Comptes Rendus
Topological insulators/Isolants topologiques
Fractional quantum Hall physics in topological flat bands
[Physique de lʼeffet Hall quantique fractionnaire dans des bandes plates topologiques]
Comptes Rendus. Physique, Topological insulators / Isolants topologiques, Volume 14 (2013) no. 9-10, pp. 816-839.

Nous présentons une revue didactique sur la physique des isolants de Chern, qui se concentre plus particulièrement sur lʼeffet Hall quantique fractionnaire. Habituellement, cet effet apparaît typiquement dans des hétérostructures semiconductrices à basse température et sous champ magnétique fort. En revanche, les isolants de Chern peuvent abriter des phases topologiques aux propriétés similaires, mais stabilisées à lʼéchelle du paramètre de réseau, ce qui peut conduire un ordre topologique à haute température. Nous décrivons la construction des modèles avec bande(s) plate(s), passons en revue les résultats numériques et établissons une comparaison entre les isolants de Chern sur réseau et le problème de Landau défini dans le continuum. Nous discutons alors brièvement les aspects de la physique des isolants de Chern qui nont pas dʼanalogues dans le continuum, avant de passer aux possibles réalisations expérimentales. Nous concluons par une liste de perspectives et de problèmes encore ouverts dans ce domaine, ainsi que par une discussion des extensions de ces idées à des dimensions supérieures et à dʼautres phases topologiques.

We present a pedagogical review of the physics of fractional Chern insulators with a particular focus on the connection to the fractional quantum Hall effect. While the latter conventionally arises in semiconductor heterostructures at low temperatures and in high magnetic fields, interacting Chern insulators at fractional band filling may host phases with the same topological properties, but stabilized at the lattice scale, potentially leading to high-temperature topological order. We discuss the construction of topological flat band models, provide a survey of numerical results, and establish the connection between the Chern band and the continuum Landau problem. We then briefly summarize various aspects of Chern band physics that have no natural continuum analogs, before turning to a discussion of possible experimental realizations. We close with a survey of future directions and open problems, as well as a discussion of extensions of these ideas to higher dimensions and to other topological phases.

Publié le :
DOI : 10.1016/j.crhy.2013.04.003
Keywords: Chern insulators, Flat bands, Fractional quantum Hall effect, Topological order
Mots-clés : Isolants de Chern, Bandes plates, Effet Hall fractionnaire, Ordre topologique

Siddharth A. Parameswaran 1 ; Rahul Roy 2 ; Shivaji L. Sondhi 3

1 Department of Physics, University of California, Berkeley, CA 94720, United States of America
2 Department of Physics and Astronomy, University of California, Los Angeles, CA 90095-1547, United States of America
3 Department of Physics, Princeton University, Princeton, NJ 08544, United States of America
@article{CRPHYS_2013__14_9-10_816_0,
     author = {Siddharth A. Parameswaran and Rahul Roy and Shivaji L. Sondhi},
     title = {Fractional quantum {Hall} physics in topological flat bands},
     journal = {Comptes Rendus. Physique},
     pages = {816--839},
     publisher = {Elsevier},
     volume = {14},
     number = {9-10},
     year = {2013},
     doi = {10.1016/j.crhy.2013.04.003},
     language = {en},
}
TY  - JOUR
AU  - Siddharth A. Parameswaran
AU  - Rahul Roy
AU  - Shivaji L. Sondhi
TI  - Fractional quantum Hall physics in topological flat bands
JO  - Comptes Rendus. Physique
PY  - 2013
SP  - 816
EP  - 839
VL  - 14
IS  - 9-10
PB  - Elsevier
DO  - 10.1016/j.crhy.2013.04.003
LA  - en
ID  - CRPHYS_2013__14_9-10_816_0
ER  - 
%0 Journal Article
%A Siddharth A. Parameswaran
%A Rahul Roy
%A Shivaji L. Sondhi
%T Fractional quantum Hall physics in topological flat bands
%J Comptes Rendus. Physique
%D 2013
%P 816-839
%V 14
%N 9-10
%I Elsevier
%R 10.1016/j.crhy.2013.04.003
%G en
%F CRPHYS_2013__14_9-10_816_0
Siddharth A. Parameswaran; Rahul Roy; Shivaji L. Sondhi. Fractional quantum Hall physics in topological flat bands. Comptes Rendus. Physique, Topological insulators / Isolants topologiques, Volume 14 (2013) no. 9-10, pp. 816-839. doi : 10.1016/j.crhy.2013.04.003. https://comptes-rendus.academie-sciences.fr/physique/articles/10.1016/j.crhy.2013.04.003/

[1] K. von Klitzing; G. Dorda; M. Pepper New method for high-accuracy determination of the fine-structure constant based on quantized Hall resistance, Phys. Rev. Lett., Volume 45 (1980) no. 6, p. 494 | DOI

[2] D.C. Tsui; H.L. Störmer; A.C. Gossard Two-dimensional magnetotransport in the extreme quantum limit, Phys. Rev. Lett., Volume 48 (1982) no. 22, p. 1559 | DOI

[3] R.B. Laughlin Anomalous quantum Hall effect: An incompressible quantum fluid with fractionally charged excitations, Phys. Rev. Lett., Volume 50 (1983) no. 18, p. 1395 | DOI

[4] X.-G. Wen Topological order in rigid states, Int. J. Mod. Phys. B, Volume 4 (1990), p. 239 | DOI

[5] F.D.M. Haldane Fractional quantization of the Hall effect: A hierarchy of incompressible quantum fluid states, Phys. Rev. Lett., Volume 51 (1983) no. 7, p. 605 | DOI

[6] B.I. Halperin Statistics of quasiparticles and the hierarchy of fractional quantized Hall states, Phys. Rev. Lett., Volume 52 (1984) no. 18, p. 1583 | DOI

[7] G. Moore; N. Read Nonabelions in the fractional quantum Hall effect, Nucl. Phys. B, Volume 360 (1991) no. 2–3, p. 362

[8] S.-C. Zhang; T.H. Hansson; S.A. Kivelson Effective field theory model for the fractional quantum Hall effect, Phys. Rev. Lett., Volume 62 (1989) no. 1, p. 82

[9] S.C. Zhang The Chern–Simons–Landau–Ginzburg theory of the fractional quantum Hall effect, Int. J. Mod. Phys. B, Volume 6 (1992) no. 1, pp. 43-77

[10] D.J. Thouless; M. Kohmoto; M.P. Nightingale; M. den Nijs Quantized Hall conductance in a two-dimensional periodic potential, Phys. Rev. Lett., Volume 49 (1982) no. 6, p. 405 | DOI

[11] F.D.M. Haldane Model for a quantum Hall effect without Landau levels: Condensed-matter realization of the “parity anomaly”, Phys. Rev. Lett., Volume 61 (1988) no. 18, pp. 2015-2018 | DOI

[12] E. Tang; J.-W. Mei; X.-G. Wen High-temperature fractional quantum hall states, Phys. Rev. Lett., Volume 106 (2011) no. 23, p. 236802 | DOI

[13] K. Sun; Z.-C. Gu; H. Katsura; S. Das Sarma Nearly flatbands with nontrivial topology, Phys. Rev. Lett., Volume 106 (2011) no. 23, p. 236803 | DOI

[14] T. Neupert; L. Santos; C. Chamon; C. Mudry Fractional quantum Hall states at zero magnetic field, Phys. Rev. Lett., Volume 106 (2011) no. 23, p. 236804 | DOI

[15] D. Sheng; Z. Gu; K. Sun; L. Sheng Fractional quantum Hall effect in the absence of Landau levels, Nat. Commun., Volume 2 (2011), p. 389

[16] Y.-F. Wang; Z.-C. Gu; C.-D. Gong; D.N. Sheng Fractional quantum Hall effect of hard-core bosons in topological flat bands, Phys. Rev. Lett., Volume 107 (2011), p. 146803 | DOI

[17] N. Regnault; B. Bernevig Fractional Chern insulator, Phys. Rev. X, Volume 1 (2011) no. 2, p. 021014

[18] X.-L. Qi Generic wave-function description of fractional quantum anomalous Hall states and fractional topological insulators, Phys. Rev. Lett., Volume 107 (2011), p. 126803 | DOI

[19] S.A. Parameswaran; R. Roy; S.L. Sondhi Fractional Chern insulators and the w algebra, Phys. Rev. B, Volume 85 (2012) no. 24, p. 241308

[20] R. Roy Band geometry of fractional topological insulators | arXiv

[21] G. Murthy; R. Shankar Composite fermions for fractionally filled Chern bands | arXiv

[22] G. Murthy; R. Shankar Hamiltonian theory of fractionally filled Chern bands | arXiv

[23] A.S. Sørensen; E. Demler; M.D. Lukin Fractional quantum Hall states of atoms in optical lattices, Phys. Rev. Lett., Volume 94 (2005) no. 8, p. 086803 | DOI

[24] S.M. Girvin; A.H. MacDonald; P.M. Platzman Magneto-roton theory of collective excitations in the fractional quantum Hall effect, Phys. Rev. B, Volume 33 (1986) no. 4, pp. 2481-2494 | DOI

[25] M. Barkeshli; J. McGreevy Continuous transitions between composite Fermi liquid and Landau Fermi liquid: A route to fractionalized mott insulators, Phys. Rev. B, Volume 86 (2012), p. 075136 | DOI

[26] M. Barkeshli; J. McGreevy | arXiv

[27] Y. Zhang; A. Vishwanath Establishing non-Abelian topological order in Gutzwiller projected Chern insulators via entanglement entropy and modular S-matrix | arXiv

[28] G. Möller; N.R. Cooper Composite fermion theory for bosonic quantum Hall states on lattices, Phys. Rev. Lett., Volume 103 (2009) no. 10, p. 105303 | DOI

[29] D. Xiao; W. Zhu; Y. Ran; N. Nagaosa; S. Okamoto Interface engineering of quantum Hall effects in digital transition metal oxide heterostructures, Nat. Commun., Volume 2 (2011) | DOI

[30] N.R. Cooper Optical flux lattices for ultracold atomic gases, Phys. Rev. Lett., Volume 106 (2011), p. 175301 | DOI

[31] N.Y. Yao; A.V. Gorshkov; C.R. Laumann; A.M. Läuchli; J. Ye; M.D. Lukin Realizing fractional Chern insulators with dipolar spins | arXiv

[32] N.Y. Yao; C.R. Laumann; A.V. Gorshkov; S.D. Bennett; E. Demler; P. Zoller; M.D. Lukin Topological flat bands from dipolar spin systems, Phys. Rev. Lett., Volume 109 (2012), p. 266804 | DOI

[33] X. Hu; M. Kargarian; G.A. Fiete Topological insulators and fractional quantum Hall effect on the ruby lattice, Phys. Rev. B, Volume 84 (2011) no. 15, p. 155116

[34] F.D.M. Haldane Many-particle translational symmetries of two-dimensional electrons at rational Landau-level filling, Phys. Rev. Lett., Volume 55 (1985), pp. 2095-2098 | DOI

[35] A. Kol; N. Read Fractional quantum Hall effect in a periodic potential, Phys. Rev. B, Volume 48 (1993), pp. 8890-8898 | DOI

[36] F.D.M. Haldane “Fractional statistics” in arbitrary dimensions: A generalization of the Pauli principle, Phys. Rev. Lett., Volume 67 (1991), pp. 937-940 | DOI

[37] B.A. Bernevig; N. Regnault Emergent many-body translational symmetries of abelian and non-abelian fractionally filled topological insulators, Phys. Rev. B, Volume 85 (2012), p. 075128 | DOI

[38] A. Kitaev; J. Preskill Topological entanglement entropy, Phys. Rev. Lett., Volume 96 (2006), p. 110404 | DOI

[39] M. Levin; X.-G. Wen Detecting topological order in a ground state wave function, Phys. Rev. Lett., Volume 96 (2006), p. 110405 | DOI

[40] H. Li; F.D.M. Haldane Entanglement spectrum as a generalization of entanglement entropy: Identification of topological order in non-abelian fractional quantum Hall effect states, Phys. Rev. Lett., Volume 101 (2008) no. 1, p. 010504 | DOI

[41] M. Srednicki Entropy and area, Phys. Rev. Lett., Volume 71 (1993), pp. 666-669 | DOI

[42] A. Sterdyniak; N. Regnault; B.A. Bernevig Extracting excitations from model state entanglement, Phys. Rev. Lett., Volume 106 (2011), p. 100405 | DOI

[43] Y. Zhang; T. Grover; A. Turner; M. Oshikawa; A. Vishwanath Quasiparticle statistics and braiding from ground-state entanglement, Phys. Rev. B, Volume 85 (2012), p. 235151 | DOI

[44] C.H. Lee; R. Thomale; X.-L. Qi Pseudopotential formalism for fractional Chern insulators | arXiv

[45] Z. Liu; E.J. Bergholtz From fractional Chern insulators to abelian and non-abelian fractional quantum Hall states: Adiabatic continuity and orbital entanglement spectrum, Phys. Rev. B, Volume 87 (2013), p. 035306 | DOI

[46] T. Scaffidi; G. Möller Adiabatic continuation of fractional Chern insulators to fractional quantum Hall states, Phys. Rev. Lett., Volume 109 (2012), p. 246805 | DOI

[47] Y.-H. Wu; J.K. Jain; K. Sun Adiabatic continuity between Hofstadter and Chern insulator states, Phys. Rev. B, Volume 86 (2012), p. 165129 | DOI

[48] S.A. Trugman Localization, percolation, and the quantum Hall effect, Phys. Rev. B, Volume 27 (1983) no. 12, p. 7539 | DOI

[49] Y.-L. Wu; N. Regnault; B.A. Bernevig Gauge-fixed Wannier wave functions for fractional topological insulators, Phys. Rev. B, Volume 86 (2012), p. 085129 | DOI

[50] E. Brown Bloch electrons in a uniform magnetic field, Phys. Rev. A, Volume 133 (1964) no. 4, pp. 1038-1044 | DOI

[51] R. Roy, 2011, unpublished.

[52] N. Regnault, B.A. Bernevig, 2011, personal communication.

[53] E. Kapit; E. Mueller Exact parent Hamiltonian for the quantum Hall states in a lattice, Phys. Rev. Lett., Volume 105 (2010), p. 215303 | DOI

[54] E. Kapit; P. Ginsparg; E. Mueller Non-abelian braiding of lattice bosons, Phys. Rev. Lett., Volume 108 (2012), p. 066802 | DOI

[55] S. Boldyrev; V. Gurarie The integer quantum Hall transition and random su(N) rotation, J. Phys. Condens. Matter, Volume 15 (2003), p. L125-L132 | DOI

[56] D. Page Geometrical description of Berryʼs phase, Phys. Rev. A, Volume 36 (1987), pp. 3479-3481

[57] J. Anandan; Y. Aharonov Geometry of quantum evolution, Phys. Rev. Lett., Volume 65 (1990), pp. 1697-1700 | DOI

[58] S. Kobayashi; K. Nomizu Foundations of Differential Geometry, vol. 2, Interscience Publishers, New York, 1969

[59] A.K. Pati Relation between “phases” and “distance” in quantum evolution, Phys. Lett. A, Volume 159 (1991) no. 3, pp. 105-112 | DOI

[60] R. Resta The insulating state of matter: A geometrical theory, Eur. Phys. J. B, Volume 79 (2011), pp. 121-137 | arXiv | DOI

[61] A.G. Grushin; T. Neupert; C. Chamon; C. Mudry Enhancing the stability of a fractional Chern insulator against competing phases, Phys. Rev. B, Volume 86 (2012), p. 205125 | DOI

[62] T. Neupert; L. Santos; S. Ryu; C. Chamon; C. Mudry Noncommutative geometry for three-dimensional topological insulators, Phys. Rev. B, Volume 86 (2012), p. 035125 | DOI

[63] C. Chamon; C. Mudry Magnetic translation algebra with or without magnetic field in the continuum or on arbitrary Bravais lattices in any dimension, Phys. Rev. B, Volume 86 (2012), p. 195125 | DOI

[64] B. Estienne; N. Regnault; B.A. Bernevig d-algebra structure of topological insulators, Phys. Rev. B, Volume 86 (2012), p. 241104 | DOI

[65] Y.M. Lu; Y. Ran Symmetry-protected fractional Chern insulators and fractional topological insulators, Phys. Rev. B, Volume 85 (2012), p. 165134 | DOI

[66] X.-G. Wen Quantum orders and symmetric spin liquids, Phys. Rev. B, Volume 65 (2002), p. 165113 | DOI

[67] J. McGreevy; B. Swingle; K.-A. Tran Wave functions for fractional Chern insulators, Phys. Rev. B, Volume 85 (2012), p. 125105 | DOI

[68] Y. Zhang; T. Grover; A. Vishwanath Topological entanglement entropy of Z2 spin liquids and lattice Laughlin states, Phys. Rev. B, Volume 84 (2011), p. 075128 | DOI

[69] Y.-F. Wang; H. Yao; Z.-C. Gu; C.-D. Gong; D.N. Sheng Non-abelian quantum Hall effect in topological flat bands, Phys. Rev. Lett., Volume 108 (2012), p. 126805 | DOI

[70] Y.-F. Wang; H. Yao; C.-D. Gong; D.N. Sheng Fractional quantum Hall effect in topological flat bands with Chern number two, Phys. Rev. B, Volume 86 (2012), p. 201101 | DOI

[71] S. Yang; Z.-C. Gu; K. Sun; S. Das Sarma Topological flat band models with arbitrary Chern numbers, Phys. Rev. B, Volume 86 (2012), p. 241112 | DOI

[72] F. Wang; Y. Ran Nearly flat band with Chern number c=2 on the dice lattice, Phys. Rev. B, Volume 84 (2011) no. 24, p. 241103

[73] M. Trescher; E.J. Bergholtz Flat bands with higher Chern number in pyrochlore slabs, Phys. Rev. B, Volume 86 (2012) no. 24, p. 241111

[74] Z. Liu; E.J. Bergholtz; H. Fan; A.M. Läuchli Fractional Chern insulators in topological flat bands with higher Chern number, Phys. Rev. Lett., Volume 109 (2012), p. 186805 | DOI

[75] A. Sterdyniak; C. Repellin; B.A. Bernevig; N. Regnault Series of Abelian and non-Abelian states in C>1 fractional Chern insulators | arXiv

[76] M. Barkeshli; X.-L. Qi Topological nematic states and non-abelian lattice dislocations, Phys. Rev. X, Volume 2 (2012), p. 031013 | DOI

[77] Y.-L. Wu; N. Regnault; B.A. Bernevig Bloch model wavefunctions and pseudopotentials for all fractional Chern insulators | arXiv

[78] B.I. Halperin Theory of the quantized Hall conductance, Helv. Phys. Acta, Volume 56 (1983), p. 75

[79] M. Barkeshli; C.-M. Jian; X.-L. Qi Genons, twist defects, and projective non-Abelian braiding statistics | arXiv

[80] S. Kourtis; J.W.F. Venderbos; M. Daghofer Fractional Chern insulator on a triangular lattice of strongly correlated t2g electrons, Phys. Rev. B, Volume 86 (2012), p. 235118 | DOI

[81] J.W.F. Venderbos; M. Daghofer; J. van den Brink Narrowing of topological bands due to electronic orbital degrees of freedom, Phys. Rev. Lett., Volume 107 (2011), p. 116401 | DOI

[82] J.W.F. Venderbos; S. Kourtis; J. van den Brink; M. Daghofer Fractional quantum-Hall liquid spontaneously generated by strongly correlated t2g electrons, Phys. Rev. Lett., Volume 108 (2012), p. 126405 | DOI

[83] N.R. Cooper; R. Moessner Designing topological bands in reciprocal space, Phys. Rev. Lett., Volume 109 (2012), p. 215302 | DOI

[84] N.R. Cooper; J. Dalibard Reaching fractional quantum Hall states with optical flux lattices | arXiv

[85] M. Onoda; N. Nagaosa Quantized anomalous Hall effect in two-dimensional ferromagnets: Quantum Hall effect in metals, Phys. Rev. Lett., Volume 90 (2003) no. 20, p. 206601 | DOI

[86] S.A. Kivelson; D.-H. Lee; S.-C. Zhang Global phase diagram in the quantum Hall effect, Phys. Rev. B, Volume 46 (1992) no. 4, p. 2223

[87] S.L. Sondhi; S.A. Kivelson Long-range interactions and the quantum Hall effect, Phys. Rev. B, Volume 46 (1992) no. 20, p. 13319

[88] T. Liu; C. Repellin; B.A. Bernevig; N. Regnault Fractional Chern insulators beyond Laughlin states | arXiv

[89] A.M. Läuchli; Z. Liu; E.J. Bergholtz; R. Moessner Hierarchy of fractional Chern insulators and competing compressible states | arXiv

[90] X.-G. Wen Chiral Luttinger liquid and the edge excitations in the fractional quantum Hall states, Phys. Rev. B, Volume 41 (1990) no. 18, p. 12838 | DOI

[91] D.A. Abanin; T. Kitagawa; I. Bloch; E. Demler Interferometric approach to measuring band topology in 2D optical lattices | arXiv

[92] H.M. Price; N.R. Cooper Mapping the Berry curvature from semiclassical dynamics in optical lattices, Phys. Rev. A, Volume 85 (2012), p. 033620 | DOI

[93] M. Atala; M. Aidelsburger; J.T. Barreiro; D. Abanin; T. Kitagawa; E. Demler; I. Bloch Direct measurement of the Zak phase in topological Bloch bands | arXiv

[94] M. Fannes; B. Nachtergaele; R.F. Werner Finitely correlated states on quantum spin chains, Commun. Math. Phys., Volume 144 (1992), pp. 443-490 | DOI

[95] S.R. White Density matrix formulation for quantum renormalization groups, Phys. Rev. Lett., Volume 69 (1992), pp. 2863-2866 | DOI

[96] S. Östlund; S. Rommer Thermodynamic limit of density matrix renormalization, Phys. Rev. Lett., Volume 75 (1995), pp. 3537-3540 | DOI

[97] F. Verstraete; J.I. Cirac Renormalization algorithms for quantum-many body systems in two and higher dimensions | arXiv

[98] M.P. Zaletel; R.S.K. Mong Exact matrix product states for quantum Hall wave functions, Phys. Rev. B, Volume 86 (2012), p. 245305 | DOI

[99] B. Estienne; Z. Papic; N. Regnault; B.A. Bernevig Matrix product states and the fractional quantum Hall effect | arXiv

[100] B. Béri; N.R. Cooper Local tensor network for strongly correlated projective states, Phys. Rev. Lett., Volume 106 (2011), p. 156401 | DOI

[101] M. Freedman; C. Nayak; K. Shtengel; K. Walker; Z. Wang A class of P,T-invariant topological phases of interacting electrons, Ann. Phys., Volume 310 (2004), pp. 428-492 | arXiv | DOI

[102] M. Levin; A. Stern Fractional topological insulators, Phys. Rev. Lett., Volume 103 (2009), p. 196803 | DOI

[103] J. Maciejko; X.-L. Qi; A. Karch; S.-C. Zhang Fractional topological insulators in three dimensions, Phys. Rev. Lett., Volume 105 (2010), p. 246809 | DOI

[104] B. Swingle; M. Barkeshli; J. McGreevy; T. Senthil Correlated topological insulators and the fractional magnetoelectric effect, Phys. Rev. B, Volume 83 (2011), p. 195139 | DOI

[105] T. Neupert; L. Santos; S. Ryu; C. Chamon; C. Mudry Fractional topological liquids with time-reversal symmetry and their lattice realization, Phys. Rev. B, Volume 84 (2011), p. 165107 | DOI

[106] L. Santos; T. Neupert; S. Ryu; C. Chamon; C. Mudry Time-reversal symmetric hierarchy of fractional incompressible liquids, Phys. Rev. B, Volume 84 (2011), p. 165138 | DOI

[107] M. Levin; F.J. Burnell; M. Koch-Janusz; A. Stern Exactly soluble models for fractional topological insulators in two and three dimensions, Phys. Rev. B, Volume 84 (2011), p. 235145 | DOI

[108] X. Chen; Z.-C. Gu; Z.-X. Liu; X.-G. Wen Symmetry protected topological orders in interacting bosonic systems | arXiv

[109] F. Pollmann; A.M. Turner; E. Berg; M. Oshikawa Entanglement spectrum of a topological phase in one dimension, Phys. Rev. B, Volume 81 (2010), p. 064439 | DOI

[110] F. Pollmann; E. Berg; A.M. Turner; M. Oshikawa Symmetry protection of topological phases in one-dimensional quantum spin systems, Phys. Rev. B, Volume 85 (2012), p. 075125 | DOI

  • Fan Yang; Yi-Xuan Ling; Xu-Hui Yan; Lu Qi; Xiuyun Zhang; Ying Han; Ai-Lei He Porous Haldane model: topological phase transitions and flat bands, Journal of Physics: Condensed Matter, Volume 37 (2025) no. 7, p. 075501 | DOI:10.1088/1361-648x/ad9723
  • Hui Liu; Raul Perea-Causin; Emil J. Bergholtz Parafermions in moiré minibands, Nature Communications, Volume 16 (2025) no. 1 | DOI:10.1038/s41467-025-57035-x
  • Siqi Wu; Chenchao Xu; Xiaoqun Wang; Hai-Qing Lin; Chao Cao; Guang-Han Cao Flat-band enhanced antiferromagnetic fluctuations and superconductivity in pressurized CsCr3Sb5, Nature Communications, Volume 16 (2025) no. 1 | DOI:10.1038/s41467-025-56582-7
  • Tao Chen; Chenxi Huang; Ivan Velkovsky; Tomoki Ozawa; Hannah Price; Jacob P. Covey; Bryce Gadway Interaction-driven breakdown of Aharonov–Bohm caging in flat-band Rydberg lattices, Nature Physics, Volume 21 (2025) no. 2, p. 221 | DOI:10.1038/s41567-024-02714-7
  • Li-Xiang Chen; Dong-Hao Guan; Lu Qi; Xiuyun Zhang; Ying Han; Ai-Lei He Square lattice model with staggered magnetic fluxes: Zero Chern number topological states and topological flat bands, Physical Review B, Volume 111 (2025) no. 11 | DOI:10.1103/physrevb.111.115136
  • Bohao Li; Fengcheng Wu Variational mapping of Chern bands to Landau levels: Application to fractional Chern insulators in twisted MoTe2, Physical Review B, Volume 111 (2025) no. 12 | DOI:10.1103/physrevb.111.125122
  • Pratik Sathe; Rahul Roy Topological triviality of flat Hamiltonians, Physical Review B, Volume 111 (2025) no. 4 | DOI:10.1103/physrevb.111.l041105
  • Manato Fujimoto; Daniel E. Parker; Junkai Dong; Eslam Khalaf; Ashvin Vishwanath; Patrick Ledwith Higher Vortexability: Zero-Field Realization of Higher Landau Levels, Physical Review Letters, Volume 134 (2025) no. 10 | DOI:10.1103/physrevlett.134.106502
  • Ziwei Wang; Steven H. Simon Closed Band-Projected Density Algebra Must Be Girvin-MacDonald-Platzman, Physical Review Letters, Volume 134 (2025) no. 13 | DOI:10.1103/physrevlett.134.136502
  • Cheng Xu; Ning Mao; Tiansheng Zeng; Yang Zhang Multiple Chern Bands in Twisted MoTe2 and Possible Non-Abelian States, Physical Review Letters, Volume 134 (2025) no. 6 | DOI:10.1103/physrevlett.134.066601
  • Lei Hao; C. S. Ting Unveiling hidden bipartite limit and flat band in semifunctionalized graphene by electric field, Physical Review Materials, Volume 9 (2025) no. 2 | DOI:10.1103/physrevmaterials.9.024005
  • Eimantas Ledinauskas; Egidijus Anisimovas Universal performance gap of neural quantum states applied to the Hofstadter-Bose-Hubbard model, SciPost Physics, Volume 18 (2025) no. 1 | DOI:10.21468/scipostphys.18.1.011
  • Amir Dalal; Jonathan Ruhman; Jörn W. F. Venderbos Flat band physics in the charge-density wave state of 1T-TaS2 and 1T-TaSe2, npj Quantum Materials, Volume 10 (2025) no. 1 | DOI:10.1038/s41535-025-00747-6
  • Zhao Liu Fractionalized topological states in moiré superlattices, Acta Physica Sinica, Volume 73 (2024) no. 20, p. 207303 | DOI:10.7498/aps.73.20241029
  • Ting Fung Jeffrey Poon; Xin‐Chi Zhou; Bao‐Zong Wang; Tian‐Hua Yang; Xiong‐Jun Liu Fractional Quantum Anomalous Hall Phase for Raman Superarray of Rydberg Atoms, Advanced Quantum Technologies, Volume 7 (2024) no. 5 | DOI:10.1002/qute.202300356
  • Ning Mao; Cheng Xu; Jiangxu Li; Ting Bao; Peitao Liu; Yong Xu; Claudia Felser; Liang Fu; Yang Zhang Transfer learning relaxation, electronic structure and continuum model for twisted bilayer MoTe2, Communications Physics, Volume 7 (2024) no. 1 | DOI:10.1038/s42005-024-01754-y
  • Xiaoyang Huang; Taige Wang; Shang Liu; Hong-Ye Hu; Yi-Zhuang You Quantum Magnetism in Wannier-Obstructed Mott Insulators, Crystals, Volume 14 (2024) no. 2, p. 176 | DOI:10.3390/cryst14020176
  • Zhao Liu; Emil J. Bergholtz Recent developments in fractional Chern insulators, Encyclopedia of Condensed Matter Physics (2024), p. 515 | DOI:10.1016/b978-0-323-90800-9.00136-0
  • Jung-Wan Ryu; Alexei Andreanov; Hee Chul Park; Jae-Ho Han Orthogonal flatbands in Hamiltonians with local symmetry, Journal of Physics A: Mathematical and Theoretical, Volume 57 (2024) no. 49, p. 495301 | DOI:10.1088/1751-8121/ad909d
  • Abdiel de Jesús Espinosa-Champo; Gerardo G Naumis Fubini–Study metric and topological properties of flat band electronic states: the case of an atomic chain with s − p orbitals, Journal of Physics: Condensed Matter, Volume 36 (2024) no. 1, p. 015502 | DOI:10.1088/1361-648x/acfbd1
  • Xu-Hui Yan; Lu Qi; Xiuyun Zhang; Yongjun Liu; Ai-Lei He Topological phase transitions and flat bands on an islamic lattice, Journal of Physics: Condensed Matter, Volume 36 (2024) no. 3, p. 035501 | DOI:10.1088/1361-648x/acfeba
  • Pratap Chandra Adak; Subhajit Sinha; Amit Agarwal; Mandar M. Deshmukh Tunable moiré materials for probing Berry physics and topology, Nature Reviews Materials, Volume 9 (2024) no. 7, p. 481 | DOI:10.1038/s41578-024-00671-4
  • Ahmed Abouelkomsan; Aidan P. Reddy; Liang Fu; Emil J. Bergholtz Band mixing in the quantum anomalous Hall regime of twisted semiconductor bilayers, Physical Review B, Volume 109 (2024) no. 12 | DOI:10.1103/physrevb.109.l121107
  • Yves H. Kwan; Patrick J. Ledwith; Chiu Fan Bowen Lo; Trithep Devakul Strong-coupling topological states and phase transitions in helical trilayer graphene, Physical Review B, Volume 109 (2024) no. 12 | DOI:10.1103/physrevb.109.125141
  • Soonhyun Kwon; Bohm-Jung Yang Quantum geometric bound and ideal condition for Euler band topology, Physical Review B, Volume 109 (2024) no. 16 | DOI:10.1103/physrevb.109.l161111
  • Dan Mao; Debanjan Chowdhury Upper bounds on superconducting and excitonic phase stiffness for interacting isolated narrow bands, Physical Review B, Volume 109 (2024) no. 2 | DOI:10.1103/physrevb.109.024507
  • Yujin Jia; Jiabin Yu; Jiaxuan Liu; Jonah Herzog-Arbeitman; Ziyue Qi; Hanqi Pi; Nicolas Regnault; Hongming Weng; B. Andrei Bernevig; Quansheng Wu Moiré fractional Chern insulators. I. First-principles calculations and continuum models of twisted bilayer MoTe2, Physical Review B, Volume 109 (2024) no. 20 | DOI:10.1103/physrevb.109.205121
  • Jonah Herzog-Arbeitman; Yuzhi Wang; Jiaxuan Liu; Pok Man Tam; Ziyue Qi; Yujin Jia; Dmitri K. Efetov; Oskar Vafek; Nicolas Regnault; Hongming Weng; Quansheng Wu; B. Andrei Bernevig; Jiabin Yu Moiré fractional Chern insulators. II. First-principles calculations and continuum models of rhombohedral graphene superlattices, Physical Review B, Volume 109 (2024) no. 20 | DOI:10.1103/physrevb.109.205122
  • Heqiu Li; Ying Su; Yong Baek Kim; Hae-Young Kee; Kai Sun; Shi-Zeng Lin Contrasting twisted bilayer graphene and transition metal dichalcogenides for fractional Chern insulators: An emergent gauge picture, Physical Review B, Volume 109 (2024) no. 24 | DOI:10.1103/physrevb.109.245131
  • Erik Lennart Weerda; Matteo Rizzi Fractional quantum Hall states with variational projected entangled-pair states: A study of the bosonic Harper-Hofstadter model, Physical Review B, Volume 109 (2024) no. 24 | DOI:10.1103/physrevb.109.l241117
  • Bartholomew Andrews; Mathi Raja; Nimit Mishra; Michael P. Zaletel; Rahul Roy Stability of fractional Chern insulators with a non-Landau level continuum limit, Physical Review B, Volume 109 (2024) no. 24 | DOI:10.1103/physrevb.109.245111
  • Yijie Mo; Xiao-Jiao Wang; Rui Yu; Zhongbo Yan Boundary flat bands with topological spin textures protected by subchiral symmetry, Physical Review B, Volume 109 (2024) no. 24 | DOI:10.1103/physrevb.109.245402
  • Jiabin Yu; Jonah Herzog-Arbeitman; Minxuan Wang; Oskar Vafek; B. Andrei Bernevig; Nicolas Regnault Fractional Chern insulators versus nonmagnetic states in twisted bilayer MoTe2, Physical Review B, Volume 109 (2024) no. 4 | DOI:10.1103/physrevb.109.045147
  • Ai-Lei He; Xu-Hui Yan; Lu Qi; Yongjun Liu; Ying Han Topological states and flat bands on the maple leaf lattice, Physical Review B, Volume 109 (2024) no. 7 | DOI:10.1103/physrevb.109.075118
  • Xue-Yang Song; Ya-Hui Zhang; T. Senthil Phase transitions out of quantum Hall states in moiré materials, Physical Review B, Volume 109 (2024) no. 8 | DOI:10.1103/physrevb.109.085143
  • Nisarga Paul Area-law entanglement from quantum geometry, Physical Review B, Volume 109 (2024) no. 8 | DOI:10.1103/physrevb.109.085146
  • Ke Huang; Xiao Li; Sankar Das Sarma; Fan Zhang Self-consistent theory of fractional quantum anomalous Hall states in rhombohedral graphene, Physical Review B, Volume 110 (2024) no. 11 | DOI:10.1103/physrevb.110.115146
  • Prakash Sharma; Yang Peng; D. N. Sheng Topological quantum phase transitions driven by a displacement field in twisted MoTe2 bilayers, Physical Review B, Volume 110 (2024) no. 12 | DOI:10.1103/physrevb.110.125142
  • Ya-Hui Zhang Non-Abelian and Abelian descendants of a vortex spin liquid: Fractional quantum spin Hall effect in twisted MoTe2, Physical Review B, Volume 110 (2024) no. 15 | DOI:10.1103/physrevb.110.155102
  • Cheong-Eung Ahn; Wonjun Lee; Kunihiro Yananose; Youngwook Kim; Gil Young Cho Non-Abelian fractional quantum anomalous Hall states and first Landau level physics of the second moiré band of twisted bilayer MoTe2, Physical Review B, Volume 110 (2024) no. 16 | DOI:10.1103/physrevb.110.l161109
  • Edwin Langmann; Shinsei Ryu; Ken Shiozaki Higher-bracket structure of density operators in Weyl fermion systems and topological insulators, Physical Review B, Volume 110 (2024) no. 19 | DOI:10.1103/physrevb.110.195115
  • Ai-Lei He; Lu Qi; Yongjun Liu; Yi-Fei Wang Hyperbolic fractional Chern insulators, Physical Review B, Volume 110 (2024) no. 19 | DOI:10.1103/physrevb.110.195113
  • Nobuyuki Okuma Constructing vortex functions and basis states of Chern insulators: Ideal condition, inequality from index theorem, and coherentlike states on the von Neumann lattice, Physical Review B, Volume 110 (2024) no. 24 | DOI:10.1103/physrevb.110.245112
  • Xue-Yang Song; T. Senthil Density wave halo around anyons in fractional quantum anomalous Hall states, Physical Review B, Volume 110 (2024) no. 8 | DOI:10.1103/physrevb.110.085120
  • Zheng-Wei Zuo; Jing-Run Lin; Dawei Kang Topological inverse Anderson insulator, Physical Review B, Volume 110 (2024) no. 8 | DOI:10.1103/physrevb.110.085157
  • Nicole S. Ticea; S. Raghu; Yi-Ming Wu Pair density wave order in multiband systems, Physical Review B, Volume 110 (2024) no. 9 | DOI:10.1103/physrevb.110.094515
  • Botao Wang; Monika Aidelsburger; Jean Dalibard; André Eckardt; Nathan Goldman Cold-Atom Elevator: From Edge-State Injection to the Preparation of Fractional Chern Insulators, Physical Review Letters, Volume 132 (2024) no. 16 | DOI:10.1103/physrevlett.132.163402
  • Shuai A. Chen; K. T. Law Ginzburg-Landau Theory of Flat-Band Superconductors with Quantum Metric, Physical Review Letters, Volume 132 (2024) no. 2 | DOI:10.1103/physrevlett.132.026002
  • Chong Wang; Xiao-Wei Zhang; Xiaoyu Liu; Yuchi He; Xiaodong Xu; Ying Ran; Ting Cao; Di Xiao Fractional Chern Insulator in Twisted Bilayer MoTe2, Physical Review Letters, Volume 132 (2024) no. 3 | DOI:10.1103/physrevlett.132.036501
  • Ya-Hui Zhang Vortex Spin Liquid with Fractional Quantum Spin Hall Effect in Moiré Chern Bands, Physical Review Letters, Volume 133 (2024) no. 10 | DOI:10.1103/physrevlett.133.106502
  • Junkai Dong; Taige Wang; Tianle Wang; Tomohiro Soejima; Michael P. Zaletel; Ashvin Vishwanath; Daniel E. Parker Anomalous Hall Crystals in Rhombohedral Multilayer Graphene. I. Interaction-Driven Chern Bands and Fractional Quantum Hall States at Zero Magnetic Field, Physical Review Letters, Volume 133 (2024) no. 20 | DOI:10.1103/physrevlett.133.206503
  • Tixuan Tan; Aidan P. Reddy; Liang Fu; Trithep Devakul Designing Topology and Fractionalization in Narrow Gap Semiconductor Films via Electrostatic Engineering, Physical Review Letters, Volume 133 (2024) no. 20 | DOI:10.1103/physrevlett.133.206601
  • Boran Zhou; Hui Yang; Ya-Hui Zhang Fractional Quantum Anomalous Hall Effect in Rhombohedral Multilayer Graphene in the Moiréless Limit, Physical Review Letters, Volume 133 (2024) no. 20 | DOI:10.1103/physrevlett.133.206504
  • Zhihuan Dong; Adarsh S. Patri; T. Senthil Theory of Quantum Anomalous Hall Phases in Pentalayer Rhombohedral Graphene Moiré Structures, Physical Review Letters, Volume 133 (2024) no. 20 | DOI:10.1103/physrevlett.133.206502
  • I. Septembre; C. Leblanc; D. D. Solnyshkov; G. Malpuech Topological Moiré Polaritons, Physical Review Letters, Volume 133 (2024) no. 26 | DOI:10.1103/physrevlett.133.266602
  • Junren Shi Quantum mechanics of composite fermions, Physical Review Research, Volume 6 (2024) no. 2 | DOI:10.1103/physrevresearch.6.023306
  • Ang-Kun Wu; Siddhartha Sarkar; Xiaohan Wan; Kai Sun; Shi-Zeng Lin Quantum-metric-induced quantum Hall conductance inversion and reentrant transition in fractional Chern insulators, Physical Review Research, Volume 6 (2024) no. 3 | DOI:10.1103/physrevresearch.6.l032063
  • Patrick H. Wilhelm; Andreas M. Läuchli; Mathias S. Scheurer Ideal Chern bands with strong short-range repulsion: Applications to correlated metals, superconductivity, and topological order, Physical Review Research, Volume 6 (2024) no. 4 | DOI:10.1103/physrevresearch.6.043240
  • Jixun K. Ding; Luhang Yang; Wen O. Wang; Ziyan Zhu; Cheng Peng; Peizhi Mai; Edwin W. Huang; Brian Moritz; Philip W. Phillips; Benjamin E. Feldman; Thomas P. Devereaux Particle-Hole Asymmetric Ferromagnetism and Spin Textures in the Triangular Hubbard-Hofstadter Model, Physical Review X, Volume 14 (2024) no. 4 | DOI:10.1103/physrevx.14.041025
  • Tixuan Tan; Trithep Devakul Parent Berry Curvature and the Ideal Anomalous Hall Crystal, Physical Review X, Volume 14 (2024) no. 4 | DOI:10.1103/physrevx.14.041040
  • Cheng Xu; Jiangxu Li; Yong Xu; Zhen Bi; Yang Zhang Maximally localized Wannier functions, interaction models, and fractional quantum anomalous Hall effect in twisted bilayer MoTe2, Proceedings of the National Academy of Sciences, Volume 121 (2024) no. 8 | DOI:10.1073/pnas.2316749121
  • Xiang Ni; Simon Yves; Alex Krasnok; Andrea Alù Topological Metamaterials, Chemical Reviews, Volume 123 (2023) no. 12, p. 7585 | DOI:10.1021/acs.chemrev.2c00800
  • Ke 珂 Yang 杨 Phase transition in bilayer quantum Hall system with opposite magnetic field, Chinese Physics B, Volume 32 (2023) no. 9, p. 097303 | DOI:10.1088/1674-1056/ace61d
  • Giandomenico Palumbo Noncommutative geometry and deformation quantization in the quantum Hall fluids with inhomogeneous magnetic fields, Journal of Physics A: Mathematical and Theoretical, Volume 56 (2023) no. 45, p. 455203 | DOI:10.1088/1751-8121/ad018b
  • Michael Vogl; Swati Chaudhary; Gregory A Fiete Light driven magnetic transitions in transition metal dichalcogenide heterobilayers, Journal of Physics: Condensed Matter, Volume 35 (2023) no. 9, p. 095801 | DOI:10.1088/1361-648x/acab49
  • Mani Chandra Jha; Anne E B Nielsen Properties of Laughlin states on fractal lattices, Journal of Statistical Mechanics: Theory and Experiment, Volume 2023 (2023) no. 5, p. 053103 | DOI:10.1088/1742-5468/acd104
  • Lei Hao One-dimensional flat bands and Dirac cones in narrow zigzag dice lattice ribbons, Materials Science and Engineering: B, Volume 293 (2023), p. 116486 | DOI:10.1016/j.mseb.2023.116486
  • Kyung-Hwan Jin; Wei Jiang; Gurjyot Sethi; Feng Liu Topological quantum devices: a review, Nanoscale, Volume 15 (2023) no. 31, p. 12787 | DOI:10.1039/d3nr01288c
  • Cécile Repellin The twisted material that splits the electron, Nature, Volume 622 (2023) no. 7981, p. 36 | DOI:10.1038/d41586-023-02941-7
  • Jiaqi Cai; Eric Anderson; Chong Wang; Xiaowei Zhang; Xiaoyu Liu; William Holtzmann; Yinong Zhang; Fengren Fan; Takashi Taniguchi; Kenji Watanabe; Ying Ran; Ting Cao; Liang Fu; Di Xiao; Wang Yao; Xiaodong Xu Signatures of fractional quantum anomalous Hall states in twisted MoTe2, Nature, Volume 622 (2023) no. 7981, p. 63 | DOI:10.1038/s41586-023-06289-w
  • Yihang Zeng; Zhengchao Xia; Kaifei Kang; Jiacheng Zhu; Patrick Knüppel; Chirag Vaswani; Kenji Watanabe; Takashi Taniguchi; Kin Fai Mak; Jie Shan Thermodynamic evidence of fractional Chern insulator in moiré MoTe2, Nature, Volume 622 (2023) no. 7981, p. 69 | DOI:10.1038/s41586-023-06452-3
  • Alexander Filusch; Holger Fehske Singular flat bands in the modified Haldane-Dice model, Physica B: Condensed Matter, Volume 659 (2023), p. 414848 | DOI:10.1016/j.physb.2023.414848
  • Amrita Mukherjee; Arka Bandyopadhyay; Debnarayan Jana Application of the real space decimation method in determining intricate electronic phases of matter: a review, Physical Chemistry Chemical Physics, Volume 25 (2023) no. 14, p. 9706 | DOI:10.1039/d3cp00680h
  • Juven Wang; Xiao-Gang Wen Nonperturbative regularization of ( 1+1 )-dimensional anomaly-free chiral fermions and bosons: On the equivalence of anomaly matching conditions and boundary gapping rules, Physical Review B, Volume 107 (2023) no. 1 | DOI:10.1103/physrevb.107.014311
  • Yeongjun Kim; Tilen Čadež; Alexei Andreanov; Sergej Flach Flat band induced metal-insulator transitions for weak magnetic flux and spin-orbit disorder, Physical Review B, Volume 107 (2023) no. 17 | DOI:10.1103/physrevb.107.174202
  • Zhen-Yu Lan; Ai-Lei He; Yi-Fei Wang Flat bands with high Chern numbers and multiple flat bands in multifold staggered-flux models, Physical Review B, Volume 107 (2023) no. 23 | DOI:10.1103/physrevb.107.235116
  • Alexander Avdoshkin; Fedor K. Popov Extrinsic geometry of quantum states, Physical Review B, Volume 107 (2023) no. 24 | DOI:10.1103/physrevb.107.245136
  • Aamna Ahmed; Nilanjan Roy; Auditya Sharma Interplay of many-body interactions and quasiperiodic disorder in the all-bands-flat diamond chain, Physical Review B, Volume 107 (2023) no. 24 | DOI:10.1103/physrevb.107.245110
  • Han-Lin Liu; L. Hao; J. Wang; Jun-Feng Liu Thermopower of the dice lattice, Physical Review B, Volume 108 (2023) no. 11 | DOI:10.1103/physrevb.108.115141
  • Patrick J. Ledwith; Ashvin Vishwanath; Daniel E. Parker Vortexability: A unifying criterion for ideal fractional Chern insulators, Physical Review B, Volume 108 (2023) no. 20 | DOI:10.1103/physrevb.108.205144
  • Lei Hao; C. S. Ting Minimal tight-binding model for the distinct magnetic orders of semihydrogenated and semifluorinated graphene, Physical Review B, Volume 108 (2023) no. 24 | DOI:10.1103/physrevb.108.245120
  • Dong-Hao Guan; Lu Qi; Xiuyun Zhang; Yongjun Liu; Ai-Lei He Staggered magnetic flux induced higher-order topological insulators and topological flat bands on the ruby lattice, Physical Review B, Volume 108 (2023) no. 8 | DOI:10.1103/physrevb.108.085121
  • Ville A. J. Pyykkönen; Sebastiano Peotta; Päivi Törmä Suppression of Nonequilibrium Quasiparticle Transport in Flat-Band Superconductors, Physical Review Letters, Volume 130 (2023) no. 21 | DOI:10.1103/physrevlett.130.216003
  • Junkai Dong; Jie Wang; Patrick J. Ledwith; Ashvin Vishwanath; Daniel E. Parker Composite Fermi Liquid at Zero Magnetic Field in Twisted MoTe2, Physical Review Letters, Volume 131 (2023) no. 13 | DOI:10.1103/physrevlett.131.136502
  • Päivi Törmä Essay: Where Can Quantum Geometry Lead Us?, Physical Review Letters, Volume 131 (2023) no. 24 | DOI:10.1103/physrevlett.131.240001
  • Domenico Di Sante; Bongjae Kim; Werner Hanke; Tim Wehling; Cesare Franchini; Ronny Thomale; Giorgio Sangiovanni Electronic correlations and universal long-range scaling in kagome metals, Physical Review Research, Volume 5 (2023) no. 1 | DOI:10.1103/physrevresearch.5.l012008
  • Nobuyuki Okuma; Tomonari Mizoguchi Relationship between two-particle topology and fractional Chern insulator, Physical Review Research, Volume 5 (2023) no. 1 | DOI:10.1103/physrevresearch.5.013112
  • Peizhi Mai; Benjamin E. Feldman; Philip W. Phillips Topological Mott insulator at quarter filling in the interacting Haldane model, Physical Review Research, Volume 5 (2023) no. 1 | DOI:10.1103/physrevresearch.5.013162
  • Benjamin Michen; Cécile Repellin; Jan Carl Budich Adiabatic preparation of fractional Chern insulators from an effective thin-torus limit, Physical Review Research, Volume 5 (2023) no. 2 | DOI:10.1103/physrevresearch.5.023100
  • Jie Wang; Semyon Klevtsov; Zhao Liu Origin of model fractional Chern insulators in all topological ideal flatbands: Explicit color-entangled wave function and exact density algebra, Physical Review Research, Volume 5 (2023) no. 2 | DOI:10.1103/physrevresearch.5.023167
  • Junkai Dong; Patrick J. Ledwith; Eslam Khalaf; Jong Yeon Lee; Ashvin Vishwanath Many-body ground states from decomposition of ideal higher Chern bands: Applications to chirally twisted graphene multilayers, Physical Review Research, Volume 5 (2023) no. 2 | DOI:10.1103/physrevresearch.5.023166
  • Nicolás Morales-Durán; Jie Wang; Gabriel R. Schleder; Mattia Angeli; Ziyan Zhu; Efthimios Kaxiras; Cécile Repellin; Jennifer Cano Pressure-enhanced fractional Chern insulators along a magic line in moiré transition metal dichalcogenides, Physical Review Research, Volume 5 (2023) no. 3 | DOI:10.1103/physrevresearch.5.l032022
  • Peng-Sheng Hu; Yi-Han Zhou; Zhao Liu Floquet fractional Chern insulators and competing phases in twisted bilayer graphene, SciPost Physics, Volume 15 (2023) no. 4 | DOI:10.21468/scipostphys.15.4.148
  • Trithep Devakul; Patrick J. Ledwith; Li-Qiao Xia; Aviram Uri; Sergio C. de la Barrera; Pablo Jarillo-Herrero; Liang Fu Magic-angle helical trilayer graphene, Science Advances, Volume 9 (2023) no. 36 | DOI:10.1126/sciadv.adi6063
  • Jeronimo G. C. Martinez; Christie S. Chiu; Basil M. Smitham; Andrew A. Houck Flat-band localization and interaction-induced delocalization of photons, Science Advances, Volume 9 (2023) no. 50 | DOI:10.1126/sciadv.adj7195
  • Nisarga Paul; Yang Zhang; Liang Fu Giant proximity exchange and flat Chern band in 2D magnet-semiconductor heterostructures, Science Advances, Volume 9 (2023) no. 8 | DOI:10.1126/sciadv.abn1401
  • Jinsen Han; Xiansi Wang; Hui Tan; Rui Cao; Jiayu Dai; Yongqiang Li; Jianmin Yuan Interaction-induced topological transition in spin-orbit coupled ultracold bosons, Science China Physics, Mechanics Astronomy, Volume 66 (2023) no. 9 | DOI:10.1007/s11433-023-2166-y
  • Miljana Stojanovic; Ana Mancic; Milutin Stepic; Aleksandra Maluckov Shaping the dynamics of aharonov-bohm caged localized modes by nonlinearity, Facta universitatis - series: Physics, Chemistry and Technology, Volume 20 (2022) no. 1, p. 55 | DOI:10.2298/fupct2201055s
  • Kai Cheng; Shi-Chao Fang; Zhong-Bing Huang Enhancement of pairing correlations due to nearly flat bands in the plaquette-Lieb Hubbard model, International Journal of Modern Physics C, Volume 33 (2022) no. 08 | DOI:10.1142/s0129183122501078
  • Liqiang Zhuo; Huiru He; Ruimin Huang; Zhi Li; Weibin Qiu; Fengjiang Zhuang; Shaojian Su; Zhili Lin; Beiju Huang; Qiang Kan Flat band of Kagome lattice in graphene plasmonic crystals, Journal of Physics D: Applied Physics, Volume 55 (2022) no. 6, p. 065106 | DOI:10.1088/1361-6463/ac30fe
  • V. Yu. Irkhin; Yu. N. Skryabin Topological States in Strongly Correlated Systems, Journal of Superconductivity and Novel Magnetism, Volume 35 (2022) no. 8, p. 2141 | DOI:10.1007/s10948-022-06251-3
  • Martin Claassen; Lede Xian; Dante M. Kennes; Angel Rubio Ultra-strong spin–orbit coupling and topological moiré engineering in twisted ZrS2 bilayers, Nature Communications, Volume 13 (2022) no. 1 | DOI:10.1038/s41467-022-31604-w
  • M. Iskin Three-body problem in a multiband Hubbard model, Physical Review A, Volume 105 (2022) no. 6 | DOI:10.1103/physreva.105.063310
  • M. Iskin; A. Keleş Stability of (N+1) -body fermion clusters in a multiband Hubbard model, Physical Review A, Volume 106 (2022) no. 3 | DOI:10.1103/physreva.106.033304
  • Peize Ding; Ching Hua Lee; Xianxin Wu; Ronny Thomale Diagnosis of pairing symmetry by vortex and edge spectra in kagome superconductors, Physical Review B, Volume 105 (2022) no. 17 | DOI:10.1103/physrevb.105.174518
  • Yves H. Kwan; Yichen Hu; Steven H. Simon; S. A. Parameswaran Excitonic fractional quantum Hall hierarchy in moiré heterostructures, Physical Review B, Volume 105 (2022) no. 23 | DOI:10.1103/physrevb.105.235121
  • David Bauer; Spenser Talkington; Fenner Harper; Bartholomew Andrews; Rahul Roy Fractional Chern insulators with a non-Landau level continuum limit, Physical Review B, Volume 105 (2022) no. 4 | DOI:10.1103/physrevb.105.045144
  • Chao Han; Zhao Liu Disorder-driven phase transitions in bosonic fractional quantum Hall liquids, Physical Review B, Volume 105 (2022) no. 4 | DOI:10.1103/physrevb.105.045104
  • P. A. Almeida; L. S. Sousa; Tome M. Schmidt; G. B. Martins Ferromagnetism in armchair graphene nanoribbon heterostructures, Physical Review B, Volume 105 (2022) no. 5 | DOI:10.1103/physrevb.105.054416
  • Johannes Richter; Vadim Ohanyan; Jörg Schulenburg; Jürgen Schnack Electric field driven flat bands: Enhanced magnetoelectric and electrocaloric effects in frustrated quantum magnets, Physical Review B, Volume 105 (2022) no. 5 | DOI:10.1103/physrevb.105.054420
  • Zhihuan Dong; T. Senthil Evolution between quantum Hall and conducting phases: Simple models and some results, Physical Review B, Volume 105 (2022) no. 8 | DOI:10.1103/physrevb.105.085301
  • Tomáš Bzdušek; Joseph Maciejko Flat bands and band-touching from real-space topology in hyperbolic lattices, Physical Review B, Volume 106 (2022) no. 15 | DOI:10.1103/physrevb.106.155146
  • Bruno Mera; Nikola Paunković; Syed Tahir Amin; Vítor R. Vieira Information geometry of quantum critical submanifolds: Relevant, marginal, and irrelevant operators, Physical Review B, Volume 106 (2022) no. 15 | DOI:10.1103/physrevb.106.155101
  • Aamna Ahmed; Ajith Ramachandran; Ivan M. Khaymovich; Auditya Sharma Flat band based multifractality in the all-band-flat diamond chain, Physical Review B, Volume 106 (2022) no. 20 | DOI:10.1103/physrevb.106.205119
  • E. Tirrito; M. Lewenstein; A. Bermudez Topological chiral currents in the Gross-Neveu model extension, Physical Review B, Volume 106 (2022) no. 4 | DOI:10.1103/physrevb.106.045147
  • Shiwan Miao; Zhongchi Zhang; Yajuan Zhao; Zihan Zhao; Huaichuan Wang; Jiazhong Hu Bosonic fractional quantum Hall conductance in shaken honeycomb optical lattices without flat bands, Physical Review B, Volume 106 (2022) no. 5 | DOI:10.1103/physrevb.106.054310
  • Weicheng Ye; Sung-Sik Lee; Liujun Zou Ultraviolet-Infrared Mixing in Marginal Fermi Liquids, Physical Review Letters, Volume 128 (2022) no. 10 | DOI:10.1103/physrevlett.128.106402
  • Jie Wang; Zhao Liu Hierarchy of Ideal Flatbands in Chiral Twisted Multilayer Graphene Models, Physical Review Letters, Volume 128 (2022) no. 17 | DOI:10.1103/physrevlett.128.176403
  • Patrick J. Ledwith; Ashvin Vishwanath; Eslam Khalaf Family of Ideal Chern Flatbands with Arbitrary Chern Number in Chiral Twisted Graphene Multilayers, Physical Review Letters, Volume 128 (2022) no. 17 | DOI:10.1103/physrevlett.128.176404
  • Juraj Hasik; Maarten Van Damme; Didier Poilblanc; Laurens Vanderstraeten Simulating Chiral Spin Liquids with Projected Entangled-Pair States, Physical Review Letters, Volume 129 (2022) no. 17 | DOI:10.1103/physrevlett.129.177201
  • Zhi-Da Song; B. Andrei Bernevig Magic-Angle Twisted Bilayer Graphene as a Topological Heavy Fermion Problem, Physical Review Letters, Volume 129 (2022) no. 4 | DOI:10.1103/physrevlett.129.047601
  • Z. Zeybek; R.O. Umucalılar Structure of the nearly-degenerate manifold of lattice quasiholes on a torus, Physics Letters A, Volume 445 (2022), p. 128259 | DOI:10.1016/j.physleta.2022.128259
  • Bruno Mera; Anwei Zhang; Nathan Goldman Relating the topology of Dirac Hamiltonians to quantum geometry: When the quantum metric dictates Chern numbers and winding numbers, SciPost Physics, Volume 12 (2022) no. 1 | DOI:10.21468/scipostphys.12.1.018
  • Botao Wang; Xiaoyu Dong; André Eckardt Measurable signatures of bosonic fractional Chern insulator states and their fractional excitations in a quantum-gas microscope, SciPost Physics, Volume 12 (2022) no. 3 | DOI:10.21468/scipostphys.12.3.095
  • Daniel Varjas; Ahmed Abouelkomsan; Kang Yang; Emil Bergholtz Topological lattice models with constant Berry curvature, SciPost Physics, Volume 12 (2022) no. 4 | DOI:10.21468/scipostphys.12.4.118
  • Patrick J. Ledwith; Eslam Khalaf; Ashvin Vishwanath Strong coupling theory of magic-angle graphene: A pedagogical introduction, Annals of Physics, Volume 435 (2021), p. 168646 | DOI:10.1016/j.aop.2021.168646
  • V. Yu. Irkhin; Yu. N. Skryabin Electronic States and the Anomalous Hall Effect in Strongly Correlated Topological Systems, Journal of Experimental and Theoretical Physics, Volume 133 (2021) no. 1, p. 116 | DOI:10.1134/s1063776121060030
  • Pratik Sathe; Fenner Harper; Rahul Roy Compactly supported Wannier functions and strictly local projectors, Journal of Physics A: Mathematical and Theoretical, Volume 54 (2021) no. 33, p. 335302 | DOI:10.1088/1751-8121/ac1167
  • Xi Wu; M A Zubkov Anomalous fractional quantum Hall effect and multi-valued Hamiltonians, Journal of Physics: Condensed Matter, Volume 33 (2021) no. 35, p. 355601 | DOI:10.1088/1361-648x/ac0bec
  • Yonglong Xie; Andrew T. Pierce; Jeong Min Park; Daniel E. Parker; Eslam Khalaf; Patrick Ledwith; Yuan Cao; Seung Hwan Lee; Shaowen Chen; Patrick R. Forrester; Kenji Watanabe; Takashi Taniguchi; Ashvin Vishwanath; Pablo Jarillo-Herrero; Amir Yacoby Fractional Chern insulators in magic-angle twisted bilayer graphene, Nature, Volume 600 (2021) no. 7889, p. 439 | DOI:10.1038/s41586-021-04002-3
  • M. Iskin Two-body problem in a multiband lattice and the role of quantum geometry, Physical Review A, Volume 103 (2021) no. 5 | DOI:10.1103/physreva.103.053311
  • Ai-Lei He Role of the defect-core orbital in fractional Chern insulators, Physical Review B, Volume 103 (2021) no. 11 | DOI:10.1103/physrevb.103.115138
  • Liangdong Hu; Zhao Liu; D. N. Sheng; F. D. M. Haldane; W. Zhu Microscopic diagnosis of universal geometric responses in fractional quantum Hall liquids, Physical Review B, Volume 103 (2021) no. 8 | DOI:10.1103/physrevb.103.085103
  • Bruno Mera; Tomoki Ozawa Engineering geometrically flat Chern bands with Fubini-Study Kähler structure, Physical Review B, Volume 104 (2021) no. 11 | DOI:10.1103/physrevb.104.115160
  • Bartholomew Andrews; Titus Neupert; Gunnar Möller Stability, phase transitions, and numerical breakdown of fractional Chern insulators in higher Chern bands of the Hofstadter model, Physical Review B, Volume 104 (2021) no. 12 | DOI:10.1103/physrevb.104.125107
  • Leonardo S. G. Leite; R. L. Doretto Flat-band ferromagnetism and spin waves in the Haldane-Hubbard model, Physical Review B, Volume 104 (2021) no. 15 | DOI:10.1103/physrevb.104.155129
  • Daniel Shaffer; Jian Wang; Luiz H. Santos Theory of Hofstadter superconductors, Physical Review B, Volume 104 (2021) no. 18 | DOI:10.1103/physrevb.104.184501
  • Tilen Čadež; Yeongjun Kim; Alexei Andreanov; Sergej Flach Metal-insulator transition in infinitesimally weakly disordered flat bands, Physical Review B, Volume 104 (2021) no. 18 | DOI:10.1103/physrevb.104.l180201
  • Frank Schindler; B. Andrei Bernevig Noncompact atomic insulators, Physical Review B, Volume 104 (2021) no. 20 | DOI:10.1103/physrevb.104.l201114
  • Yixing Fu; Justin H. Wilson; J. H. Pixley Flat topological bands and eigenstate criticality in a quasiperiodic insulator, Physical Review B, Volume 104 (2021) no. 4 | DOI:10.1103/physrevb.104.l041106
  • Zhao Liu; Ahmed Abouelkomsan; Emil J. Bergholtz Gate-Tunable Fractional Chern Insulators in Twisted Double Bilayer Graphene, Physical Review Letters, Volume 126 (2021) no. 2 | DOI:10.1103/physrevlett.126.026801
  • Zhao Liu; Ajit C. Balram; Zlatko Papić; Andrey Gromov Quench Dynamics of Collective Modes in Fractional Quantum Hall Bilayers, Physical Review Letters, Volume 126 (2021) no. 7 | DOI:10.1103/physrevlett.126.076604
  • Xianxin Wu; Tilman Schwemmer; Tobias Müller; Armando Consiglio; Giorgio Sangiovanni; Domenico Di Sante; Yasir Iqbal; Werner Hanke; Andreas P. Schnyder; M. Michael Denner; Mark H. Fischer; Titus Neupert; Ronny Thomale Nature of Unconventional Pairing in the Kagome Superconductors AV3Sb5 ( A=K,Rb,Cs ), Physical Review Letters, Volume 127 (2021) no. 17 | DOI:10.1103/physrevlett.127.177001
  • Jie Wang; Jennifer Cano; Andrew J. Millis; Zhao Liu; Bo Yang Exact Landau Level Description of Geometry and Interaction in a Flatband, Physical Review Letters, Volume 127 (2021) no. 24 | DOI:10.1103/physrevlett.127.246403
  • Naren Manjunath; Maissam Barkeshli Crystalline gauge fields and quantized discrete geometric response for Abelian topological phases with lattice symmetry, Physical Review Research, Volume 3 (2021) no. 1 | DOI:10.1103/physrevresearch.3.013040
  • Heqiu Li; Umesh Kumar; Kai Sun; Shi-Zeng Lin Spontaneous fractional Chern insulators in transition metal dichalcogenide moiré superlattices, Physical Review Research, Volume 3 (2021) no. 3 | DOI:10.1103/physrevresearch.3.l032070
  • Zhao Liu; Emil J. Bergholtz; Jan Carl Budich Dissipative preparation of fractional Chern insulators, Physical Review Research, Volume 3 (2021) no. 4 | DOI:10.1103/physrevresearch.3.043119
  • Nishchhal Verma; Tamaghna Hazra; Mohit Randeria Optical spectral weight, phase stiffness, and T c bounds for trivial and topological flat band superconductors, Proceedings of the National Academy of Sciences, Volume 118 (2021) no. 34 | DOI:10.1073/pnas.2106744118
  • Yuan-Ming Lu; Ying Ran; Masaki Oshikawa Filling-enforced constraint on the quantized Hall conductivity on a periodic lattice, Annals of Physics, Volume 413 (2020), p. 168060 | DOI:10.1016/j.aop.2019.168060
  • Liqin Tang; Daohong Song; Shiqi Xia; Shiqiang Xia; Jina Ma; Wenchao Yan; Yi Hu; Jingjun Xu; Daniel Leykam; Zhigang Chen Photonic flat-band lattices and unconventional light localization, Nanophotonics, Volume 9 (2020) no. 5, p. 1161 | DOI:10.1515/nanoph-2020-0043
  • C. Repellin; J. Léonard; N. Goldman Fractional Chern insulators of few bosons in a box: Hall plateaus from center-of-mass drifts and density profiles, Physical Review A, Volume 102 (2020) no. 6 | DOI:10.1103/physreva.102.063316
  • Yoshihito Kuno; Tomonari Mizoguchi; Yasuhiro Hatsugai Interaction-induced doublons and embedded topological subspace in a complete flat-band system, Physical Review A, Volume 102 (2020) no. 6 | DOI:10.1103/physreva.102.063325
  • Anna Hackenbroich; B. Andrei Bernevig; Norbert Schuch; Nicolas Regnault Fermionic tensor networks for higher-order topological insulators from charge pumping, Physical Review B, Volume 101 (2020) no. 11 | DOI:10.1103/physrevb.101.115134
  • Ai-Lei He; Wei-Wei Luo; Hong Yao; Yi-Fei Wang Non-Abelian fractional Chern insulator in disk geometry, Physical Review B, Volume 101 (2020) no. 16 | DOI:10.1103/physrevb.101.165127
  • Yves H. Kwan; S. A. Parameswaran; S. L. Sondhi Twisted bilayer graphene in a parallel magnetic field, Physical Review B, Volume 101 (2020) no. 20 | DOI:10.1103/physrevb.101.205116
  • Shohei Hayashida; Hajime Ishikawa; Yoshihiko Okamoto; Tsuyoshi Okubo; Zenji Hiroi; Gøran J. Nilsen; Hannu Mutka; Takatsugu Masuda Zero-energy excitation in the classical kagome antiferromagnet NaBa2Mn3F11, Physical Review B, Volume 101 (2020) no. 21 | DOI:10.1103/physrevb.101.214409
  • Bartholomew Andrews; Alexey Soluyanov Fractional quantum Hall states for moiré superstructures in the Hofstadter regime, Physical Review B, Volume 101 (2020) no. 23 | DOI:10.1103/physrevb.101.235312
  • Mohsen Hafez-Torbati; Jun-Hui Zheng; Bernhard Irsigler; Walter Hofstetter Interaction-driven topological phase transitions in fermionic SU(3) systems, Physical Review B, Volume 101 (2020) no. 24 | DOI:10.1103/physrevb.101.245159
  • Ramanjit Sohal; Eduardo Fradkin Intertwined order in fractional Chern insulators from finite-momentum pairing of composite fermions, Physical Review B, Volume 101 (2020) no. 24 | DOI:10.1103/physrevb.101.245154
  • Wei-Wei Luo; Ai-Lei He; Yuan Zhou; Yi-Fei Wang; Chang-De Gong Quantum phase transitions in a ν=12 bosonic fractional Chern insulator, Physical Review B, Volume 102 (2020) no. 15 | DOI:10.1103/physrevb.102.155120
  • Steven H. Simon; Mark S. Rudner Contrasting lattice geometry dependent versus independent quantities: Ramifications for Berry curvature, energy gaps, and dynamics, Physical Review B, Volume 102 (2020) no. 16 | DOI:10.1103/physrevb.102.165148
  • Chunhan Feng; Richard T. Scalettar Interplay of flat electronic bands with Holstein phonons, Physical Review B, Volume 102 (2020) no. 23 | DOI:10.1103/physrevb.102.235152
  • Cécile Repellin; Zhihuan Dong; Ya-Hui Zhang; T. Senthil Ferromagnetism in Narrow Bands of Moiré Superlattices, Physical Review Letters, Volume 124 (2020) no. 18 | DOI:10.1103/physrevlett.124.187601
  • S. Longhi Non-Bloch-Band Collapse and Chiral Zener Tunneling, Physical Review Letters, Volume 124 (2020) no. 6 | DOI:10.1103/physrevlett.124.066602
  • Jürgen Schnack; Jörg Schulenburg; Andreas Honecker; Johannes Richter Magnon Crystallization in the Kagome Lattice Antiferromagnet, Physical Review Letters, Volume 125 (2020) no. 11 | DOI:10.1103/physrevlett.125.117207
  • Jonah Herzog-Arbeitman; Zhi-Da Song; Nicolas Regnault; B. Andrei Bernevig Hofstadter Topology: Noncrystalline Topological Materials at High Flux, Physical Review Letters, Volume 125 (2020) no. 23 | DOI:10.1103/physrevlett.125.236804
  • Johannes Motruk; Ilyoun Na Detecting Fractional Chern Insulators in Optical Lattices Through Quantized Displacement, Physical Review Letters, Volume 125 (2020) no. 23 | DOI:10.1103/physrevlett.125.236401
  • Yu-Xiang Zhang; Klaus Mølmer Subradiant Emission from Regular Atomic Arrays: Universal Scaling of Decay Rates from the Generalized Bloch Theorem, Physical Review Letters, Volume 125 (2020) no. 25 | DOI:10.1103/physrevlett.125.253601
  • E. Macaluso; T. Comparin; R. O. Umucalılar; M. Gerster; S. Montangero; M. Rizzi; I. Carusotto Charge and statistics of lattice quasiholes from density measurements: A tree tensor network study, Physical Review Research, Volume 2 (2020) no. 1 | DOI:10.1103/physrevresearch.2.013145
  • Ritu Nehra; Devendra Singh Bhakuni; Ajith Ramachandran; Auditya Sharma Flat bands and entanglement in the Kitaev ladder, Physical Review Research, Volume 2 (2020) no. 1 | DOI:10.1103/physrevresearch.2.013175
  • Grazia Salerno; Nathan Goldman; Giandomenico Palumbo Floquet-engineering of nodal rings and nodal spheres and their characterization using the quantum metric, Physical Review Research, Volume 2 (2020) no. 1 | DOI:10.1103/physrevresearch.2.013224
  • Cécile Repellin; T. Senthil Chern bands of twisted bilayer graphene: Fractional Chern insulators and spin phase transition, Physical Review Research, Volume 2 (2020) no. 2 | DOI:10.1103/physrevresearch.2.023238
  • Nyayabanta Swain; Madhuparna Karmakar Strain-induced superconductor-insulator transition on a Lieb lattice, Physical Review Research, Volume 2 (2020) no. 2 | DOI:10.1103/physrevresearch.2.023136
  • Patrick J. Ledwith; Grigory Tarnopolsky; Eslam Khalaf; Ashvin Vishwanath Fractional Chern insulator states in twisted bilayer graphene: An analytical approach, Physical Review Research, Volume 2 (2020) no. 2 | DOI:10.1103/physrevresearch.2.023237
  • Elliott H. Lieb; Nicolas Rougerie; Jakob Yngvason Local incompressibility estimates for the Laughlin phase, Communications in Mathematical Physics, Volume 365 (2019) no. 2, p. 431 | DOI:10.1007/s00220-018-3181-1
  • P.T.T. Le; Mohsen Yarmohammadi Magnonic heat transport in the Lieb lattice, Journal of Magnetism and Magnetic Materials, Volume 469 (2019), p. 623 | DOI:10.1016/j.jmmm.2018.09.042
  • P.T.T. Le; Mohsen Yarmohammadi Perturbed magnonic thermodynamic properties of the impurity-infected Lieb lattice, Journal of Magnetism and Magnetic Materials, Volume 474 (2019), p. 137 | DOI:10.1016/j.jmmm.2018.10.138
  • Dina Genkina; Lauren M Aycock; Hsin-I Lu; Mingwu Lu; Alina M Pineiro; I B Spielman Imaging topology of Hofstadter ribbons, New Journal of Physics, Volume 21 (2019) no. 5, p. 053021 | DOI:10.1088/1367-2630/ab165b
  • P.T.T. Le; Mohsen Yarmohammadi Impurity-tuning of phase transition and mid-state in 2D spin Lieb lattice, Physica E: Low-dimensional Systems and Nanostructures, Volume 105 (2019), p. 56 | DOI:10.1016/j.physe.2018.08.019
  • Povilas Račkauskas; Viktor Novičenko; Han Pu; Gediminas Juzeliūnas Non-Abelian geometric potentials and spin-orbit coupling for periodically driven systems, Physical Review A, Volume 100 (2019) no. 6 | DOI:10.1103/physreva.100.063616
  • M. Iskin Origin of flat-band superfluidity on the Mielke checkerboard lattice, Physical Review A, Volume 99 (2019) no. 5 | DOI:10.1103/physreva.99.053608
  • G. Magnifico; D. Vodola; E. Ercolessi; S. P. Kumar; M. Müller; A. Bermudez ZN gauge theories coupled to topological fermions: QED2 with a quantum mechanical θ angle, Physical Review B, Volume 100 (2019) no. 11 | DOI:10.1103/physrevb.100.115152
  • Chi-Cheng Lee; Antoine Fleurence; Yukiko Yamada-Takamura; Taisuke Ozaki Hidden mechanism for embedding the flat bands of Lieb, kagome, and checkerboard lattices in other structures, Physical Review B, Volume 100 (2019) no. 4 | DOI:10.1103/physrevb.100.045150
  • Sutirtha Mukherjee; Kwon Park Spin separation in the half-filled fractional topological insulator, Physical Review B, Volume 99 (2019) no. 11 | DOI:10.1103/physrevb.99.115131
  • E. Tirrito; M. Rizzi; G. Sierra; M. Lewenstein; A. Bermudez Renormalization group flows for Wilson-Hubbard matter and the topological Hamiltonian, Physical Review B, Volume 99 (2019) no. 12 | DOI:10.1103/physrevb.99.125106
  • Ai-Lei He; Wei-Wei Luo; Yi-Fei Wang; Chang-De Gong Fractional Chern insulators in singular geometries, Physical Review B, Volume 99 (2019) no. 16 | DOI:10.1103/physrevb.99.165105
  • Zhao Liu; Emil J. Bergholtz Fractional quantum Hall states with gapped boundaries in an extreme lattice limit, Physical Review B, Volume 99 (2019) no. 19 | DOI:10.1103/physrevb.99.195122
  • Muhammad Sajid; János K. Asbóth; Dieter Meschede; Reinhard F. Werner; Andrea Alberti Creating anomalous Floquet Chern insulators with magnetic quantum walks, Physical Review B, Volume 99 (2019) no. 21 | DOI:10.1103/physrevb.99.214303
  • Błażej Jaworowski; Nicolas Regnault; Zhao Liu Characterization of quasiholes in two-component fractional quantum Hall states and fractional Chern insulators in |C| =2 flat bands, Physical Review B, Volume 99 (2019) no. 4 | DOI:10.1103/physrevb.99.045136
  • Ya-Hui Zhang; Dan Mao; Yuan Cao; Pablo Jarillo-Herrero; T. Senthil Nearly flat Chern bands in moiré superlattices, Physical Review B, Volume 99 (2019) no. 7 | DOI:10.1103/physrevb.99.075127
  • Christina Knapp; Eric M. Spanton; Andrea F. Young; Chetan Nayak; Michael P. Zaletel Fractional Chern insulator edges and layer-resolved lattice contacts, Physical Review B, Volume 99 (2019) no. 8 | DOI:10.1103/physrevb.99.081114
  • H. D. Scammell; O. P. Sushkov Tuning the topological insulator states of artificial graphene, Physical Review B, Volume 99 (2019) no. 8 | DOI:10.1103/physrevb.99.085419
  • G. Magnifico; D. Vodola; E. Ercolessi; S. P. Kumar; M. Müller; A. Bermudez Symmetry-protected topological phases in lattice gauge theories: TopologicalQED2, Physical Review D, Volume 99 (2019) no. 1 | DOI:10.1103/physrevd.99.014503
  • C. Repellin; N. Goldman Detecting Fractional Chern Insulators through Circular Dichroism, Physical Review Letters, Volume 122 (2019) no. 16 | DOI:10.1103/physrevlett.122.166801
  • N. R. Cooper; J. Dalibard; I. B. Spielman Topological bands for ultracold atoms, Reviews of Modern Physics, Volume 91 (2019) no. 1 | DOI:10.1103/revmodphys.91.015005
  • Moshe Goldstein Dissipation-induced topological insulators: A no-go theorem and a recipe, SciPost Physics, Volume 7 (2019) no. 5 | DOI:10.21468/scipostphys.7.5.067
  • Daniel Leykam; Alexei Andreanov; Sergej Flach Artificial flat band systems: from lattice models to experiments, Advances in Physics: X, Volume 3 (2018) no. 1, p. 1473052 | DOI:10.1080/23746149.2018.1473052
  • A. Bermudez; E. Tirrito; M. Rizzi; M. Lewenstein; S. Hands Gross–Neveu–Wilson model and correlated symmetry-protected topological phases, Annals of Physics, Volume 399 (2018), p. 149 | DOI:10.1016/j.aop.2018.10.007
  • Mohsen Yarmohammadi; Bui Dinh Hoi A controllable magneto-topological property and band gap engineering in 2D ferromagnetic Lieb lattice, Journal of Magnetism and Magnetic Materials, Volume 464 (2018), p. 103 | DOI:10.1016/j.jmmm.2018.05.046
  • M Aidelsburger Artificial gauge fields and topology with ultracold atoms in optical lattices, Journal of Physics B: Atomic, Molecular and Optical Physics, Volume 51 (2018) no. 19, p. 193001 | DOI:10.1088/1361-6455/aac120
  • Qing-Qing Cheng; Wei-Wei Luo; Ai-Lei He; Yi-Fei Wang Topological quantum phase transitions of Chern insulators in disk geometry, Journal of Physics: Condensed Matter, Volume 30 (2018) no. 35, p. 355502 | DOI:10.1088/1361-648x/aad51f
  • Xi Luo; Fei-Ye Li; Yue Yu Anomalous magnetic transport and extra quantum oscillation in semi-metallic photon-like fermion gas, New Journal of Physics, Volume 20 (2018) no. 8, p. 083036 | DOI:10.1088/1367-2630/aad9b7
  • Jozef Strečka; Johannes Richter; Oleg Derzhko; Taras Verkholyak; Katarína Karľová Magnetization process and low-temperature thermodynamics of a spin-1/2 Heisenberg octahedral chain, Physica B: Condensed Matter, Volume 536 (2018), p. 364 | DOI:10.1016/j.physb.2017.09.118
  • R. O. Umucalılar Real-space probe for lattice quasiholes, Physical Review A, Volume 98 (2018) no. 6 | DOI:10.1103/physreva.98.063629
  • Mantas Račiūnas; F. Nur Ünal; Egidijus Anisimovas; André Eckardt Creating, probing, and manipulating fractionally charged excitations of fractional Chern insulators in optical lattices, Physical Review A, Volume 98 (2018) no. 6 | DOI:10.1103/physreva.98.063621
  • Johannes Richter; Olesia Krupnitska; Vasyl Baliha; Taras Krokhmalskii; Oleg Derzhko Thermodynamic properties of Ba2CoSi2O6Cl2 in a strong magnetic field: Realization of flat-band physics in a highly frustrated quantum magnet, Physical Review B, Volume 97 (2018) no. 2 | DOI:10.1103/physrevb.97.024405
  • Bartholomew Andrews; Gunnar Möller Stability of fractional Chern insulators in the effective continuum limit of Harper-Hofstadter bands with Chern number |C|>1, Physical Review B, Volume 97 (2018) no. 3 | DOI:10.1103/physrevb.97.035159
  • M. Röntgen; C. V. Morfonios; P. Schmelcher Compact localized states and flat bands from local symmetry partitioning, Physical Review B, Volume 97 (2018) no. 3 | DOI:10.1103/physrevb.97.035161
  • Zhao Liu; Andrey Gromov; Zlatko Papić Geometric quench and nonequilibrium dynamics of fractional quantum Hall states, Physical Review B, Volume 98 (2018) no. 15 | DOI:10.1103/physrevb.98.155140
  • Yumin Luan; Yinhan Zhang; Junren Shi Evolution of the optimal trial wave function with interactions in fractional Chern insulators, Physical Review B, Volume 98 (2018) no. 19 | DOI:10.1103/physrevb.98.195131
  • Thomas Bilitewski; Roderich Moessner Disordered flat bands on the kagome lattice, Physical Review B, Volume 98 (2018) no. 23 | DOI:10.1103/physrevb.98.235109
  • Jörn W. F. Venderbos; Yichen Hu; C. L. Kane Higher angular momentum band inversions in two dimensions, Physical Review B, Volume 98 (2018) no. 23 | DOI:10.1103/physrevb.98.235160
  • Fenner Harper; David Bauer; T. S. Jackson; Rahul Roy Finite-wave-vector electromagnetic response in lattice quantum Hall systems, Physical Review B, Volume 98 (2018) no. 24 | DOI:10.1103/physrevb.98.245303
  • Yichen Hu; Jörn W. F. Venderbos; C. L. Kane Fractional Excitonic Insulator, Physical Review Letters, Volume 121 (2018) no. 12 | DOI:10.1103/physrevlett.121.126601
  • Shiqi Xia; Ajith Ramachandran; Shiqiang Xia; Denghui Li; Xiuying Liu; Liqin Tang; Yi Hu; Daohong Song; Jingjun Xu; Daniel Leykam; Sergej Flach; Zhigang Chen Unconventional Flatband Line States in Photonic Lieb Lattices, Physical Review Letters, Volume 121 (2018) no. 26 | DOI:10.1103/physrevlett.121.263902
  • Jong Yeon Lee; Chong Wang; Michael P. Zaletel; Ashvin Vishwanath; Yin-Chen He Emergent Multi-Flavor QED3 at the Plateau Transition between Fractional Chern Insulators: Applications to Graphene Heterostructures, Physical Review X, Volume 8 (2018) no. 3 | DOI:10.1103/physrevx.8.031015
  • Błażej Jaworowski; Piotr Kaczmarkiewicz; Paweł Potasz; Arkadiusz Wójs Interband excitations in the 1D limit of two-band fractional Chern insulators, Physics Letters A, Volume 382 (2018) no. 21, p. 1419 | DOI:10.1016/j.physleta.2018.03.035
  • Cécile Repellin; Nicolas Regnault Lattices for fractional Chern insulators, Science, Volume 360 (2018) no. 6384, p. 31 | DOI:10.1126/science.aar5675
  • Eric M. Spanton; Alexander A. Zibrov; Haoxin Zhou; Takashi Taniguchi; Kenji Watanabe; Michael P. Zaletel; Andrea F. Young Observation of fractional Chern insulators in a van der Waals heterostructure, Science, Volume 360 (2018) no. 6384, p. 62 | DOI:10.1126/science.aan8458
  • S. Klembt; T. H. Harder; O. A. Egorov; K. Winkler; H. Suchomel; J. Beierlein; M. Emmerling; C. Schneider; S. Höfling Polariton condensation in S- and P-flatbands in a two-dimensional Lieb lattice, Applied Physics Letters, Volume 111 (2017) no. 23 | DOI:10.1063/1.4995385
  • Tao Du; Yue-Xun Li; Yan Li; He-Lin Lu; Hui Zhang Phase transitions of the dimerized Kane–Mele model with/without strong interaction, Journal of Physics: Condensed Matter, Volume 29 (2017) no. 38, p. 385601 | DOI:10.1088/1361-648x/aa7a86
  • Liang-Liang Wan; Xin-You Lü; Jin-Hua Gao; Ying Wu Controllable photon and phonon localization in optomechanical Lieb lattices, Optics Express, Volume 25 (2017) no. 15, p. 17364 | DOI:10.1364/oe.25.017364
  • Viktor Novičenko; Egidijus Anisimovas; Gediminas Juzeliūnas Floquet analysis of a quantum system with modulated periodic driving, Physical Review A, Volume 95 (2017) no. 2 | DOI:10.1103/physreva.95.023615
  • J. C. Budich; A. Elben; M. Łącki; A. Sterdyniak; M. A. Baranov; P. Zoller Coupled atomic wires in a synthetic magnetic field, Physical Review A, Volume 95 (2017) no. 4 | DOI:10.1103/physreva.95.043632
  • Hamidreza Ramezani Non-Hermiticity-induced flat band, Physical Review A, Volume 96 (2017) no. 1 | DOI:10.1103/physreva.96.011802
  • Liang Du; Xiaoting Zhou; Gregory A. Fiete Quadratic band touching points and flat bands in two-dimensional topological Floquet systems, Physical Review B, Volume 95 (2017) no. 3 | DOI:10.1103/physrevb.95.035136
  • Mykola Maksymenko; Roderich Moessner; Kirill Shtengel Persistence of the flat band in a kagome magnet with dipolar interactions, Physical Review B, Volume 96 (2017) no. 13 | DOI:10.1103/physrevb.96.134411
  • Cécile Repellin; Tarik Yefsah; Antoine Sterdyniak Creating a bosonic fractional quantum Hall state by pairing fermions, Physical Review B, Volume 96 (2017) no. 16 | DOI:10.1103/physrevb.96.161111
  • Ching Hua Lee; Martin Claassen; Ronny Thomale Band structure engineering of ideal fractional Chern insulators, Physical Review B, Volume 96 (2017) no. 16 | DOI:10.1103/physrevb.96.165150
  • Zhao Liu; Gunnar Möller; Emil J. Bergholtz Exotic Non-Abelian Topological Defects in Lattice Fractional Quantum Hall States, Physical Review Letters, Volume 119 (2017) no. 10 | DOI:10.1103/physrevlett.119.106801
  • J. Jünemann; A. Piga; S.-J. Ran; M. Lewenstein; M. Rizzi; A. Bermudez Exploring Interacting Topological Insulators with Ultracold Atoms: The Synthetic Creutz-Hubbard Model, Physical Review X, Volume 7 (2017) no. 3 | DOI:10.1103/physrevx.7.031057
  • Andrey Gromov; Dam Thanh Son Bimetric Theory of Fractional Quantum Hall States, Physical Review X, Volume 7 (2017) no. 4 | DOI:10.1103/physrevx.7.041032
  • André Eckardt Colloquium: Atomic quantum gases in periodically driven optical lattices, Reviews of Modern Physics, Volume 89 (2017) no. 1 | DOI:10.1103/revmodphys.89.011004
  • Riccardo Rota; Wim Casteels; Cristiano Ciuti On the robustness of strongly correlated multi-photon states in frustrated driven-dissipative cavity lattices, The European Physical Journal Special Topics, Volume 226 (2017) no. 12, p. 2805 | DOI:10.1140/epjst/e2016-60379-0
  • N. Goldman; N. R. Cooper; J. Dalibard Preparing and Probing Chern Bands with Cold Atoms, Universal Themes of Bose-Einstein Condensation (2017), p. 274 | DOI:10.1017/9781316084366.016
  • Monika Aidelsburger Introduction, Artificial Gauge Fields with Ultracold Atoms in Optical Lattices (2016), p. 1 | DOI:10.1007/978-3-319-25829-4_1
  • Monika Aidelsburger Chern-Number Measurement of Hofstadter Bands, Artificial Gauge Fields with Ultracold Atoms in Optical Lattices (2016), p. 137 | DOI:10.1007/978-3-319-25829-4_8
  • Monika Aidelsburger Conclusions and Outlook, Artificial Gauge Fields with Ultracold Atoms in Optical Lattices (2016), p. 161 | DOI:10.1007/978-3-319-25829-4_9
  • Adolfo G Grushin; Sthitadhi Roy; Masudul Haque Response of fermions in Chern bands to spatially local quenches, Journal of Statistical Mechanics: Theory and Experiment, Volume 2016 (2016) no. 8, p. 083103 | DOI:10.1088/1742-5468/2016/08/083103
  • F. Grusdt; N. Y. Yao; D. Abanin; M. Fleischhauer; E. Demler Interferometric measurements of many-body topological invariants using mobile impurities, Nature Communications, Volume 7 (2016) no. 1 | DOI:10.1038/ncomms11994
  • W. Casteels; R. Rota; F. Storme; C. Ciuti Probing photon correlations in the dark sites of geometrically frustrated cavity lattices, Physical Review A, Volume 93 (2016) no. 4 | DOI:10.1103/physreva.93.043833
  • Mantas Račiūnas; Giedrius Žlabys; André Eckardt; Egidijus Anisimovas Modified interactions in a Floquet topological system on a square lattice and their impact on a bosonic fractional Chern insulator state, Physical Review A, Volume 93 (2016) no. 4 | DOI:10.1103/physreva.93.043618
  • Zi-He Yang; Yan-Pu Wang; Zheng-Yuan Xue; Wan-Li Yang; Yong Hu; Jin-Hua Gao; Ying Wu Circuit quantum electrodynamics simulator of flat band physics in a Lieb lattice, Physical Review A, Volume 93 (2016) no. 6 | DOI:10.1103/physreva.93.062319
  • Stefan S. Natu; Erich J. Mueller; S. Das Sarma Competing ground states of strongly correlated bosons in the Harper-Hofstadter-Mott model, Physical Review A, Volume 93 (2016) no. 6 | DOI:10.1103/physreva.93.063610
  • V. S. Arun; R. Sohal; C. Hickey; A. Paramekanti Mean field study of the topological Haldane-Hubbard model of spin-12fermions, Physical Review B, Volume 93 (2016) no. 11 | DOI:10.1103/physrevb.93.115110
  • Ching Hua Lee; Daniel P. Arovas; Ronny Thomale Band flatness optimization through complex analysis, Physical Review B, Volume 93 (2016) no. 15 | DOI:10.1103/physrevb.93.155155
  • David Bauer; T. S. Jackson; Rahul Roy Quantum geometry and stability of the fractional quantum Hall effect in the Hofstadter model, Physical Review B, Volume 93 (2016) no. 23 | DOI:10.1103/physrevb.93.235133
  • Xiu-Hao Deng; Chen-Yen Lai; Chih-Chun Chien Superconducting circuit simulator of Bose-Hubbard model with a flat band, Physical Review B, Volume 93 (2016) no. 5 | DOI:10.1103/physrevb.93.054116
  • I. C. Fulga; M. Maksymenko Scattering matrix invariants of Floquet topological insulators, Physical Review B, Volume 93 (2016) no. 7 | DOI:10.1103/physrevb.93.075405
  • Jiahua Gu; Kai Sun Adiabatic continuity, wave-function overlap, and topological phase transitions, Physical Review B, Volume 94 (2016) no. 12 | DOI:10.1103/physrevb.94.125111
  • Ciarán Hickey; Lukasz Cincio; Zlatko Papić; Arun Paramekanti Haldane-Hubbard Mott Insulator: From Tetrahedral Spin Crystal to Chiral Spin Liquid, Physical Review Letters, Volume 116 (2016) no. 13 | DOI:10.1103/physrevlett.116.137202
  • Jinlong Yu; Zhi-Fang Xu; Rong Lü; Li You Dynamical Generation of Topological Magnetic Lattices for Ultracold Atoms, Physical Review Letters, Volume 116 (2016) no. 14 | DOI:10.1103/physrevlett.116.143003
  • Jörg Behrmann; Zhao Liu; Emil J. Bergholtz Model Fractional Chern Insulators, Physical Review Letters, Volume 116 (2016) no. 21 | DOI:10.1103/physrevlett.116.216802
  • Ramaz Khomeriki; Sergej Flach Landau-Zener Bloch Oscillations with Perturbed Flat Bands, Physical Review Letters, Volume 116 (2016) no. 24 | DOI:10.1103/physrevlett.116.245301
  • Yan-Pu Wang; Wan-Li Yang; Yong Hu; Zheng-Yuan Xue; Ying Wu Detecting topological phases of microwave photons in a circuit quantum electrodynamics lattice, npj Quantum Information, Volume 2 (2016) no. 1 | DOI:10.1038/npjqi.2016.15
  • Janusz Jacak; Patrycja Łydżba; Lucjan Jacak Homotopy Approach to Fractional Quantum Hall Effect, Applied Mathematics, Volume 06 (2015) no. 02, p. 345 | DOI:10.4236/am.2015.62033
  • Oleg Derzhko; Johannes Richter; Mykola Maksymenko Strongly correlated flat-band systems: The route from Heisenberg spins to Hubbard electrons, International Journal of Modern Physics B, Volume 29 (2015) no. 12, p. 1530007 | DOI:10.1142/s0217979215300078
  • T. S. Jackson; Gunnar Möller; Rahul Roy Geometric stability of topological lattice phases, Nature Communications, Volume 6 (2015) no. 1 | DOI:10.1038/ncomms9629
  • M. Aidelsburger; M. Lohse; C. Schweizer; M. Atala; J. T. Barreiro; S. Nascimbène; N. R. Cooper; I. Bloch; N. Goldman Measuring the Chern number of Hofstadter bands with ultracold bosonic atoms, Nature Physics, Volume 11 (2015) no. 2, p. 162 | DOI:10.1038/nphys3171
  • Joseph Maciejko; Gregory A. Fiete Fractionalized topological insulators, Nature Physics, Volume 11 (2015) no. 5, p. 385 | DOI:10.1038/nphys3311
  • Ai-Lei He; Wei-Wei Luo; Yi-Fei Wang; Chang-De Gong Wave functions for fractional Chern insulators in disk geometry, New Journal of Physics, Volume 17 (2015) no. 12, p. 125005 | DOI:10.1088/1367-2630/17/12/125005
  • J. Jacak; P. Łydżba; L. Jacak Fractional quantum Hall effect revisited, Physica B: Condensed Matter, Volume 475 (2015), p. 122 | DOI:10.1016/j.physb.2015.07.024
  • Titus Neupert; Claudio Chamon; Thomas Iadecola; Luiz H Santos; Christopher Mudry Fractional (Chern and topological) insulators, Physica Scripta, Volume T164 (2015), p. 014005 | DOI:10.1088/0031-8949/2015/t164/014005
  • N. Goldman; J. Dalibard; M. Aidelsburger; N. R. Cooper Periodically driven quantum matter: The case of resonant modulations, Physical Review A, Volume 91 (2015) no. 3 | DOI:10.1103/physreva.91.033632
  • David Peter; Norman Y. Yao; Nicolai Lang; Sebastian D. Huber; Mikhail D. Lukin; Hans Peter Büchler Topological bands with a Chern numberC=2by dipolar exchange interactions, Physical Review A, Volume 91 (2015) no. 5 | DOI:10.1103/physreva.91.053617
  • T. Andrijauskas; E. Anisimovas; M. Račiūnas; A. Mekys; V. Kudriašov; I. B. Spielman; G. Juzeliūnas Three-level Haldane-like model on a dice optical lattice, Physical Review A, Volume 92 (2015) no. 3 | DOI:10.1103/physreva.92.033617
  • Dong Wang; Zhao Liu; Wu-Ming Liu; Junpeng Cao; Heng Fan Fermionic non-Abelian fractional Chern insulators from dipolar interactions, Physical Review B, Volume 91 (2015) no. 12 | DOI:10.1103/physrevb.91.125138
  • Stefanos Kourtis; Claudio Castelnovo Two-dimensional topological order of kinetically constrained quantum particles, Physical Review B, Volume 91 (2015) no. 15 | DOI:10.1103/physrevb.91.155134
  • Egidijus Anisimovas; Giedrius Žlabys; Brandon M. Anderson; Gediminas Juzeliūnas; André Eckardt Role of real-space micromotion for bosonic and fermionic Floquet fractional Chern insulators, Physical Review B, Volume 91 (2015) no. 24 | DOI:10.1103/physrevb.91.245135
  • A. Sterdyniak; B. Andrei Bernevig; Nigel R. Cooper; N. Regnault Interacting bosons in topological optical flux lattices, Physical Review B, Volume 91 (2015) no. 3 | DOI:10.1103/physrevb.91.035115
  • Ying-Hai Wu; J. K. Jain; Kai Sun Fractional topological phases in generalized Hofstadter bands with arbitrary Chern numbers, Physical Review B, Volume 91 (2015) no. 4 | DOI:10.1103/physrevb.91.041119
  • Wolfgang Häusler Flat-band conductivity properties at long-range Coulomb interactions, Physical Review B, Volume 91 (2015) no. 4 | DOI:10.1103/physrevb.91.041102
  • Zhao Liu; R. N. Bhatt; Nicolas Regnault Characterization of quasiholes in fractional Chern insulators, Physical Review B, Volume 91 (2015) no. 4 | DOI:10.1103/physrevb.91.045126
  • Kai Sun; Krishna Kumar; Eduardo Fradkin Discretized Abelian Chern-Simons gauge theory on arbitrary graphs, Physical Review B, Volume 92 (2015) no. 11 | DOI:10.1103/physrevb.92.115148
  • R. L. Doretto; M. O. Goerbig Flat-band ferromagnetism and spin waves in topological Hubbard models, Physical Review B, Volume 92 (2015) no. 24 | DOI:10.1103/physrevb.92.245124
  • Błażej Jaworowski; Andrei Manolescu; Paweł Potasz Fractional Chern insulator phase at the transition between checkerboard and Lieb lattices, Physical Review B, Volume 92 (2015) no. 24 | DOI:10.1103/physrevb.92.245119
  • Mengsu Chen; V. W. Scarola Reordering fractional Chern insulators into stripes of fractional charges with long-range interactions, Physical Review B, Volume 92 (2015) no. 3 | DOI:10.1103/physrevb.92.035138
  • Laura Cohnitz; Wolfgang Häusler; Alex Zazunov; Reinhold Egger Interaction-induced conductance from zero modes in a clean magnetic graphene waveguide, Physical Review B, Volume 92 (2015) no. 8 | DOI:10.1103/physrevb.92.085422
  • E. J. Bergholtz; Zhao Liu; M. Trescher; R. Moessner; M. Udagawa Topology and Interactions in a Frustrated Slab: Tuning from Weyl Semimetals toC>1Fractional Chern Insulators, Physical Review Letters, Volume 114 (2015) no. 1 | DOI:10.1103/physrevlett.114.016806
  • A. Sterdyniak; Nigel R. Cooper; N. Regnault Bosonic Integer Quantum Hall Effect in Optical Flux Lattices, Physical Review Letters, Volume 115 (2015) no. 11 | DOI:10.1103/physrevlett.115.116802
  • Gunnar Möller; Nigel R. Cooper Fractional Chern Insulators in Harper-Hofstadter Bands with Higher Chern Number, Physical Review Letters, Volume 115 (2015) no. 12 | DOI:10.1103/physrevlett.115.126401
  • Sylvain Nascimbene; Nathan Goldman; Nigel R. Cooper; Jean Dalibard Dynamic Optical Lattices of Subwavelength Spacing for Ultracold Atoms, Physical Review Letters, Volume 115 (2015) no. 14 | DOI:10.1103/physrevlett.115.140401
  • L. Duca; T. Li; M. Reitter; I. Bloch; M. Schleier-Smith; U. Schneider An Aharonov-Bohm interferometer for determining Bloch band topology, Science, Volume 347 (2015) no. 6219, p. 288 | DOI:10.1126/science.1259052
  • Oliver Buerschaper Twisted injectivity in projected entangled pair states and the classification of quantum phases, Annals of Physics, Volume 351 (2014), p. 447 | DOI:10.1016/j.aop.2014.09.007
  • Zheng Liu; Feng Liu; Yong-Shi Wu Exotic electronic states in the world of flat bands: From theory to material, Chinese Physics B, Volume 23 (2014) no. 7, p. 077308 | DOI:10.1088/1674-1056/23/7/077308
  • Sergej Flach; Daniel Leykam; Joshua D. Bodyfelt; Peter Matthies; Anton S. Desyatnikov Detangling flat bands into Fano lattices, EPL (Europhysics Letters), Volume 105 (2014) no. 3, p. 30001 | DOI:10.1209/0295-5075/105/30001
  • Masafumi Udagawa; Emil J Bergholtz Correlations and entanglement in flat band models with variable Chern numbers, Journal of Statistical Mechanics: Theory and Experiment, Volume 2014 (2014) no. 10, p. P10012 | DOI:10.1088/1742-5468/2014/10/p10012
  • Yang-Le Wu; N. Regnault; B. Andrei Bernevig Haldane statistics for fractional Chern insulators with an arbitrary Chern number, Physical Review B, Volume 89 (2014) no. 15 | DOI:10.1103/physrevb.89.155113
  • Ganpathy Murthy; R. Shankar Gauge choices in the Hamiltonian theory of fractionally filled Chern bands, Physical Review B, Volume 89 (2014) no. 19 | DOI:10.1103/physrevb.89.195107
  • Thomas Scaffidi; Steven H. Simon Exact solutions of fractional Chern insulators: Interacting particles in the Hofstadter model at finite size, Physical Review B, Volume 90 (2014) no. 11 | DOI:10.1103/physrevb.90.115132
  • Topi Siro; Mikko Ervasti; Ari Harju Impurities and Landau level mixing in a fractional quantum Hall state in a flat-band lattice model, Physical Review B, Volume 90 (2014) no. 16 | DOI:10.1103/physrevb.90.165101
  • Yige Chen; Hae-Young Kee Topological phases in iridium oxide superlattices: Quantized anomalous charge or valley Hall insulators, Physical Review B, Volume 90 (2014) no. 19 | DOI:10.1103/physrevb.90.195145
  • Eran Sagi; Yuval Oreg Non-Abelian topological insulators from an array of quantum wires, Physical Review B, Volume 90 (2014) no. 20 | DOI:10.1103/physrevb.90.201102
  • C. Repellin; B. Andrei Bernevig; N. Regnault Z2fractional topological insulators in two dimensions, Physical Review B, Volume 90 (2014) no. 24 | DOI:10.1103/physrevb.90.245401
  • Akshay Kumar; Rahul Roy; S. L. Sondhi Generalizing quantum Hall ferromagnetism to fractional Chern bands, Physical Review B, Volume 90 (2014) no. 24 | DOI:10.1103/physrevb.90.245106
  • Cécile Repellin; Titus Neupert; Zlatko Papić; Nicolas Regnault Single-mode approximation for fractional Chern insulators and the fractional quantum Hall effect on the torus, Physical Review B, Volume 90 (2014) no. 4 | DOI:10.1103/physrevb.90.045114
  • Fenner Harper; Steven H. Simon; Rahul Roy Perturbative approach to flat Chern bands in the Hofstadter model, Physical Review B, Volume 90 (2014) no. 7 | DOI:10.1103/physrevb.90.075104
  • Guido van Miert; Cristiane Morais Smith; Vladimir Juričić High-Chern-number bands and tunable Dirac cones inβ-graphyne, Physical Review B, Volume 90 (2014) no. 8 | DOI:10.1103/physrevb.90.081406
  • Joshua D. Bodyfelt; Daniel Leykam; Carlo Danieli; Xiaoquan Yu; Sergej Flach Flatbands under Correlated Perturbations, Physical Review Letters, Volume 113 (2014) no. 23 | DOI:10.1103/physrevlett.113.236403
  • N Goldman; G Juzeliūnas; P Öhberg; I B Spielman Light-induced gauge fields for ultracold atoms, Reports on Progress in Physics, Volume 77 (2014) no. 12, p. 126401 | DOI:10.1088/0034-4885/77/12/126401
  • Longwen Zhou; Hailong Wang; Derek Y.H. Ho; Jiangbin Gong Aspects of Floquet bands and topological phase transitions in a continuously driven superlattice, The European Physical Journal B, Volume 87 (2014) no. 9 | DOI:10.1140/epjb/e2014-50465-9
  • Zhao Liu; Emil J. Bergholtz; Eliot Kapit Non-Abelian fractional Chern insulators from long-range interactions, Physical Review B, Volume 88 (2013) no. 20 | DOI:10.1103/physrevb.88.205101

Cité par 302 documents. Sources : Crossref

Commentaires - Politique


Il n'y a aucun commentaire pour cet article. Soyez le premier à écrire un commentaire !


Publier un nouveau commentaire:

Publier une nouvelle réponse: