[Physique de lʼeffet Hall quantique fractionnaire dans des bandes plates topologiques]
Nous présentons une revue didactique sur la physique des isolants de Chern, qui se concentre plus particulièrement sur lʼeffet Hall quantique fractionnaire. Habituellement, cet effet apparaît typiquement dans des hétérostructures semiconductrices à basse température et sous champ magnétique fort. En revanche, les isolants de Chern peuvent abriter des phases topologiques aux propriétés similaires, mais stabilisées à lʼéchelle du paramètre de réseau, ce qui peut conduire un ordre topologique à haute température. Nous décrivons la construction des modèles avec bande(s) plate(s), passons en revue les résultats numériques et établissons une comparaison entre les isolants de Chern sur réseau et le problème de Landau défini dans le continuum. Nous discutons alors brièvement les aspects de la physique des isolants de Chern qui nont pas dʼanalogues dans le continuum, avant de passer aux possibles réalisations expérimentales. Nous concluons par une liste de perspectives et de problèmes encore ouverts dans ce domaine, ainsi que par une discussion des extensions de ces idées à des dimensions supérieures et à dʼautres phases topologiques.
We present a pedagogical review of the physics of fractional Chern insulators with a particular focus on the connection to the fractional quantum Hall effect. While the latter conventionally arises in semiconductor heterostructures at low temperatures and in high magnetic fields, interacting Chern insulators at fractional band filling may host phases with the same topological properties, but stabilized at the lattice scale, potentially leading to high-temperature topological order. We discuss the construction of topological flat band models, provide a survey of numerical results, and establish the connection between the Chern band and the continuum Landau problem. We then briefly summarize various aspects of Chern band physics that have no natural continuum analogs, before turning to a discussion of possible experimental realizations. We close with a survey of future directions and open problems, as well as a discussion of extensions of these ideas to higher dimensions and to other topological phases.
Mot clés : Isolants de Chern, Bandes plates, Effet Hall fractionnaire, Ordre topologique
Siddharth A. Parameswaran 1 ; Rahul Roy 2 ; Shivaji L. Sondhi 3
@article{CRPHYS_2013__14_9-10_816_0, author = {Siddharth A. Parameswaran and Rahul Roy and Shivaji L. Sondhi}, title = {Fractional quantum {Hall} physics in topological flat bands}, journal = {Comptes Rendus. Physique}, pages = {816--839}, publisher = {Elsevier}, volume = {14}, number = {9-10}, year = {2013}, doi = {10.1016/j.crhy.2013.04.003}, language = {en}, }
TY - JOUR AU - Siddharth A. Parameswaran AU - Rahul Roy AU - Shivaji L. Sondhi TI - Fractional quantum Hall physics in topological flat bands JO - Comptes Rendus. Physique PY - 2013 SP - 816 EP - 839 VL - 14 IS - 9-10 PB - Elsevier DO - 10.1016/j.crhy.2013.04.003 LA - en ID - CRPHYS_2013__14_9-10_816_0 ER -
Siddharth A. Parameswaran; Rahul Roy; Shivaji L. Sondhi. Fractional quantum Hall physics in topological flat bands. Comptes Rendus. Physique, Volume 14 (2013) no. 9-10, pp. 816-839. doi : 10.1016/j.crhy.2013.04.003. https://comptes-rendus.academie-sciences.fr/physique/articles/10.1016/j.crhy.2013.04.003/
[1] New method for high-accuracy determination of the fine-structure constant based on quantized Hall resistance, Phys. Rev. Lett., Volume 45 (1980) no. 6, p. 494 | DOI
[2] Two-dimensional magnetotransport in the extreme quantum limit, Phys. Rev. Lett., Volume 48 (1982) no. 22, p. 1559 | DOI
[3] Anomalous quantum Hall effect: An incompressible quantum fluid with fractionally charged excitations, Phys. Rev. Lett., Volume 50 (1983) no. 18, p. 1395 | DOI
[4] Topological order in rigid states, Int. J. Mod. Phys. B, Volume 4 (1990), p. 239 | DOI
[5] Fractional quantization of the Hall effect: A hierarchy of incompressible quantum fluid states, Phys. Rev. Lett., Volume 51 (1983) no. 7, p. 605 | DOI
[6] Statistics of quasiparticles and the hierarchy of fractional quantized Hall states, Phys. Rev. Lett., Volume 52 (1984) no. 18, p. 1583 | DOI
[7] Nonabelions in the fractional quantum Hall effect, Nucl. Phys. B, Volume 360 (1991) no. 2–3, p. 362
[8] Effective field theory model for the fractional quantum Hall effect, Phys. Rev. Lett., Volume 62 (1989) no. 1, p. 82
[9] The Chern–Simons–Landau–Ginzburg theory of the fractional quantum Hall effect, Int. J. Mod. Phys. B, Volume 6 (1992) no. 1, pp. 43-77
[10] Quantized Hall conductance in a two-dimensional periodic potential, Phys. Rev. Lett., Volume 49 (1982) no. 6, p. 405 | DOI
[11] Model for a quantum Hall effect without Landau levels: Condensed-matter realization of the “parity anomaly”, Phys. Rev. Lett., Volume 61 (1988) no. 18, pp. 2015-2018 | DOI
[12] High-temperature fractional quantum hall states, Phys. Rev. Lett., Volume 106 (2011) no. 23, p. 236802 | DOI
[13] Nearly flatbands with nontrivial topology, Phys. Rev. Lett., Volume 106 (2011) no. 23, p. 236803 | DOI
[14] Fractional quantum Hall states at zero magnetic field, Phys. Rev. Lett., Volume 106 (2011) no. 23, p. 236804 | DOI
[15] Fractional quantum Hall effect in the absence of Landau levels, Nat. Commun., Volume 2 (2011), p. 389
[16] Fractional quantum Hall effect of hard-core bosons in topological flat bands, Phys. Rev. Lett., Volume 107 (2011), p. 146803 | DOI
[17] Fractional Chern insulator, Phys. Rev. X, Volume 1 (2011) no. 2, p. 021014
[18] Generic wave-function description of fractional quantum anomalous Hall states and fractional topological insulators, Phys. Rev. Lett., Volume 107 (2011), p. 126803 | DOI
[19] Fractional Chern insulators and the algebra, Phys. Rev. B, Volume 85 (2012) no. 24, p. 241308
[20] Band geometry of fractional topological insulators | arXiv
[21] Composite fermions for fractionally filled Chern bands | arXiv
[22] Hamiltonian theory of fractionally filled Chern bands | arXiv
[23] Fractional quantum Hall states of atoms in optical lattices, Phys. Rev. Lett., Volume 94 (2005) no. 8, p. 086803 | DOI
[24] Magneto-roton theory of collective excitations in the fractional quantum Hall effect, Phys. Rev. B, Volume 33 (1986) no. 4, pp. 2481-2494 | DOI
[25] Continuous transitions between composite Fermi liquid and Landau Fermi liquid: A route to fractionalized mott insulators, Phys. Rev. B, Volume 86 (2012), p. 075136 | DOI
[26] arXiv
|[27] Establishing non-Abelian topological order in Gutzwiller projected Chern insulators via entanglement entropy and modular S-matrix | arXiv
[28] Composite fermion theory for bosonic quantum Hall states on lattices, Phys. Rev. Lett., Volume 103 (2009) no. 10, p. 105303 | DOI
[29] Interface engineering of quantum Hall effects in digital transition metal oxide heterostructures, Nat. Commun., Volume 2 (2011) | DOI
[30] Optical flux lattices for ultracold atomic gases, Phys. Rev. Lett., Volume 106 (2011), p. 175301 | DOI
[31] Realizing fractional Chern insulators with dipolar spins | arXiv
[32] Topological flat bands from dipolar spin systems, Phys. Rev. Lett., Volume 109 (2012), p. 266804 | DOI
[33] Topological insulators and fractional quantum Hall effect on the ruby lattice, Phys. Rev. B, Volume 84 (2011) no. 15, p. 155116
[34] Many-particle translational symmetries of two-dimensional electrons at rational Landau-level filling, Phys. Rev. Lett., Volume 55 (1985), pp. 2095-2098 | DOI
[35] Fractional quantum Hall effect in a periodic potential, Phys. Rev. B, Volume 48 (1993), pp. 8890-8898 | DOI
[36] “Fractional statistics” in arbitrary dimensions: A generalization of the Pauli principle, Phys. Rev. Lett., Volume 67 (1991), pp. 937-940 | DOI
[37] Emergent many-body translational symmetries of abelian and non-abelian fractionally filled topological insulators, Phys. Rev. B, Volume 85 (2012), p. 075128 | DOI
[38] Topological entanglement entropy, Phys. Rev. Lett., Volume 96 (2006), p. 110404 | DOI
[39] Detecting topological order in a ground state wave function, Phys. Rev. Lett., Volume 96 (2006), p. 110405 | DOI
[40] Entanglement spectrum as a generalization of entanglement entropy: Identification of topological order in non-abelian fractional quantum Hall effect states, Phys. Rev. Lett., Volume 101 (2008) no. 1, p. 010504 | DOI
[41] Entropy and area, Phys. Rev. Lett., Volume 71 (1993), pp. 666-669 | DOI
[42] Extracting excitations from model state entanglement, Phys. Rev. Lett., Volume 106 (2011), p. 100405 | DOI
[43] Quasiparticle statistics and braiding from ground-state entanglement, Phys. Rev. B, Volume 85 (2012), p. 235151 | DOI
[44] Pseudopotential formalism for fractional Chern insulators | arXiv
[45] From fractional Chern insulators to abelian and non-abelian fractional quantum Hall states: Adiabatic continuity and orbital entanglement spectrum, Phys. Rev. B, Volume 87 (2013), p. 035306 | DOI
[46] Adiabatic continuation of fractional Chern insulators to fractional quantum Hall states, Phys. Rev. Lett., Volume 109 (2012), p. 246805 | DOI
[47] Adiabatic continuity between Hofstadter and Chern insulator states, Phys. Rev. B, Volume 86 (2012), p. 165129 | DOI
[48] Localization, percolation, and the quantum Hall effect, Phys. Rev. B, Volume 27 (1983) no. 12, p. 7539 | DOI
[49] Gauge-fixed Wannier wave functions for fractional topological insulators, Phys. Rev. B, Volume 86 (2012), p. 085129 | DOI
[50] Bloch electrons in a uniform magnetic field, Phys. Rev. A, Volume 133 (1964) no. 4, pp. 1038-1044 | DOI
[51] R. Roy, 2011, unpublished.
[52] N. Regnault, B.A. Bernevig, 2011, personal communication.
[53] Exact parent Hamiltonian for the quantum Hall states in a lattice, Phys. Rev. Lett., Volume 105 (2010), p. 215303 | DOI
[54] Non-abelian braiding of lattice bosons, Phys. Rev. Lett., Volume 108 (2012), p. 066802 | DOI
[55] The integer quantum Hall transition and random su(N) rotation, J. Phys. Condens. Matter, Volume 15 (2003), p. L125-L132 | DOI
[56] Geometrical description of Berryʼs phase, Phys. Rev. A, Volume 36 (1987), pp. 3479-3481
[57] Geometry of quantum evolution, Phys. Rev. Lett., Volume 65 (1990), pp. 1697-1700 | DOI
[58] Foundations of Differential Geometry, vol. 2, Interscience Publishers, New York, 1969
[59] Relation between “phases” and “distance” in quantum evolution, Phys. Lett. A, Volume 159 (1991) no. 3, pp. 105-112 | DOI
[60] The insulating state of matter: A geometrical theory, Eur. Phys. J. B, Volume 79 (2011), pp. 121-137 | arXiv | DOI
[61] Enhancing the stability of a fractional Chern insulator against competing phases, Phys. Rev. B, Volume 86 (2012), p. 205125 | DOI
[62] Noncommutative geometry for three-dimensional topological insulators, Phys. Rev. B, Volume 86 (2012), p. 035125 | DOI
[63] Magnetic translation algebra with or without magnetic field in the continuum or on arbitrary Bravais lattices in any dimension, Phys. Rev. B, Volume 86 (2012), p. 195125 | DOI
[64] d-algebra structure of topological insulators, Phys. Rev. B, Volume 86 (2012), p. 241104 | DOI
[65] Symmetry-protected fractional Chern insulators and fractional topological insulators, Phys. Rev. B, Volume 85 (2012), p. 165134 | DOI
[66] Quantum orders and symmetric spin liquids, Phys. Rev. B, Volume 65 (2002), p. 165113 | DOI
[67] Wave functions for fractional Chern insulators, Phys. Rev. B, Volume 85 (2012), p. 125105 | DOI
[68] Topological entanglement entropy of spin liquids and lattice Laughlin states, Phys. Rev. B, Volume 84 (2011), p. 075128 | DOI
[69] Non-abelian quantum Hall effect in topological flat bands, Phys. Rev. Lett., Volume 108 (2012), p. 126805 | DOI
[70] Fractional quantum Hall effect in topological flat bands with Chern number two, Phys. Rev. B, Volume 86 (2012), p. 201101 | DOI
[71] Topological flat band models with arbitrary Chern numbers, Phys. Rev. B, Volume 86 (2012), p. 241112 | DOI
[72] Nearly flat band with Chern number on the dice lattice, Phys. Rev. B, Volume 84 (2011) no. 24, p. 241103
[73] Flat bands with higher Chern number in pyrochlore slabs, Phys. Rev. B, Volume 86 (2012) no. 24, p. 241111
[74] Fractional Chern insulators in topological flat bands with higher Chern number, Phys. Rev. Lett., Volume 109 (2012), p. 186805 | DOI
[75] Series of Abelian and non-Abelian states in fractional Chern insulators | arXiv
[76] Topological nematic states and non-abelian lattice dislocations, Phys. Rev. X, Volume 2 (2012), p. 031013 | DOI
[77] Bloch model wavefunctions and pseudopotentials for all fractional Chern insulators | arXiv
[78] Theory of the quantized Hall conductance, Helv. Phys. Acta, Volume 56 (1983), p. 75
[79] Genons, twist defects, and projective non-Abelian braiding statistics | arXiv
[80] Fractional Chern insulator on a triangular lattice of strongly correlated electrons, Phys. Rev. B, Volume 86 (2012), p. 235118 | DOI
[81] Narrowing of topological bands due to electronic orbital degrees of freedom, Phys. Rev. Lett., Volume 107 (2011), p. 116401 | DOI
[82] Fractional quantum-Hall liquid spontaneously generated by strongly correlated electrons, Phys. Rev. Lett., Volume 108 (2012), p. 126405 | DOI
[83] Designing topological bands in reciprocal space, Phys. Rev. Lett., Volume 109 (2012), p. 215302 | DOI
[84] Reaching fractional quantum Hall states with optical flux lattices | arXiv
[85] Quantized anomalous Hall effect in two-dimensional ferromagnets: Quantum Hall effect in metals, Phys. Rev. Lett., Volume 90 (2003) no. 20, p. 206601 | DOI
[86] Global phase diagram in the quantum Hall effect, Phys. Rev. B, Volume 46 (1992) no. 4, p. 2223
[87] Long-range interactions and the quantum Hall effect, Phys. Rev. B, Volume 46 (1992) no. 20, p. 13319
[88] Fractional Chern insulators beyond Laughlin states | arXiv
[89] Hierarchy of fractional Chern insulators and competing compressible states | arXiv
[90] Chiral Luttinger liquid and the edge excitations in the fractional quantum Hall states, Phys. Rev. B, Volume 41 (1990) no. 18, p. 12838 | DOI
[91] Interferometric approach to measuring band topology in 2D optical lattices | arXiv
[92] Mapping the Berry curvature from semiclassical dynamics in optical lattices, Phys. Rev. A, Volume 85 (2012), p. 033620 | DOI
[93] Direct measurement of the Zak phase in topological Bloch bands | arXiv
[94] Finitely correlated states on quantum spin chains, Commun. Math. Phys., Volume 144 (1992), pp. 443-490 | DOI
[95] Density matrix formulation for quantum renormalization groups, Phys. Rev. Lett., Volume 69 (1992), pp. 2863-2866 | DOI
[96] Thermodynamic limit of density matrix renormalization, Phys. Rev. Lett., Volume 75 (1995), pp. 3537-3540 | DOI
[97] Renormalization algorithms for quantum-many body systems in two and higher dimensions | arXiv
[98] Exact matrix product states for quantum Hall wave functions, Phys. Rev. B, Volume 86 (2012), p. 245305 | DOI
[99] Matrix product states and the fractional quantum Hall effect | arXiv
[100] Local tensor network for strongly correlated projective states, Phys. Rev. Lett., Volume 106 (2011), p. 156401 | DOI
[101] A class of -invariant topological phases of interacting electrons, Ann. Phys., Volume 310 (2004), pp. 428-492 | arXiv | DOI
[102] Fractional topological insulators, Phys. Rev. Lett., Volume 103 (2009), p. 196803 | DOI
[103] Fractional topological insulators in three dimensions, Phys. Rev. Lett., Volume 105 (2010), p. 246809 | DOI
[104] Correlated topological insulators and the fractional magnetoelectric effect, Phys. Rev. B, Volume 83 (2011), p. 195139 | DOI
[105] Fractional topological liquids with time-reversal symmetry and their lattice realization, Phys. Rev. B, Volume 84 (2011), p. 165107 | DOI
[106] Time-reversal symmetric hierarchy of fractional incompressible liquids, Phys. Rev. B, Volume 84 (2011), p. 165138 | DOI
[107] Exactly soluble models for fractional topological insulators in two and three dimensions, Phys. Rev. B, Volume 84 (2011), p. 235145 | DOI
[108] Symmetry protected topological orders in interacting bosonic systems | arXiv
[109] Entanglement spectrum of a topological phase in one dimension, Phys. Rev. B, Volume 81 (2010), p. 064439 | DOI
[110] Symmetry protection of topological phases in one-dimensional quantum spin systems, Phys. Rev. B, Volume 85 (2012), p. 075125 | DOI
Cité par Sources :
Commentaires - Politique