI:10.1103/physrevb.90.115132
- Impurities and Landau level mixing in a fractional quantum Hall state in a flat-band lattice model, Physical Review B, Volume 90 (2014) no. 16 | DOI:10.1103/physrevb.90.165101
- Topological phases in iridium oxide superlattices: Quantized anomalous charge or valley Hall insulators, Physical Review B, Volume 90 (2014) no. 19 | DOI:10.1103/physrevb.90.195145
- Non-Abelian topological insulators from an array of quantum wires, Physical Review B, Volume 90 (2014) no. 20 | DOI:10.1103/physrevb.90.201102
- Z2fractional topological insulators in two dimensions, Physical Review B, Volume 90 (2014) no. 24 | DOI:10.1103/physrevb.90.245401
- Generalizing quantum Hall ferromagnetism to fractional Chern bands, Physical Review B, Volume 90 (2014) no. 24 | DOI:10.1103/physrevb.90.245106
- Single-mode approximation for fractional Chern insulators and the fractional quantum Hall effect on the torus, Physical Review B, Volume 90 (2014) no. 4 | DOI:10.1103/physrevb.90.045114
- Perturbative approach to flat Chern bands in the Hofstadter model, Physical Review B, Volume 90 (2014) no. 7 | DOI:10.1103/physrevb.90.075104
- High-Chern-number bands and tunable Dirac cones inβ-graphyne, Physical Review B, Volume 90 (2014) no. 8 | DOI:10.1103/physrevb.90.081406
- Flatbands under Correlated Perturbations, Physical Review Letters, Volume 113 (2014) no. 23 | DOI:10.1103/physrevlett.113.236403
- Light-induced gauge fields for ultracold atoms, Reports on Progress in Physics, Volume 77 (2014) no. 12, p. 126401 | DOI:10.1088/0034-4885/77/12/126401
- Aspects of Floquet bands and topological phase transitions in a continuously driven superlattice, The European Physical Journal B, Volume 87 (2014) no. 9 | DOI:10.1140/epjb/e2014-50465-9
- Non-Abelian fractional Chern insulators from long-range interactions, Physical Review B, Volume 88 (2013) no. 20 | DOI:10.1103/physrevb.88.205101
Cité par 302 documents. Sources : Crossref
Commentaires - Politique
Vous devez vous connecter pour continuer.
S'authentifier