Comptes Rendus
Article de recherche
On the “mosaic” picture of liquids and glasses
[Sur l’image en « mosaïque » des liquides et des verres]
Comptes Rendus. Physique, Volume 26 (2025), pp. 271-283.

Cet article fait partie du numéro thématique Gérard Toulouse, une vie de découvertes et d'engagement coordonné par Bernard Derrida et al..

Les liquides surfondus sont parfois décrits comme étant composés d’une mosaïque de fragments pouvant être répertoriés dans une « bibliothèque », chacun ayant une forme d’ordre non périodique. En examinant de plus près, cette construction se révèle insaisissable. En tentant de donner un sens précis à la notion de mosaïque, nous sommes inévitablement conduits à la construction d’une procédure pour compresser l’information dans la configuration des particules, essentiellement la même que celle utilisée pour les textes. La quantité d’information nécessaire pour un encodage optimal définit directement l’entropie configurationnelle. Un solide, dans cette perspective, est une disposition de particules décrite par une faible quantité d’information, qui ne peut circuler qu’en se fragmentant en pièces non corrélées, augmentant ainsi sa complexité.

Supercooled liquids are sometimes described as being composed of a mosaic of patches that may be listed in a “library”, each one having some form of non-periodic order. Looking closer, one finds this construction elusive. In attempting to give the notion of mosaic a precise sense, we find that we are inevitably led to the construction of a procedure for compressing the information in the particle configuration, essentially the same as that used for texts. The amount of stored information needed by an optimal encoding directly defines the configurational entropy. A solid, in this view, is a particle arrangement described by a low amount of information, that can only flow by breaking into uncorrelated pieces, thus increasing its complexity.

Reçu le :
Révisé le :
Accepté le :
Publié le :
DOI : 10.5802/crphys.234
Keywords: Order, Solidity, Configurational entropy, Glasses
Mots-clés : Ordre, Solidité, Entropie configurationnelle, Verres

Jorge Kurchan 1

1 Laboratoire de Physique de l’École Normale Supérieure, ENS, Université PSL, CNRS, Sorbonne Université, Université de Paris, F-75005 Paris, France
Licence : CC-BY 4.0
Droits d'auteur : Les auteurs conservent leurs droits
@article{CRPHYS_2025__26_G1_271_0,
     author = {Jorge Kurchan},
     title = {On the {\textquotedblleft}mosaic{\textquotedblright} picture of liquids and glasses},
     journal = {Comptes Rendus. Physique},
     pages = {271--283},
     publisher = {Acad\'emie des sciences, Paris},
     volume = {26},
     year = {2025},
     doi = {10.5802/crphys.234},
     language = {en},
}
TY  - JOUR
AU  - Jorge Kurchan
TI  - On the “mosaic” picture of liquids and glasses
JO  - Comptes Rendus. Physique
PY  - 2025
SP  - 271
EP  - 283
VL  - 26
PB  - Académie des sciences, Paris
DO  - 10.5802/crphys.234
LA  - en
ID  - CRPHYS_2025__26_G1_271_0
ER  - 
%0 Journal Article
%A Jorge Kurchan
%T On the “mosaic” picture of liquids and glasses
%J Comptes Rendus. Physique
%D 2025
%P 271-283
%V 26
%I Académie des sciences, Paris
%R 10.5802/crphys.234
%G en
%F CRPHYS_2025__26_G1_271_0
Jorge Kurchan. On the “mosaic” picture of liquids and glasses. Comptes Rendus. Physique, Volume 26 (2025), pp. 271-283. doi : 10.5802/crphys.234. https://comptes-rendus.academie-sciences.fr/physique/articles/10.5802/crphys.234/

[1] P. W. Anderson More is different: Broken symmetry and the nature of the hierarchical structure of science, Science, Volume 177 (1972) no. 4047, pp. 393-396 | DOI

[2] G. Biroli; J.-P. Bouchaud Diverging length scale and upper critical dimension in the Mode-Coupling Theory of the glass transition, Europhys. Lett., Volume 67 (2004) no. 1, pp. 21-27 | DOI

[3] J.-P. Bouchaud; G. Biroli On the Adam–Gibbs–Kirkpatrick–Thirumalai–Wolynes scenario for the viscosity increase in glasses, J. Chem. Phys., Volume 121 (2004) no. 15, pp. 7347-7354 | DOI

[4] A. Montanari; G. Semerjian Rigorous inequalities between length and time scales in glassy systems, J. Stat. Phys., Volume 125 (2006), pp. 23-54 | DOI | Zbl

[5] V. Lubchenko; P. G. Wolynes Theory of structural glasses and supercooled liquids, Annu. Rev. Phys. Chem., Volume 58 (2007), pp. 235-266 | DOI

[6] X. Xia; P. G. Wolynes Fragilities of liquids predicted from the random first order transition theory of glasses, Proc. Natl. Acad. Sci. USA, Volume 97 (2000) no. 7, pp. 2990-2994 | DOI

[7] X. Xia; P. G. Wolynes Microscopic theory of heterogeneity and nonexponential relaxations in supercooled liquids, Phys. Rev. Lett., Volume 86 (2001) no. 24, pp. 5526-5529 | DOI

[8] T. R. Kirkpatrick; D. Thirumalai p–spin-interaction spin-glass models: connections with the structural glass problem, Phys. Rev. B, Volume 36 (1987) no. 10, pp. 5388-5397 | DOI

[9] T. R. Kirkpatrick; D. Thirumalai; P. G. Wolynes Scaling concepts for the dynamics of viscous liquids near an ideal glassy state, Phys. Rev. A, Volume 40 (1989) no. 2, pp. 1045-1054 | DOI

[10] P. G. Wolynes Entropy crises in glasses and random heteropolymers, J. Res. Natl. Inst. Stand. Technol., Volume 102 (1997) no. 2, pp. 187-194 | DOI

[11] L. F. Cugliandolo; J. Kurchan; L. Peliti Energy flow, partial equilibration, and effective temperatures in systems with slow dynamics, Phys. Rev. E, Volume 55 (1997) no. 4, pp. 3898-3914

[12] R. Monasson Structural glass transition and the entropy of the metastable states, Phys. Rev. Lett., Volume 75 (1995) no. 15, pp. 2847-2850 | DOI

[13] J. Kurchan; D. Levine Correlation length for amorphous systems, preprint, 2009 | arXiv

[14] J. Kurchan; D. Levine Order in glassy systems, J. Phys. A: Math. Theoret., Volume 44 (2010) no. 3, 035001 | Zbl

[15] I. Fraenkel; J. Kurchan; D. Levine Information and configurational entropy in glassy systems, preprint, 2024 | arXiv

[16] D. Shechtman; I. Blech; D. Gratias; J. W. Cahn Metallic phase with long-range orientational order and no translational symmetry, Phys. Rev. Lett., Volume 53 (1984) no. 20, pp. 1951-1953 | DOI

[17] D. Levine; P. J. Steinhardt Quasicrystals: a new class of ordered structures, Phys. Rev. Lett., Volume 53 (1984) no. 26, pp. 2477-2480 | DOI

[18] B. Grünbaum; G. C. Shephard Tilings and Patterns, Courier Dover Publications, New York, 1987

[19] A. Lempel; J. Ziv Compression of two-dimensional data, IEEE Trans. Inf. Theory, Volume 32 (1986) no. 1, pp. 2-8 | DOI

[20] J. Ziv; A. Lempel A universal algorithm for sequential data compression, IEEE Trans. Inf. Theory, Volume 23 (1977) no. 3, pp. 337-343 | DOI | Zbl

[21] J. Ziv; A. Lempel Compression of individual sequences via variable-rate coding, IEEE Trans. Inf. Theory, Volume 24 (1978) no. 5, pp. 530-536 | DOI | Zbl

[22] J. Ziv; N. Merhav A measure of relative entropy between individual sequences with application to universal classification, IEEE Trans. Inf. Theory, Volume 39 (1993) no. 4, pp. 1270-1279 | DOI | Zbl

[23] A. Malins; S. R. Williams; J. Eggers; C. P. Royall Identification of structure in condensed matter with the topological cluster classification, J. Chem. Phys., Volume 139 (2013) no. 23, 234506 | DOI

[24] M. Ozawa; N. Javerzat Perspective on physical interpretations of Rényi entropy in statistical mechanics, preprint, 2024 | arXiv

[25] P. Grassberger; I. Procaccia Measuring the strangeness of strange attractors, Phys. D: Nonlinear Phenom., Volume 9 (1983) no. 1–2, pp. 189-208 | Zbl

[26] D. Benedetto; E. Caglioti; V. Loreto Language trees and zipping, Phys. Rev. Lett., Volume 88 (2002) no. 4, 048702 | DOI

[27] C. M. Newman; N. Read; D. L. Stein Metastates and replica symmetry breaking, preprint, 2022 | arXiv

[28] N. Read Complexity as information in spin-glass Gibbs states and metastates: Upper bounds at nonzero temperature and long-range models, Phys. Rev. E, Volume 105 (2022) no. 5, 054134 | DOI

[29] L. F. Cugliandolo; J. Kurchan Analytical solution of the off-equilibrium dynamics of a long-range spin-glass model, Phys. Rev. Lett., Volume 71 (1993) no. 1, pp. 173-176 | DOI

[30] A. Q. Tool Viscosity and the extraordinary heat effects in glass, J. Am. Ceram. Soc., Volume 29 (1946) no. 9, pp. 240-253 | DOI

Cité par Sources :

Commentaires - Politique