[Sur l’image en « mosaïque » des liquides et des verres]
Les liquides surfondus sont parfois décrits comme étant composés d’une mosaïque de fragments pouvant être répertoriés dans une « bibliothèque », chacun ayant une forme d’ordre non périodique. En examinant de plus près, cette construction se révèle insaisissable. En tentant de donner un sens précis à la notion de mosaïque, nous sommes inévitablement conduits à la construction d’une procédure pour compresser l’information dans la configuration des particules, essentiellement la même que celle utilisée pour les textes. La quantité d’information nécessaire pour un encodage optimal définit directement l’entropie configurationnelle. Un solide, dans cette perspective, est une disposition de particules décrite par une faible quantité d’information, qui ne peut circuler qu’en se fragmentant en pièces non corrélées, augmentant ainsi sa complexité.
Supercooled liquids are sometimes described as being composed of a mosaic of patches that may be listed in a “library”, each one having some form of non-periodic order. Looking closer, one finds this construction elusive. In attempting to give the notion of mosaic a precise sense, we find that we are inevitably led to the construction of a procedure for compressing the information in the particle configuration, essentially the same as that used for texts. The amount of stored information needed by an optimal encoding directly defines the configurational entropy. A solid, in this view, is a particle arrangement described by a low amount of information, that can only flow by breaking into uncorrelated pieces, thus increasing its complexity.
Révisé le :
Accepté le :
Publié le :
Mots-clés : Ordre, Solidité, Entropie configurationnelle, Verres
Jorge Kurchan 1

@article{CRPHYS_2025__26_G1_271_0, author = {Jorge Kurchan}, title = {On the {\textquotedblleft}mosaic{\textquotedblright} picture of liquids and glasses}, journal = {Comptes Rendus. Physique}, pages = {271--283}, publisher = {Acad\'emie des sciences, Paris}, volume = {26}, year = {2025}, doi = {10.5802/crphys.234}, language = {en}, }
Jorge Kurchan. On the “mosaic” picture of liquids and glasses. Comptes Rendus. Physique, Volume 26 (2025), pp. 271-283. doi : 10.5802/crphys.234. https://comptes-rendus.academie-sciences.fr/physique/articles/10.5802/crphys.234/
[1] More is different: Broken symmetry and the nature of the hierarchical structure of science, Science, Volume 177 (1972) no. 4047, pp. 393-396 | DOI
[2] Diverging length scale and upper critical dimension in the Mode-Coupling Theory of the glass transition, Europhys. Lett., Volume 67 (2004) no. 1, pp. 21-27 | DOI
[3] On the Adam–Gibbs–Kirkpatrick–Thirumalai–Wolynes scenario for the viscosity increase in glasses, J. Chem. Phys., Volume 121 (2004) no. 15, pp. 7347-7354 | DOI
[4] Rigorous inequalities between length and time scales in glassy systems, J. Stat. Phys., Volume 125 (2006), pp. 23-54 | DOI | Zbl
[5] Theory of structural glasses and supercooled liquids, Annu. Rev. Phys. Chem., Volume 58 (2007), pp. 235-266 | DOI
[6] Fragilities of liquids predicted from the random first order transition theory of glasses, Proc. Natl. Acad. Sci. USA, Volume 97 (2000) no. 7, pp. 2990-2994 | DOI
[7] Microscopic theory of heterogeneity and nonexponential relaxations in supercooled liquids, Phys. Rev. Lett., Volume 86 (2001) no. 24, pp. 5526-5529 | DOI
[8] p–spin-interaction spin-glass models: connections with the structural glass problem, Phys. Rev. B, Volume 36 (1987) no. 10, pp. 5388-5397 | DOI
[9] Scaling concepts for the dynamics of viscous liquids near an ideal glassy state, Phys. Rev. A, Volume 40 (1989) no. 2, pp. 1045-1054 | DOI
[10] Entropy crises in glasses and random heteropolymers, J. Res. Natl. Inst. Stand. Technol., Volume 102 (1997) no. 2, pp. 187-194 | DOI
[11] Energy flow, partial equilibration, and effective temperatures in systems with slow dynamics, Phys. Rev. E, Volume 55 (1997) no. 4, pp. 3898-3914
[12] Structural glass transition and the entropy of the metastable states, Phys. Rev. Lett., Volume 75 (1995) no. 15, pp. 2847-2850 | DOI
[13] Correlation length for amorphous systems, preprint, 2009 | arXiv
[14] Order in glassy systems, J. Phys. A: Math. Theoret., Volume 44 (2010) no. 3, 035001 | Zbl
[15] Information and configurational entropy in glassy systems, preprint, 2024 | arXiv
[16] Metallic phase with long-range orientational order and no translational symmetry, Phys. Rev. Lett., Volume 53 (1984) no. 20, pp. 1951-1953 | DOI
[17] Quasicrystals: a new class of ordered structures, Phys. Rev. Lett., Volume 53 (1984) no. 26, pp. 2477-2480 | DOI
[18] Tilings and Patterns, Courier Dover Publications, New York, 1987
[19] Compression of two-dimensional data, IEEE Trans. Inf. Theory, Volume 32 (1986) no. 1, pp. 2-8 | DOI
[20] A universal algorithm for sequential data compression, IEEE Trans. Inf. Theory, Volume 23 (1977) no. 3, pp. 337-343 | DOI | Zbl
[21] Compression of individual sequences via variable-rate coding, IEEE Trans. Inf. Theory, Volume 24 (1978) no. 5, pp. 530-536 | DOI | Zbl
[22] A measure of relative entropy between individual sequences with application to universal classification, IEEE Trans. Inf. Theory, Volume 39 (1993) no. 4, pp. 1270-1279 | DOI | Zbl
[23] Identification of structure in condensed matter with the topological cluster classification, J. Chem. Phys., Volume 139 (2013) no. 23, 234506 | DOI
[24] Perspective on physical interpretations of Rényi entropy in statistical mechanics, preprint, 2024 | arXiv
[25] Measuring the strangeness of strange attractors, Phys. D: Nonlinear Phenom., Volume 9 (1983) no. 1–2, pp. 189-208 | Zbl
[26] Language trees and zipping, Phys. Rev. Lett., Volume 88 (2002) no. 4, 048702 | DOI
[27] Metastates and replica symmetry breaking, preprint, 2022 | arXiv
[28] Complexity as information in spin-glass Gibbs states and metastates: Upper bounds at nonzero temperature and long-range models, Phys. Rev. E, Volume 105 (2022) no. 5, 054134 | DOI
[29] Analytical solution of the off-equilibrium dynamics of a long-range spin-glass model, Phys. Rev. Lett., Volume 71 (1993) no. 1, pp. 173-176 | DOI
[30] Viscosity and the extraordinary heat effects in glass, J. Am. Ceram. Soc., Volume 29 (1946) no. 9, pp. 240-253 | DOI
Cité par Sources :
Commentaires - Politique